变压器主保护新原理和新算法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究可靠性更高、性能更完善的变压器主保护原理和算法,在电力系统中既有重要的理论意义,又有很高的实用价值。论文从变压器主保护的“新思路”和“老问题”入手,对目前主保护中尚未彻底解决的难题展开了深入的研究。首次提出了一种基于等效电阻变化特征的变压器主保护新原理。利用瞬时功率的理论和物理含义,定义了端口的等效电阻,从故障的根本性质出发,揭示了变压器发生内部和外部故障状态在本质上的不同,且算法不受励磁涌流、非周期分量、间断角消失、变压器漏阻抗的影响;
     与差动保护迥然不同的新原理。本文还分析了现有时差法的应用局限性,提出了基于实际电力系统的新型的时差法,利用小波变换提取高频细节和奇异点信息,比较励磁涌流和内部故障电流时差的不同,构成保护判据。本文首次提出了一种基于频谱熵的新型变压器保护原理。在变压器保护中引入频谱熵算法,利用熵的物理意义和发生励磁涌流时固有的两个状态(非饱和阶段和饱和阶段)的转换,研究频谱熵在合闸后第一个周波内的变化情况,构成判据。本文使用基波幅值特征构成了励磁涌流识别的新方法,在TA误差很小的前半个周波内,利用其达到最大值的时间和第一个极大值与最大值之比构成变压器的保护判据。文中提出的变压器保护新判据都经过了大量的动模试验数据验证,试验结果证明了方法的有效性。
In the power system, it is of great theoretical significance and high practical value to develop a new transformer protection principle with higher reliability and better performance. This paper makes a study on the transformer protection from two aspects,‘new ideas’and‘old problem’. A new principle based on the equivalent resistance is proposed. Using the theory of instantaneous power, the port equivalent resistance is defined to reveal the difference between the internal and external fault, not subject to the impact of the inrush current, non-periodic component, the transformer leakage impedance, intermittent angle. The new principle is very different with the differential protection. For the limitation of the existing time difference, the paper also proposes a new principle based on an improved time difference, which uses the wavelet transform to extract high- frequency details and singular point information. This paper introduces the spectral entropy into the transformer protection, using the physical meaning of entropy to reflect the inrush information in a cycle and constitute a criterion. This paper uses the two-instantaneous-value-product algorithm to extract the fundamental amplitude of current, and uses two factors (the time of reaching the maximum and the ratio of the first local maximum and the maximum) to constitute a criterion of the transformer protection. The new criterions of the transformer protection have been verified by a lot of dynamic experiments, which show the effectiveness of the methods.
引文
[1]王维俭.电气主设备继电保护原理与应用(第二版)[M].北京:中国电力出版社, 2001: 83-100
    [2]张保会,尹项根.电力系统继电保护[M].北京:中国电力出版社, 2005: 193-241
    [3]王维俭,侯炳蕴.大型机组继电保护理论基础(第二版)[M].北京:水利电力出版社, 1989: 152-184
    [4]周玉兰,詹荣荣. 2003年全国电网继电保护与安全自动装置运行情况[J].电力设备,2004,5(12): 74-79
    [5]马静.变压器主保护新原理和新算法的研究[D].河北:华北电力大学电力工程学院, 2008
    [6] Sumaryadi; Indora T., Sinisuka N.I., Harmonic Current Impact to Capability of Transformer #7 Pulogadung s/s[A]. International Conference on Electrical Engineering and Informatics[C], 2009: 659-662
    [7] Deshu Chen, Wei Chen, Xianggen Yin, etc. The analysis of Operation Characteristic of Transformer Differential Protection Based on Virtual Third Harmonic Theory[A]. International Conference on Power System Technology[C], 2002: 720-722
    [8] Jialong Wang, Hamilton R.. Analysis of Transformer Inrush Current and Comparison of Harmonic Restraint Methods in Transformer Protection[A]. 61st Annual Conference for Protective Relay Engineers[C], 2008: 142-169
    [9] M. E. Hamedani Golshan, M. Saghaian-nejad, A. Saha and H. Samet. A New Method for Recognizing Internal Faults from Inrush Current Conditions in Digital Differential Protection of Power Transformers[J]. Electric Power Systems Research. 2004, V71(1): 61-75
    [10]陈俊,严伟,陈佳胜,等.基于不同傅里叶算法之间相似度的励磁涌流鉴别方法[J].电力系统自动化, 2006, 30(06): 21-24
    [11]韩正庆,刘淑萍.一种基于差动电流波形特征的励磁涌流识别新方法[J].电力自动化设备, 2007, 27(09): 51-54
    [12]李贵存,刘万顺,滕林,等.基于波形相关性分析的变压器励磁涌流识别新算法[J].电力系统自动化, 2001(17): 25-28
    [13]马静,王增平,徐岩.用相关函数原理识别变压器励磁涌流和短路电流的新方法[J].电网技术, 2005, 29(06): 78-81
    [14]安源,刘家军.一种基于波形相关分析识别变压器励磁涌流的方法[J].继电器, 2007, 35(18): 1-5
    [15]李贵存,刘万顺,刘建飞,等.用波形拟合法识别变压器励磁涌流和短路电流的新原理[J].电力系统自动化, 2001, 25(14): 15-18
    [16] H. Zhang, J. F. Wen, P. Liu, O. P. Malik. Discrimination Between Fault and Magnetizing Inrush Current in Transformers Using Short-Time Correlation Transform[J]. International Journal of Electrical Power & Energy Systems, 2002, V24(7): 557-562
    [17] Swift G., Zhiying Zhang, McLaren P.. Inrush Restraint Algorithms for Transformer Differential Relays[A]. WESCANEX 95. Communications, Power, and Computing[C], 1995: 321-328
    [18]吕志娟,刘万顺,肖仕武,等.一种鉴别变压器励磁涌流和内部故障的新原理[J].继电器, 2006, 34(12): 1-5
    [19] Bi D.Q., Zhang X.A., Yang H.H., etc. Correlation Analysis of Waveforms in Nonsaturation Zone-Based Method to Identify the Magnetizing Inrush in Transformer[J]. Power Delivery, 2007, V22(3): 1380-1385
    [20] P. Sun, J. F. Zhang, D. J. Zhang, Q. H. Wu. Morphological Identification of Transformer Magnetizing Inrush Current[J]. Electronics Letters, 2002, V38(9): 437-438
    [21] Lu Z., Tang W.H., Ji T.Y., etc. A Morphological Scheme for Inrush Identification in Transformer Protection[J]. Power Delivery, 2009, V24(2): 560-568
    [22]黄家栋,罗伟强.采用改进数学形态学识别变压器励磁涌流的新方法[J].中国电机工程学报, 2009, 29(07): 98-105
    [23] Vittal K.P., Gaonakar D.N., Fakruddin D.B.. Development of Wavelet Transform Based Numeric Relay for Differential Protection of Power Transformer[A]. TENCON 2003, Conference on Convergent Technologies for Asia-Pacific Region[C], 2003: 1580-1584
    [24] Ozgonenel O.. Protection of Power Transformers by Using Continuous Wavelet Transform[A]. Electrotechnical Conference, MELECON 2006[C]. 2006: 1106 - 1109
    [25] Zhonghao Yang, Liu J.Z., Dong Xinzhou, etc. A New Technique for Power Transformer Protection Using Discrete Dyadic Wavelet Transform[A]. Seventh International Conference on Developments in Power System Protection[C], 2001: 383-386
    [26] Yong Sheng, Rovnyak S.M.. Decision Trees and Wavelet Analysis for Power Transformer Protection[J]. Power Delivery, 2002, V17(2): 429-433
    [27] Saleh S.A., Rahman M.A.. Modeling and Protection of a Three-Phase Power Transformer Using Wavelet Packet Transform[J]. Power Delivery, 2005, V20(2): 1273-1282
    [28] Ozgonenel O., Onbilgin G., Kocaman C.. Wavelet Based Transformer Protection[A]. Proceedings of the 12th IEEE Mediterranean[C], 2004: 915 - 918
    [29] Jiang F., Bo Z.Q., Chin P.S.M., Redfern M.A., etc. Power Transformer Protection Based on Transient Detection Using Discrete Wavelet Transform[A]. Power Engineering Society Winter Meeting[C], 2000: 1856-1861
    [30] Eissa M.M.. A Novel Digital Directional Transformer Protection Technique Based on Wavelet Packet[J]. Power Delivery, 2005, V20(3): 1830-1836
    [31] Youssef O.A.S.. Applications of Fuzzy-logic-wavelet-based Techniques for Transformers Inrush Currents Identification and Power Systems Faults Classification[A]. Power Systems Conference and Exposition[C], 2004: 553-559
    [32] Kasztenny B., Rosolowski E., Saha M.M., etc. A Self-organizing Fuzzy Logic Based Protective Relay-an Application to Power Transformer Protection[J]. Power Delivery, 1997, V12(3): 1119-1127
    [33] Kasztenny B., Rosolowski E., Saha M.M., etc. A Multi-criteria Fuzzy Logic Transformer Protection[A]. Developments in Power System Protection[C], 1997: 143-146
    [34] Khorashadi-Zadeh H.. Fuzzy-neuro Approach to Differential Protection for Power Transformer[A]. 2004 IEEE Region 10 Conference[C], 2004: 279-282
    [35] L. G. Perez, A. J. Flechsig, J. L Meador, et al. Training an Artificial Neural Network to Discriminate Between Magnetizing Inrush and Internal Faults[J]. IEEE Trans on Power Delivery, 1994, V9(1): 434-441
    [36] Tripathy M., Maheshwari R.P., Verma H.K.. Radial Basis Probabilistic Neural Network for Differential Protection of Power Transformer[J]. Generation, Transmission & Distribution, IET, 2008, V2(1): 43-52
    [37] Mao P.L., Aggarwal R.K.. A Novel Approach to the Classification of the Transient Phenomena in Power Transformers Using Combined Wavelet Transform and Neural Network[J]. Power Delivery, 2001, V16(4): 654-660
    [38] Geethanjali M., Slochanal S.M.R., Bhavani R.. A Novel Approach for Power Transformer Protection Based upon combined wavelet transform and Neural Networks[A]. The 7th International Power Engineering Conference[C], 2005:1-1576
    [39] Yuan Yubo, Lu Yuping, Xu Yang, etc. An Adaptive Variable Window Algorithm for Transformer Differential Protection Relay[A]. Transmission and Distribution Conference and Exhibition[C], 2005: 1-5
    [40] A. A. Girgis, D. G. Hart, W. B Chang. An adaptive scheme for Digital Protection of Power Transformers[J]. Power Industry Computer Application Conference, 1991, 2-9
    [41]徐岩,王增平,杨奇逊.基于电压电流微分波形特性的变压器保护新原理的研究[J].中国电机工程学报, 2004, 24(2): 61-65.
    [42] Shin-Der Chen, Lin R.-L., Chih-Kun Cheng. Magnetizing Inrush Model of Transformers Based on Structure Parameters[J]. Power Delivery, 2005, V20(3): 1947-1954
    [43]宗洪良,金华峰,朱振飞,等.基于励磁阻抗变化的变压器励磁涌流判别方法[J].中国电机工程学报, 2001, 21(7): 91-94
    [44] Shao Bo, Hao Zhi-guo, Zhang Bao-hui, etc. Research on Transformer Self-adaptive Protection Principle Based on Equivalent Equation[A]. 10th IET International Conference on Developments in Power System Protection[C], 2010: 1-5
    [45]杨浩,曾鑫,罗建.基于约束最小二乘法的变压器三相漏感辨识算法[J].电力系统自动化, 2009, 33(13): 68-72
    [46] Sidhu, T. S. . A Power Transformer Protection Technique with Stability during Current Transformer Saturation and Ratio-mismatch Conditions[J]. IEEE Trans on Power Delivery, 1999, V14(3): 798-804
    [47]李永丽,梅云,刘长胜等.一种基于序功率方向的变压器保护方案[J].电力系统自动化, 2002, 26(4): 28-31
    [48]郑涛.变压器数字仿真和数字式主保护新原理的研究[D].北京:华北电力大学电力工程学院, 2005
    [49] Yabe K. Power Differential Method for Discrimination Between Fault and Magnetizing Inrush Current in Transformer[J]. IEEE Trans on Power Delivery, 1997, V12(3): 1109-1118
    [50]孙鸣,梁俊滔,冯小英.基于功率差动原理的变压器保护实现方法的分析[J].继电器, 2001, 29(12): 13-15
    [51]郑涛,刘万顺,吴青华,等.基于瞬时功率的变压器励磁涌流和内部故障电流识别新方法[J].电力系统自动化, 2003, 27(23): 51-55
    [52]孙鸣.正序有功功率差作为变压器励磁涌流判据的研究[J].中国电力, 2004, 37(12): 5-8
    [53]古斌,谭建成.基于有功无功直流分量比值的变压器涌流新判据[J].电力系统自动化, 2007, 31(20): 65-69
    [54]古斌,谭建成.电力变压器励磁涌流和内部故障识别新方法[J].继电器, 2007, 35(2): 6-10
    [55]汪志彬,郭光荣.功率方向保护在变压器保护中的应用探讨[J].继电器, 2003, 31(1): 26-27
    [56]曾湘,林湘宁,翁汉琍,等.基于相电压和差流时差特征的变压器保护新判据[J].电力系统自动化, 2009, 33(03): 79-83
    [57]徐岩.电力变压器内部故障数字仿真及其保护新原理的研究[D].保定:华北电力大学电力工程学院, 2005
    [58]林湘宁,刘沛,杨春明,等.利用改进型波形相关法鉴别励磁涌流的研究[J].中国电机工程学报, 2001, 21(5): 56-70
    [59]古斌,谭建成.基于瞬时功率理论的新型功率方向元件[J].电工技术学报, 2010, 25(2): 177-182
    [60]马静,王增平,吴劼.基于广义瞬时功率的新型变压器保护原理[J].中国电机工程学报, 2008, 28(13): 78-83
    [61]刘进军,王兆安.瞬时无功功率与传统功率理论的统一数学描述及物理意义[J].电工技术学报, 1998, 13(06): 6-12
    [62]邱关源.电路[M].北京:高等教育出版社, 1999: 7-271
    [63]吴明雷,李庆民,段玉兵.利用动态阻抗特性识别变压器的励磁涌流[J].高电压技术, 2007, 33(09): 50-55
    [64]郑涛,刘万顺,庄恒建,等.基于改进型序阻抗原理的变压器保护方案[J].电力系统自动化, 2004, 28(14): 67-71
    [65]索南加乐,焦在滨,宋国兵,等.基于故障分量综合阻抗的变压器保护新原理[J].电机工程学报, 2008, 28(34): 94-100
    [66]陈韬.基于时差法的新型变压器差动保护[D].吉林:东北电力大学, 2009
    [67]束洪春.电力工程信号处理[M].北京:科学出版社, 2009: 323-338
    [68]杨卫东.熵原理在电力系统中的应用前景[J].电工技术, 2000(04): 4-6.
    [69]王丽霞,何正友,戴铭,等.一种电能质量扰动信号的分层识别新方法[J].电力系统自动化, 2009, 33(24): 65-69.
    [70]朱声石.高压电网继电保护原理与技术[M].北京:水利电力出版社, 1983: 50-231
    [71]马静,王增平,吴劼.利用基波幅值变化特征快速识别励磁涌流和故障电流[J].电工技术学报, 2009, 24(6): 166-171

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700