地球物理反演中病态矩阵方程正则化解算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地球物理反演是地球物理探测数据最重要的解释方法技术.求解地球物理反演问题常会涉及到大型病态矩阵方程的求解.理论上讲正则化方法是处理病态问题的有效手段,但在实践上正则化参数的选择却是一个困难的问题.本文在比较系统地研究了正则化方法的基础上,针对实际计算中常会碰到的问题,将其与Active-Set算法、差分进化算法等相结合,发展了一些新的病态矩阵方程正则化解算方法.论文的主要内容包括:
     1.研究了在实际反演中遇到参数有非负要求特性时的反演计算方法.将原问题转化为一个带非负约束的阻尼最小二乘问题,并用Active-Set算法求解.通过对理论模型进行数值模拟计算,验证了将Tikhonov正则化方法与Active-Set算法相结合的A-TR算法的有效性.应用到实际双频电导率成像反演,也取得了满意的结果.
     2.研究了差分进化算法在地球物理反演中的几种应用.为加速差分进化算法的收敛速度,提出了将种群熵的自适应差分进化(ARDE)算法以及粒子群差分进化混合(PSODE)算法分别与Tikhonov正则化方法结合.在大型反演计算中,这两种方法可以在不影响反演效果的前提下,不同程度地提高收敛速度,降低时间成本.同时结合LSQR和差分进化算法的优点,提出了基于LSQR算法的差分混合(HDE)算法,避开了Tikhonov和TSVD等直接正则化算法在选取正则化参数上的困难,同时具有数值稳定性好、不依赖于初值、不易陷入局部极值和收敛速度快等优点,适宜于在正则化参数选取困难情况时的地球物理反演问题的求解.
     3.提出了一种双参数混合正则化方法.引入了带有二阶正则算子的正则化项,并应用L-曲线法、偏差原理和广义交叉校验准则的优化组合确定了最佳正则化参数.数值模拟实验和实际数据处理实验结果表明了该方法的可行性.这是一种将高阶正则化算子应用于实际反演计算的新的尝试.
     基于数值模拟实验和实际数据处理实验,认为研究发展的A-TR算法、HDE等算法各有其不同的适用条件,A-TR算法适用于求解反演参数有非负约束的情况,而当正则化参数选取困难时,可采用HDE算法.针对本文所考察的双频电导率反演问题,由于电导率的非负性,采用A-TR方法可得到更加精细可靠的重建图像.
Geophysical inversion is a key technique in geophysical exploration. Geophysical inversion often relates to solving ill-posed, large matrix equations. Theoretically, regularization is an effective method in dealing with ill-posed problems. Its application in practical geophysical inversion problems, however, still has many difficulties in selecting regularization parameters. Based on systematic study of regularization, this dissertation presents a few newly developed regularization methods that apply Active-Set algorithm, Differential Evolution algorithm, and a few others. These regularization methods focus on solving ill-posed matrix equations arising from practical problems. Main results of the dissertation include:
     Tikhonov regularization and Active-Set algorithm are applied together to the geophysical inversion problems so that the problems with non-negative parameters are converted into problems of non-negative damped least square algorithm, which can be further solved by the Active-Set algorithm. The improved recursive algorithm is further verified by numerical simulation. Satisfactory results are obtained by applying this algorithm to electrical conductivity imagery inversion.
     Furthermore, differential evolution algorithms are also studied. To improve the rate of convergence of Differential Evolution algorithms, two new Tikhonov regularization algorithms are proposed that respectively employ Adaptive Recursive Differential Evolution (ARDE) algorithm based on population entropy and Particle Swarm Optimization and Differential Evolution (PSODE) algorithm. Without any compromise in effectiveness, these two algorithms both improve the convergence speed and thus reduce computation cost. Still further, a new DE algorithm based on LSQS, which inherits the advantages of both LSQR and DE, is designed. This new algorithm avoids the common difficulty of regularization parameter selection in Tikhonov and TSVD algorithms. It also displays superior stability, independence on initial values, unlikelihood of local extrema, and faster convergence. This algorithm is particularly suitable to solve the problem of selection of regularization parameters in the study of geophysical inversion.
     Finally, the selection method of regularization term is also studied. A regularization term with a second order regularization operator is introduced to propose a mixed regularization method with two parameters. The L-curve criterion, discrepancy principle, and generalized cross-validation are applied to determine the optimal value of the regularization parameter. The validity and superiority of the proposed method is verified by numerical simulation of the theoretical model.
     Based numeric simulations and results from actual data processing, it is found that the newly developed A-TR regularization algorithm, HDE regularization algorithm are effective in certain conditions. The A-TR regularization algorithm is applicable to inversion problems that require non-negative parameters, whereas HDE regularization algorithm is applicable to those inversion problems whose selection of regularization parameters is difficult. Because of non-negative conductivity, A-TR algorithm will get more detailed and reliable imagery for dual-frequency conductivity inversion problems investigated by this paper.
引文
[1]王彦飞.反演问题的计算方法及其应用[M].北京:高等教育出版社,2007
    [2]何旭初.数值相关性理论及其应用[J].高等学校计算数学学报, 1979,(1):11-19
    [3]朱慈幼.病态线性方程组的条件预优解法——数值相关性理论的一个应用[J].高等学校计算数学学报,1981,2:97-106
    [4] King J T. On the construction of preconditioners by subspace decomposition[J]. J.of Computational and Applied Math. 1990,29:195-205
    [5] Tikhonov A N. On solving incorrectly posed problems and method of regularization[J]. Dokl. Acad.Nauk USSR,1963,151(3)
    [6] Hadamard J. Lectures on the Cauchy problems in Linear Partial Differntial Equations[M].New Haven: Yale University Press,1923
    [7] Tikhonov A N. On stability of inverse problems[J]. Dokl.Acad.Nauk USSR,1943,39(5):195 -198
    [8] Phillips D L. A technique for the numerical solution of certain integral equations of the first kind[J]. J.Assoc.Comput.Mach., 1962(9):84-97
    [9] Engl H W. Discrepancy principles for Tikhoov regularization of ill-posed problems leading to optimal convergence rates[J]. J.Optim.Theory.Appl.,1987(52):209-215
    [10] Engl H W, Gfrerer H. A posteriori parameter choice for general regularization methods for solving ill-posed problems[J]. Appl. Numer. Math..1988(4):395-417
    [11] Engl H W, Kunisch K, Neubauer A. Convergence rates for Tikhonov regularization of non-linear ill-posed problems[J]. Inverse Problems. 1989(5):523-540
    [12] Engl H W. Regularization methods for the stable solution of inverse problems[J]. Surv.Math.Ind.. 1993(3):71-143
    [13] Engl H W, Hanke M, Neubauer A. Regularization of Inverse Problems[M].Dordrecht:Kluwer Academic Publishers,1996
    [14] Hansen P C. Numerical tools for analysis and solution of fredholm integral equations of the first kind[J]. Inverse Problems,1992(8):849-872
    [15] Hansen P C. Analysis of discrete ill-posed problems by means of the L-curve[J]. SIAM Review,1992(34):561-580
    [16] Hanke M, Hansen P C. Regularization methods for large-scale Problems[J]. Surv.Math.Ind., 1993(3):253-315
    [17] Hansen P C. Rank-deficient and Discrete ill-posed Problems:Numerical Aspects of Linear Inversion Philadelphia[M].SIAM Publishers,1998
    [18] Hansen P C. The L_curve and its use in the numerical treatment of inverse problems [J]. Computational Inverse Problems in Electrocardiography. 2001:119-142
    [19]冯康.数学物理中的反问题[M].北京:中国科学院计算中心,1985
    [20]张关泉.数学物理反演问题[M].北京:中国科学院计算中心, 1987
    [21]黄光远,刘小军.数学物理反问题[M].济南:生动科学技术出版社,1993
    [22] Cheng J, Yamamoto M. One new strategy for a-priori choice of regularizing parameters in Tikhoov’s regularization[J]. Inverse Problems,2000,16(4):131-136
    [23] Cheng J, Yamamoto M. Uniqueness in an inverse scattering problem within non-trapping polygonal obstacles with at most two incoming waves[J]. Inverse Problems, 2003 (19), 1361-1384.
    [24] Cheng J, Liu J J, Nakamura G. Recovery of the shape of an obstacle and the boundary impedance from the far-field pattern[J]. Journal of Mathematics of Kyoto University, 2003 (43), 165-186
    [25] Cheng J, Isakov V, Yamamoto M, Zhou Q. Lipschitz stability in the lateral Cauchy problem for elasticity system[J]. Journal of Mathematics of Kyoto University, 2003 (43), 475-501
    [26] Cheng J, Yamamoto M. Global uniqueness in the inverse acoustic scattering problem within polygonal obstacles[J]. Chinese Annals of Mathematics, 2004 (25B), 1-6
    [27] Cheng J, Yamamoto M. Determination of two convection coefficients from Dirichlet to Neumann map in the two-dimensional case[J] SIAM Journal on Mathematical Analysis, 2004 (35), 1371-1393
    [28] Liu J J, Cheng J, Nakamura G. Reconstruction and uniqueness of an inverse scattering problem with impedance boundary[J]. Science in China, Ser.A, 2002,45(11):1408-1419
    [29] Liu J J, Cheng J, Nakamura G. Reconstruction of scattered field from far-field by regularization[J]. Journal of Computational Mathematics, 2004,2(3):389-402.
    [30] Liu J J, On uniqueness and linearization of an inverse electromagnetic scattering problem[J]. Applied Mathematics and Computation.,2005,171(1): 406-419
    [31]刘继军.不适定问题的正则化方法及应用[M].北京:科学出版社,2005
    [32] Liu J J, Nakamura G, Potthast R. A new approach and improved error analysis for reconstructing the scattered wave by the point source method[J]. J.Computational mathematicas. 2007,25(2)
    [33] Liu J J, Ni M. A model function method for determining the regularizing parameter in potential approach for the recovery of scattered wave[J]. Applied Numerical Mathematics, 2008,58(8):1113-1128
    [34] Sen M K, Roy I G. Two problems in pre-stack inversion: optimal regularization and computation of differential seismograms. SEG 2002 annual meeting, Sait Lake City,USA, 2002
    [35] Roy I G. Iteratively adaptive regularization in inverse modeling with Bayesian outlook-application ongeophysical data[J]. Inverse Problems in Science and Engineering. 2005(13):655-670
    [36] Vogel C R. Computational Methods for InverseProblems. SIAM,2002
    [37] Li X W, Gao F, Wang J D, Strahler A H. A Priori knowledge accumulation and its application to linear BRDF model inversion[J]. Journal of Geophysical Research. 2001(106):11925-11935
    [38]王彦飞.数值求解迭代Tikhonov正则化方法的一点注记[J].数值计算与计算机应用. 2002,23(3):
    [39] Wang Y F, Wen W Z, Nashed Z, Sun Q Y. A Fast TSVD method Time-limited signal reconstruction,in De-shuang Huang ed.: Advances in Intelligent Computing-ICIC 2005. 2005:51-60
    [40]栾文贵.地球物理中的反问题[M].北京:科学出版社,1989
    [41]王彦飞,杨长春,段秋梁.地震偏移反演成像的迭代正则化方法研究[J].地球物理学报. 2009,52(6):1615~1624
    [42]崔岩,王彦飞,杨长春.带先验知识的波阻抗正则化方法研究[J].地球物理学报,2009,52(8):2135-2141
    [43]范宜仁,魏丹,邓少贵.Tikhonov正则化方法在测井反演中的应用[J].测井技术,2005,29(2):
    [44]陈小斌,赵国泽,汤吉.大地电磁自适应正则化反演算法[J].地球物理学报,2005,48(4):
    [45]熊小芸,赵延文,聂在平.一种用于电磁逆散射问题的正则化方法[J].自然科学进展,2006,10:
    [46]王家映.地球物理反演理论[M].北京:高等教育出版社.2002
    [47] Varah J M. Pitfalls in the numerical solution of linear ill-posed problems[J]. SIAM J.Sci.Stat. Comput.,1983(4):164-176
    [48]李世雄,刘家琦.小波变化和反演数学基础.北京:地质出版社,1994
    [49]刘劲松,刘福田,刘俊等.地震层析成像LSQR算法的并行化[J].地球物理学报,2006,49(2): 540-545
    [50] Paige, C G, Saunders M A. LSQR: An algorithm for sparse linear equations and sparse least-squares, ACM Trans. Math. Software, 1982, 8:43~71
    [51]刘劲松,刘福田,刘俊等.地震层析成像LSQR算法的并行化[J].地球物理学报, 2006, 49(2):540-545
    [52]肖庭延,于慎根,王彦飞.反问题的数值解法[M].北京:科学出版社,2003
    [53] Groetsch C W. The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind. London:Pitman Advanced Publishing Program,1984
    [54] Landweber L. An iteration formula for fredholm integral equations of the first kind[J].Amer. J.Math.,1951(73):615-624
    [55] Fridman V. Methods of successive approximation for fredholm integral equations of the firstkind[J].Uspekhi Mat.Nauk,1956,11(1):233-234
    [56] Kunisch K. On a class of damped Morozov principle[J]. Computing,1993(50):185-198
    [57] Kunisch K, Zou J. Iterative choices of regularization parameter in linear inverse problems[J]. Inverse Problems,1998(14):1247-1264
    [58] Neumaier A. Solving ill-conditioned and singular linear systems:A tutorial on regularization[J]. SIAM Rev.,1998,40(3):636-666
    [59] Vainikko G M. The discrepancy principle for a class of regularization methods[J]. USSR Compt. Math.Phys.,1983(23):1-6
    [60] Vainikko G M, Varetennikov A J. Iteration procedures in ill-posed problems[J]. Moscow : Nauka,1986
    [61] Varah J M. On the numerical solution of ill-conditioned linear systems with application to ill-posed problems[J]. SIAM J.Numer.Anal.,1973(10):257-267
    [62] Vogel C R. Non-convergence of the L-curve regularization parameter selection method[J]. Inverse Problems,1996(12):535-547
    [63] Xiao T Y. On the algorithms for solving discrepancy equation in ill-posed problems.’96 Symposium on computation physics for Chinese Overseas and at Home,1996,Beijing
    [64] Morozov V A. Methods for Solving Incorrectly Posed Problems. New York:Springer,1984
    [65] Morozov V A. On regularization of ill-posed problems and selection of regularization parameter[J]. J.Comp.Math.Math.Phy.,1966,6(1):170-175
    [66] Wang Y F, Xiao T Y. Fast realization algorithms for determining regularization parameters in linear inverse problems[J].Inverse Problems,2001(17):281-291
    [67] Groetsch C W. The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind. Pitman Advanced Publishing Program,1984
    [68] Chen H, Hou Z Y. The iterated regularization with perturbed operators and noisy data[J]. Science in China(series A),1994(37):1409-1417
    [69] Tikhonov A N, Arsenin V Y. Solutions of Ill-posed Problems. New York: John Wiley and Sons, 1977
    [70] Golub G H, Heath M, Wahba G. Generalized cross-validation as a method for choosing a good ridge parameter[J]. Technometrics,1979(21):215-223
    [71] Eldén L. A note on the computation of the generalized cross-validation function for ill-conditioned least squares problems[J]. BIT,1984(24):467-472
    [72]曹俊兴,聂在平.线性方程组迭代解的随机模型测试研究[J].物探化探探测技术.1998,20(2):120-124
    [73]张宏兵,尚作萍,杨长春,段秋梁.波阻抗反演正则参数估计[J].地球物理学报,2005,48(1):181-188
    [74] Wang Y F, Xiao T Y. Fast convergence algorithms for solving 2-D integral equations of the first kind,In chen et al. Lecture Notes in Physics[J].Springer-Verlag,2000:333-344
    [75] Wang Y F. A restarted conjugate gradient method for ill-posed problems[J]. ActaMathematica Appplicata Sinica. Springer-Verlag,2003(19):31-40
    [76] Wang Y F. Iterative Choices of Regularization Parameter with Perturbed Operator and Noisy Data. Report,AMSS,Chinese Academy of Sciences,2001
    [77]曹俊兴.双频电磁波电导率层析成像反演[J].地球物理学报,2001, 44(增刊): 199-205
    [78] Cao J X, He Z H, Zhu J S, et al. Conductivity Tomography at two frequencies[J]. Geophysics,2003, 68(2):516-522
    [79]王文娟,潘克家,曹俊兴,谭永基.基于Tikhonov正则化的双频电磁波电导率反演成像[J].地球物理学报.2009, 52(3):750-757
    [80] Wang W J, Pan K J, Cao J X,Tan Y J. Conductivity Tomography Imaging using Regularization Methods[J]. Journal of Information and Computation Science.2008,5(4):1885-1891
    [81] Feng B B,Wang W J, Cao J X. An Improved Tikhonov Regularization Method for Conductivity Tomography Imaging.2008 International Symposium on Computer Science and Computational Technology(ISCSCT2008). 2008,Volume 2:406 - 409.
    [82] Golub G H, van Loan C F. Matrix Computations[M].Johns Hopkins Univ. Press, 1989. Second Edition
    [83]曹俊兴,聂在平.基于物理模型的成像算法评价与SASART成像算法[J].成都理工学院学报,1998,25(4):473-479
    [84]杨文采,杜剑渊.层析成像新算法及其在工程检测上的应用[J].地球物理学报,1994,37(2): 293-244
    [85]常旭,卢孟夏,刘伊克.地震层析成像反演中3种广义解的误差分析与评价[J].地球物理学报,1999,42(5):695-701
    [86]刘伊克,常旭.地震层析成像反演中解的定量评价及其应用[J].地球物理学报, 2000, 43(2): 251-256
    [87]王振宇,刘国华,梁国钱.基于广义逆的层析成像反演方法研究[J].浙江大学学报(工学版), 2005,39(1):1-5
    [88]顾勇为,归庆明,边少锋等.地球物理反问题中两种正则化方法的比较[J].武汉大学学报(信息科学版), 2005,30(3):238-241
    [89]刘玉柱,董良国,夏建军.初至波走时层析成像中的正则化方法[J].石油地球物理勘探,2007, 42(6): 682-685
    [90] Bjorck A. A direct method for sparse least-squares problems with lower and upper bounds[J]. Numer. Math., 1988(54):19-32
    [91] Lotstedt P. Perturbation bounds for the linear least-squares problem subject to linear inequality constrains[J].BIT,1983,23:500-519
    [92] Murty K. Note on a Bard-type scheme for soving the complementarity problem[J].Opsearch,1974,11:123-130
    [93] Lawson C L, Hanson R J. Solving Least-Squares Problems[M].Englewood Cliffs: Prentice-Hall, 1974
    [94]杨文采.非线性地球物理反演方法:回顾与展望[J].地球物理学进展, 2002, 17(2):255-261
    [95] Ceperley D, Alder B. Quantum Monte Carlo[J].Science, 1986, 231(4738):555-560
    [96]魏超,李小凡,张美根.基于量子蒙特卡罗的地球物理反演方法[J].地球物理学报, 2008, 51(5):1494-1502
    [97] Stoffa P L, Sen M K. Nonlinear multiparameter optimization using genetic algorithms: Inversion of plane-wave seismograms[J].Geophysics 1991, 56:1794-1810
    [98]师学明,王家映,张胜业等.多尺度逐次逼近遗传算法反演大地电磁资料[J].地球物理学报, 2000,43 (1): 122-130
    [99]罗红明,王家映,朱培民等.量子遗传算法在大地电磁反演中的应用[J].地球物理学报, 2009, 52(1): 260-267
    [100] Kirkpatrick S, Gelatt C D, Vecchi M P. Optimization by simulated annealing[J].Science, 1983, 220 (4598) : 671-680
    [101]姚姚.地球物理非线性反演模拟退火法的改进[J].地球物理学报, 1995, 38(5): 643-650
    [102]魏超,朱培民,王家映.量子退火反演的原理和实现[J].地球物理学报, 2006, 49(2): 577-583
    [103]师学明,王家映,易远元等.一种新的地球物理反演方法——模拟原子跃迁反演法[J].地球物理学报,2007 ,50 (1) :305-312
    [104]潘克家,王文娟,谭永基,曹俊兴.基于混合差分进化算法的地球物理线性反演[J].地球物理学报, 2009,52(12):3083-3090
    [105]王文娟,谢斌,潘克家等.利用加速差分进化算法反演非均匀介质电磁成像[J].地球物理学进展(已录用)
    [106] Storn R, Price K. Differential Evolution—A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces[J]. J. Glob. Optim. 1997, 11:341-359
    [107]阳明盛,罗长童.最优化原理、方法及求解软件[M].北京:科学出版社, 2006
    [108]潘克家,陈华,谭永基.基于差分进化算法的核磁共振T2谱多指数反演[J].物理学报, 2008, 57(9):5956-5961
    [109]韩伟,李道伦,卢德堂,陈锋.利用改进差分进化算法的油田地层参数反演[J].电子技术, 2008,8:74-78
    [110] Harry Eckel, aus Kassel. Numerical study of an evolutionary algorithm for electrical impedance tomography . der Georg-August Universitat Gottingen, 2007
    [111] Holland J. H. Genetic Algorithm[J]. Science.1992, 11:24-31
    [112]陈良,戴光明,张全元,谢柏桥.差分演化算法及其改进形式的综述[J].计算机工程与设计.2008, 29(1):131-135
    [113] Gamperle R, Dmuller S, Koumoutsakos P. A parameter study for differential evolution [A]. International conference on advances in intelligent systems, Fuzzy systems, Evolutionary Computation[C]. 2002:293-298
    [114]谢晓峰,张文俊,张国瑞等.差分演化算法的实验研究[J].控制与决策,2004,19(1):45-52
    [115] Godfrey C.Onwubolu, Donald Davendra. Differential Evolution: A Handbook for Global Permutation-Based Combinatorial Optimization [M].Springer, 2008
    [116] Hansen P C. The Truncated SVD as a Method for Regularization. BIT, 1987,27:534-553
    [117] Josef Tvrdik. Adaptation in differential evolution: A numerical comparison [J]. Applied Soft Computing.2009,9:1149-1155
    [118]邓泽喜,曹敦虔,刘晓冀,李娜.一种新的差分进化算法[J].计算机工程与应用.2008, 44(24):40-44
    [119]吴亮红,王耀南,袁小芳,周少武.自适应二次变异差分进化算法[J].控制与决策.2006, 21(8):898-902
    [120]江瑞,罗予频,胡东成,司徒国业.一种基于种群熵估计的自适应遗传算法[J].清华大学学报.2002, 42(3):358-361
    [121]宋立明,李军,丰镇平.ARDE算法及其在三维叶栅气动优化设计中的应用[J].工程热物理学报.2005, 26(2):221-224.
    [122] Kennedy J, Eberhart R C. Particle Swarm Optimization. Proc. IEEE International Conference on Neural Networks, Perth, Australia, 1995:1942-1948
    [123] Kennedy J, Eberhart R C. A Discrete Binary Version of the Particle Swarrm Algorithm. Proc. 1997 Conference on Systems, Man and Cybernetics. 1997:4104-4109
    [124] Angeline P J. Using Selection to Improve Particle Swarm Optimization. Proc. IEEE International Conference on Evolutionary Computation. Alaska, USA,1998:84-89
    [125] Angeline P J. Evolutionary Optimization Versus Particle Swarm Optimization:Philosophy and Performance Differences. The Seventh Annual Conference on Evolutionary Programming. 1998
    [126] Lovbjerg M, Ruamussen T K, Krink T. Hybrid Particle Swarm Optimizer with Breeding and Subpopulations. Proc. The Third Genetic and Evolutionary Computation Conference, 2001
    [127] Kennedy J, Eberhart R C, Shi Y. Swarm Intelligence. San Francisco: Morgan Kaufmann Publishers, 2001.
    [128]高尚,杨静宇.群智能算法及其应用[M].北京:中国水利水电出版社.2006年
    [129]贺安坤,苗良.差分进化微粒群优化算法——DEPSO[J].微计算机信息.2006, 22(3):284-276.
    [130]栾丽君,谭立静,牛奔.一种基于粒子群算法和差分进化算法的新兴混合全局优化算法[J].信息与控制.2007, 36(6):708-714
    [131] Aliev B 1986 Vestnik Moskovskogo Universiteta, Vychislitel’naya MatematikaiKibernetika. 2 45
    [132] Aliev B 1991 Vestnik Moskovskogo Universiteta, Vychislitel’naya Matematikai Kibernetika. 1 28
    [133]杨宏奇,侯宗义.非线性不适定算子方程的双参数正则化方法[J].数学物理学报, 2004, 24A (2) : 129-134

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700