基于三轴试样局部变形测量的土体应力应变特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
局部变形数字图像测量技术在三轴试样变形测量中的应用,克服了传统变形测量方法的不足,提高了变形测量的精度,为土工三轴试验提供了全新的、更合理有效的变形测量手段。本文对局部变形测量条件下土体的变形特性进行了试验研究。
     分析了不同因素造成的测量误差,提出了相应的消除或减小误差的方法。在测量系统的正常使用条件下,系统的精度可以达到理论精度,满足试样变形高精度测量的要求。
     利用三轴试样变形图像测量系统开展了膜嵌入问题研究。选取Duncan-Chang模型、剑桥模型与南水模型,并以Duncan-Chang模型为主对基于局部变形测量结果的土体应力应变特性进行了分析。通过对模型参数确定方法的研究,分析了局部变形与整体测量方法得出的参数产生差异的原因及对计算结果的影响。由于测量方式和测量部位的不同,Duncan-Chang模型中反映初始弹性模量与初始体积模量的参数K、n和K_b、m的差别很大,特别是K和K_b值;南水模型中由局部变形测量结果得出的R_d、c_d、d与传统整体变形计算的结果存在很大差异;剑桥模型中参数λ、κ也因体积测量结果及变化规律的不同而有成倍的差异。由存在差异的参数计算土体变形的结果也不同。
     土体泊松比是反映土体侧向变形的重要参数。通过对泊松比试验结果进行的分析,得出了泊松比的变化规律:轴向应变~径向应变关系曲线的变化规律在各围压条件下仍保持基本相同,切线泊松比在加载初期从0.2~0.3开始变化,达到0.5时的径向变形很小。图像测量局部变形的切线泊松比变化比传统测量整体变形的快,其值也比传统测量整体变形的结果大。随主应力比的增加,切线泊松比随之增加,当土体主应力比达到一定范围后,切线泊松比的值大于0.5,建立泊松比与主应力比之间的关系更符合泊松比取值规律。
     分析了砂性材料三轴循环加卸载试验结果,由于颗粒骨架的结构性,加载达到一定荷载后,只要试样体积出现膨胀,卸载就会出现体缩。随着密度、加载范围的增大,卸载体缩现象越明显,卸载体缩现象减退所需要的加卸载循环次数越多。多次加卸载循环后,颗粒的滑移、滚动和破碎等结构性变形最终将完全消除。
The application of digital image processing technique for local deformation measurement in triaxial test leads to much advantages comparing to traditional measuring method. It improves the accuracy of deformation measurement, and provides a new, more reasonable and effective method in specimen deformation measurement. By using the digital image processing technique, stress-stain characteristics of soils are studied based on local deformation measurement of soil specimen.Firstly, the thesis analyzes the errors caused by different factors and proposes corresponding methods to eliminate or lessen the errors. Some items for minimizing measurement errors and noticed testing conditions are listed. The precision of digital image processing technique can reach the theoretic precision and satisfy high precision requirement of specimen deformation measurement under steady condition.Secondly, with the help of local deformation measurement in triaxial deformation test, the author studies the membrane penetration of triaxial specimen, and discusses the characteristics of soil stress-stain property in local deformation measurement using Duncan-Chang model along with Cam-clay model and Nanshui model. By studying on the determination method of model parameters, the thesis compares the parameters of the two methods, and discusses the influence on the calculation results. Because of the difference of measurement methods and measurement area, the parameters are different from each other between local deformation and whole deformation measurement of the three models. In Duncan-Chang model, the difference between K, n and K_b , m is notable, particularly K and K_b. In the Nanshui model, there are great differences among R_d, c_d and d. Similarly, there are times of difference between's parameters λ and κ in Cam-clay model. The calculation results based on these inaccurate parameters are also inaccurate.Thirdly, the soil's Poisson's ratio is an important parameter for transverse deformation. The law of Poisson's ratio in this study is obtained from the experimental results. The axial strain-radial strain variation trend is similar under different confining pressure. The tangent Poisson's ratio changes from 0.2 to 0.3 at initial loading, and reaches 0.5 at very small strain. The tangent Poisson's ratio of local deformation changes faster than that of traditional whole deformation measurement and the value of the former is larger than that
    of the latter. The soil tangent Poisson's ratio increases as the principal stress ratio increases. When the principal stress ratio of the soil reaches a certain value, the tangent Poisson's ratio will be larger than 0.5. It is reasonable to establish the relationship between the Poisson's ratio and principal stress ratio.Finally, the thesis analyzes the results of triaxial cyclic loading experiment of sandy soil. Due to the attributes of soil's particle-framework, if loading arrives at a certain extent, the volume will shrink in unloading as long as the specimen expands in loading. With the increasing of density and the load scope, the phenomena of expanding in loading and contraction in unloading become more obvious, and recovering of the contraction of volume need more times of cyclic loading. After several times of cyclic loading, the structural deformation of particles, such as slippage, rotation and crushing, will fade away eventually, and the structure deformation will arrive at a stable state.
引文
[1] 黄文熙.土的工程性质.北京:水利电力出版社,1983.
    [2] 龚晓南.21世纪岩土工程发展展望.岩土工程学报,2000,22(2):238-242.
    [3] 黄文熙.土的抗剪强度与本构关系学术讨论导言.岩土工程学报,1986,8(1):1-5.
    [4] 陈愈炯,吴肖茗,胡中雄et al.发展水平报告之四:工程实践中土体抗剪强度的确定.岩土工程学报,1986,8(1):106-120.
    [5] 刘祖德,陆士强,包承纲et al。发展水平报告之一:土的抗剪强度特性.岩土工程学报,1986,8(1):6-46.
    [6] 朱思哲,刘虔,包承纲et al.三轴试验原理与应用技术.北京:中国电力出版社,2003.
    [7] 濮家骝,李广信。发展水平报告之二:土的本构类系及其验证与应用.岩土工程学报,1986,8(1):47-82.
    [8] 刘春原,阎澍旺.岩土参数随机场特性及线性预测.岩土工程学报,2002,24(5):588-591.
    [9] Eko R M. Use of triaxial stress state framework to evaluate the mechanical behaviour of an agricultural clay soil. Soil and Tillage Research, 2005, 81(1): 71-85.
    [10] Praastrup U, Jakobsen K P, Ibsen L B. Two theoretically consistent methods for analysing triaxial tests. Computers and Geotechnics, 1999, 25:157-170.
    [11] Wong R C K. Strength of two structured soils in triaxial compression. INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2001, 25:131-153.
    [12] Ramamurthy T. Shear strength response of some geological materials in triaxial compression. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(5): 683-697.
    [13] Liu X, Cheng X H, Scarpas Aet al. Numerical modelling of nonlinear response of soil. Part Ⅰ: Constitutive model. International Journal of Solids and Structures, 2005, 42(7): 1849-1881.
    [14] Yan L. Nonlinear load-deformation characteristics of bridge abutments and footings under cyclic loading: (Ph.D. Dissertation) Southern California: University of Southem California. 2001.
    [15] Hither P Y, Michali A. Identifying Soil Parameters by Means of Laboratory and in situ Testing. Computers and Geotechnics, 1996, 19(2): 153-170.
    [16] Pestana J M, Whittle A J, Salvati L A. Evaluation of a constitutive model for clays and sands: Part Ⅰsand behaviour. INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2002, 26: 1097-1121.
    [17] Lee S-D E An endochronic strain rate-sensitive model for soils susceptible to dilatancv: (Ph.D. Dissertation). Cincinnati: University of Cincinnati. 1991.
    [18] 董金梅,刘汉龙,洪振舜et al.聚苯乙烯轻质混合土三轴压缩试验研究.河海大学学报:自然科学版,2005,33(1):99-103.
    [19] 刘汉龙,董金梅,周云东et al。聚苯乙烯轻质混合土应力—应变特性分析.岩土工程学报,2004,26(5):579-583.
    [20] 王助贫,邵龙潭.三轴试验土样的端部影响问题研究.岩土力学,2003,24(3):363-368.
    [21] 王助贫.三轴试验土样变形的数字图像测量方法及其应用:(博士学位论文).大连:大连理工大学.2002.
    [22] 邵龙潭,王助贫,刘永禄.三轴土样局部变形的数字图像测量方法.岩土工程学报,2002,24(2):159-163.
    [23] 郭爱国,茜平一.三轴压缩试验中橡皮膜约束影响的校正.岩土力学,2002,(04):49-52.
    [24] 陈春霖,张惠明.饱和砂土三轴试验中的若干问题.岩土工程学报,2000,22(6):659-663.
    [25] Shockley W G, Ahlvin R G. Nonuniform condition in triaxial test specimens. Proc. Research Conf. On Shear Strength of Cohesive Soils, 1960.[26] Scholey G K, Frost J D, DCF L P et al. A Review of Instrumentation for Measuring Small Strains During Triaxial Testing of Soil Specimens. Geotechnical Testing Journal, 1995, 18(2).
    [27] Bressani L A. Extemal Measurement of Axial Strain in the Triaxial Test. Geotechnical Testing Journal, 1995, 18(2): 226-240.
    [28] Baldi G, Hight D W, Thomas G E. A reevaluation of conventional triaxial test methods. Advanced Triaxial Testing of Soil and Rock, ASTM STP 977, 1988.
    [29] Al-Shamrani M A, Dhowian A W. Experimental study of lateral restraint effects on the potential heave of expansive soils. Engineering Geology, 2003, 69:63-81.
    [30] Ueng T, Tzou Y, Lee C. The effect of end restraint on volume change and partical breakage of sands in triaxial tests. Advanced Trixial Testing of Soil and Rock, ASTM STP 977, 1988.
    [31] Sheng D, Westerberg B, Mattsson H et al. Effects of end restraint and strain rate in triaxial tests. Computers and Geotechnics, 1997, 21 (3): 163-182.
    [32] Desrues J, Viggianin G. Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry. INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2004, 28: 279-321.
    [33] 门福录.岩土力学研究观点、方法若干问题之我见.岩土工程学报,2001,23(3):380-382.
    [34] 伊颖锋,周清华,等.土体小应变特性研究中的边界面模型.岩土力学,2003,24(1):135-138.
    [35] 伊颖锋,施建勇.土体小应变特性的研究进展.工程勘察,2002,(2):12-13,19.
    [36] 吴宏伟,施群.土体的小应变特性.岩土工程学报,1998,20(1):70-75.
    [37] 刘元雪,施建勇,伊颖锋et al.一种原状欠压密土的力学特性实验研究.岩土力学,2004,25(1):5-9.
    [38] Burland J B. Ninth Laurits Bjerrum memorial lecture: Small is beautiful-the stiffness of soils at small strains. Canadian geotechnical journal, 1989, 26(4): 499-516.
    [39] Clayton C R I, Heymann G. Stiffness of geomaterials at very small strains, 2001, 51(3): 245-255.
    [40] 宋雄伟,吕进.GDS在测量土体小应变中的应用.电力勘测设计,2003,(2):17-20.
    [41] 刘元雪,施建勇.岩土小应变问题研究进展.地下空间,2001,21(5):349-353.
    [42] 王助贫,邵龙潭,韩国城et al.三轴试样变形数字图像测量误差和精度分析.大连理工大学学报,2002,42(1):98-103.
    [43] 邵龙潭,王助贫,韩国城.三轴试验土样径向变形的计算机图像测量.岩土工程学报,2002,23(3):337-314.
    [44] 邵龙潭,王助贫,刘永禄.三轴试验土样变形的数字图像测量方法及设备.中国,发明专利,ZL01113831.9.2004.
    [45] 刘永禄.三轴实验土样变形数字图像测量的实现:(硕士学位论文).大连:大连理工大学.2002.
    [46] 中华人民共和国行业标准.土工试验规程(SL237-1999).北京:中国水利水电出版社,1999.
    [47] 董孝璧.确定土侧应力系数K0的方法研究.地质灾害与环境保护,19989(4):27-32.
    [48] 李广信.土的本构关系的试验与理论研究的发展.第二届全国青年岩土力学与工程会议,大连,1995.
    [49] 雷胜友.重塑土在循环荷载作用下长期变形之数学模型.西安公路交通大学学报,1998,18(3):5-7,63.
    [50] 朱俊高,卢海华.土体侧向变形性状的真三轴试验研究.河海大学学报,1995.23(6):28-33.
    [51] 栾茂田,郭莹,李木国et al.土工静力—动力液压三轴—扭转多功能剪切仪研发及应用。大连理工大学学报,2003,43(5):670-675.
    [52] 陈正汉,扈胜霞,孙树国et al.非饱和土固结仪和直剪仪的研制及应用.岩土工程学报,2004,26(2):161-166.
    [53] 陈正汉,卢再华,等.非饱和土三轴仪的CT机配套及其应用.岩土工程学报,2001,23(4):387-392.
    [54] Duncan J M, Dunlop E The significance of cap and base restraint. Joumal of soil mechanics and foundations division, ASCE, 1968, 94(1): 271-290.
    [55] Zhang H, Garga V K. Quasi-steady state: a real behavior. Can Geotech Journal, 1997, 34(5): 749-761.
    [56] Rowe P W, Barden L. Importance of free ends in triaxial testing. Journal of soil mechanics and foundations division, ASCE, 1964, 90(1): 1-27.
    [57] Zhang H. Steady state behavior of sands and limitations of the triaxial tests:(Ph.D. Dissertation) . Ottawa: University of Ottawa. 1997.
    [58] 常素萍.浅淡影响三轴压缩试验因素.岩土工程界,2004, 6(11): 69-72.
    [59] Morgan J R, Moore P J. Experimental techniques: Soil mechanics: American: Elsevier publishing company, 1968.
    [60] Goto S, Tatsuoka F. A simple gauge for local small strain measurements in the laboratory. Soils and Foundations, 1991, 31 (1): 169-180.
    [61] Tatusoka F, Shibuya S, Goto S et al. Discussion on the use of hall effect semiconductons on geotechnical instrumentation. Geotechnical Testing Journal, ASTM, 1990, 13(1): 63-65.
    [62] 孔宪京,韩国城,娄树莲et al.土工试验新技术研究.辽宁省第二届青年学术年会,大连,1995.
    [63] 孔宪京,贾革续,邹德高et al.微小应变下堆石料的变形特性.岩土工程学报,2001,23(1):32-37.
    [64] Clayton C R I, Khatrush S A, Bica A V D et al. Use of Hall effect semiconductors in geotechnical instrumentation. Geotech Test, 1989, 12(1): 69-76.
    [65] Escario V, Uriel S. Optical methods of measuring the cross-section of samples in the triaxial test. Proc. 5th ICSMFE, 1961.
    [66] David M C. A technique for measuring radial deformation during repeated load triaxial testing. Can Geotech Journal, 1978, 15: 426-429.
    [67] El-Ruwayih A A. Design, manufacture and performance of a lateral strain device. Geotechnique, 1976, (26).
    [68] 殷宗泽,徐志伟.土体的各向异性及近似模拟.岩土工程学报,2002,24(5):47-51.
    [69] 沈珠江.现代土力学的基本问题.力学与实践,1998,20:1-6.
    [70] 沈珠江.理论土力学.北京:中国水利水电出版社,2000.
    [71] Roscoe K H, Schofield AN, Thuraijah. Yielding of clays instates wetter than critical. Geotechnique, 1963, 13 (3): 211-240.
    [72] 栾茂田.关于岩土工程研究中若干基本力学问题的思考,1999,39(2):309-317.
    [73] 殷宗泽.土体本构模型剖析,1996,18(4):95-97.
    [74] 钱家欢,殷宗泽.土工原理与计算.北京:中国水利水电出版社,1996.
    [75] 郑颖人,沈珠江,龚晓南.岩土塑性力学原理.北京:中国建筑工业出版社,2002.
    [76] 雷华阳.土的本构模型研究现状及发展趋势.世界地质,2000,19(3):271-276.
    [77] 伊颖锋,施建勇,周清华.土体弹塑性本构模型研究概述。岩土工程师,2002,14(2):10-14.
    [78] 章根德.土的本构关系及其工程应用.北京:科学出版社,1995.
    [79] 屈智炯.土的塑性力学.成都:成都科技大学出版社,1987.
    [80] 介玉新,胡韬,李广信et al.平面应变情况下多重势面模型与邓肯—张模型的比较.工程力学,2004,21(1):148-152.
    [81] 杨光华,介玉新,李广信et al.土的多重势面模型及其验证.岩土工程学报,1999,21(5):578-582.
    [82] Prevost J H. Mechanics of continuous porous media. International Journal of Engineering Science, 1980, 18(6): 787-800.
    [83] Yin J. H., Graham J. Elastic Visco-plastic modelling of one-dimensional consolidation, 1996, 46(3): 515-527.
    [84] Morsy M M, Chan D H, Morgenstern N R. An effective stress model for creep of clay. Can Geotech Journal, 1995, 32: 819-834.
    [85] Dluzewski J M. Total formulation for large strains in soils. Computers and Geotechnics. 1988,5(3): 197-211.
    [86] 胡应德,叶枫,陈志坚.土体邓肯—张非线性弹性模型参数反演分析.土木工程学报,2004,37(2):54-57.
    [87] 沈长松,顾淦臣.面板堆石坝参数反分析及变形规律探讨.河海大学学报,1996,24(6):13-19.
    [88] Calvello M, Finno R J. Selecting parameters to optimize in model calibration by inverse analysis. Computers and Geotechnics, 2004, 31 (5): 410-424.
    [89] Hattamleh O A, Muhunthan B, Zbib H M. Gradient plasticity modelling of strain localization in granular materials. INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2004, 28: 465-481.
    [90] Liu J. Determination of soft soil characteristics. Boulder: University of Colorado at Boulder. 1990.
    [91] 陈斌,吉林.邓肯模型参数敏感性分析.华北水利水电学院学报,2002,23(4):10-13.
    [92] 谢定义,齐吉琳.土结构性及其定量化参数研究的新途径.岩土工程学报,1999,21(6):651-656.
    [93] Mitchell. J K. Fundamentals of soil behavior. New York: Wiley, 1976.
    [94] 高国瑞。黄土显微结构分类与湿陷性.中国科学,1980,12:1203-1208.
    [95] 王永炎,腾志宏.黄土与第四纪地质.西安:陕西人民出版社,1982.
    [96] 胡瑞林,官国琳,李向东.黄土压缩变形的微结构效应.水文地质工程地质,1998.3:30-35.
    [97] 谭罗荣.某些膨胀土的基本性质研究.岩土工程学报,1987,9(5):73-85。
    [98] 施斌,李生林.击实膨胀土微结构与工程特性的关系.岩土工程学报,1988,10(6):80-87。
    [99] 谭罗荣,孔令伟.某类红粘土的基本特性与微观结构模型.岩土工程学报,2001,23(4):458-462.
    [100] 李向全,胡瑞林,张莉.粘性土固结过程中的微结构效应研究.岩土工程技术,1999,(3):52-56.
    [101] 施斌,王宝军,宁文务.各向异性粘性土蠕变的微观力学模型.岩土工程学报,1997,19(3):7-13.
    [102] 沈珠江.软土工程特性和软土地基设计.岩土工程学报,1998,20(1):100-111.
    [103] 沈珠江.土体结构性的数学模型.岩土工程学报,1996,18(1):95-97.
    [104] Jiang M J,Shen Z J.Microscopic analysis of shear band in structured clay.岩土工程学报,1998,20(2):102-108.
    [105] 郑颖人.当前岩土计算力学的发展动向.岩土力学,1995,16(1):84-90.
    [106] 陈正汉.关于土力学理论模型与科研方法的思考(续).力学与实践,2004,26(1):63-67.
    [107] 陈正汉.关于土力学理论模型与科研方法的思考.力学与实践,2003,25(6):59-62.
    [108] 沈珠江.粘土的双硬化模型.岩土力学,1995,16(1):1-8.
    [109] 郑颖人.关于岩土塑性的几点认识.岩土工程界,2002,5(4):14-16.
    [110] 郑颖人.岩土塑性力学的新进展—广义塑性力学.岩土工程学报,2003,25(1):1-10.
    [111] 邓若宇,王靖涛.粘土本构关系的神经网络模型.土工基础,1999,13(1):28-32.
    [112] 高玮,郑颖人,冯夏庭.岩土本构模型识别的仿生算法研究.岩土力学,2004,25(1):31-36.
    [113] 高玮,郑颖人.基于遗传算法的岩土本构模型辨识.岩石力学与工程学报,2002,21(1):9-12.
    [114] 高玮,郑颖人.岩土工程非确定性反分析研究动态.地下空间,2000,20(2):81-85.
    [115] 朱俊高,殷宗泽.土体本构模型参数的优化确定.河海大学学报,1996,24(2):68-73.
    [116] 邵龙潭.孔隙介质力学分析方法及其在土力学中的应用:(博士学位论文).大连:大连理工大学.1996.
    [117] 廉慧珍,童良,陈恩义.建筑材料物相研究基础.北京:清华大学出版社,1996.
    [118] 张洪武.微观接触颗粒岩土非线性力学分析模型.岩土工程学报,2002,24(1):17-15
    [119] 梁军,刘汉龙,高玉峰.堆石蠕变机理分析与颗粒破碎特性研究。岩土力学,2003,24(3):479-483.
    [120] 方涤华,宋永祥,窦宜.发展水平报告之三:土的强度测试技术和自动化。岩土工程学报,1986,8(1):83-105.
    [121] B.Burland J, M.J.Symes. A simple axial displacement gauge for use in the triaxial apparatus. Geotechnique, 1982, 32(1): 62-65.
    [122] 张鲁渝,孙树国,郑颖人.霍尔效应传感器在土工试验中的应用.岩土工程学报,2004,26(5):706-708.
    [123] Yudhbir, Abedinzadeh R. Quantification of particle shape and angularity using the image analyzer. Geotechnical Testing Journal, 1991, 14(3): 296-308.
    [124] Werner A M, Lange D A. Quantitative image analysis of masonry mortar microstructure. Joumal of computing in civil engineering, 1999, 13(2): 110-115.
    [125] Shinoda M, Bathurst R J. Strain measurement of geogrids using a videoextensometer technique. Geotechnical Testing Joumal, 2004, 27(5): 456-462.
    [126] Rechenmacher A L, Finno R J. Digital Image Correlation to Evaluate Shear Banding in Dilative Sands. Geotechnical Testing Journal, 2004, 27(1): 13-22.
    [127] Masad E, Muhunthan B, Shashidhar Net al. Internal structure characterization of asphalt concrete using image analysis. Joumal of computing in civil engineering, 1999, 13(2): 88-95.
    [128] Macari E J, Parker J K, Costes N C. Digital image techniques for volume change measurements in triaxial tests. Proceedings of the conference on digital image processing techniques and applications in civil engineering, 1993.
    [129] Jerzy M B, Janusz K. Automatic image analysis in evaluation of aggregate shape. Journal of computing in civil engineering, 1999, 13 (2): 123-129.
    [130] Bums S E, Zhang M. Digital image analysis to assess microbubble behavior in porous media. Journal of computing in civil engineering, 1999, 13(1): 43-48.
    [131] Batiste S N, Alshibli K A, Sture Set al. Shear Band Characterization of Triaxial Sand Specimens Using Computed Tomography. Geotechnical Testing Journal, 2004, 27(6).
    [132] Mesut P, Sibel P, Horace M Y. Magnetic resonance imaging of hydrocarboncontaminated porous media. Journal of computing in civilengineering, 1999, 13(2): 96~102.
    [133] Ali M G, Roman D H. Soil particle size distribution by mosaic imaging and watershed analysis. Journal of computing in civil engineering, 1999, 13(2): 80-87.
    [134] Raschke S A, Hryciw R D. Grain-size distribution of granular soils by computer vision. Geotechnical Testing Journal, 1997, 20(4): 433-442.
    [135] 刘红玫.黄土孔隙微结构的计算机图像处理分析方法.高原地震,1999,3.
    [136] Khalid A A, Stein S. Sand shear band thickness measurements by digital imaging techniques. Journal of computing in civil engineering, 1999, 13 (2): 103-109.
    [137] Puppala A J, Katha B, Hoyos L R. Volumetric Shrinkage Strain Measurements in Expansive Soils Using Digital Imaging Technology. Geotechnical Testing Journal, 2004, 27(6).
    [138] 费业泰.误差理论与数据处理.北京:机械工业出版社,1995.
    [139] 肖明耀.误差理论与应用.北京:计量出版社,1985.
    [140] 李晓军,张登良.路基填土单轴受压细观结构CT监测分析.岩土工程学报,2000,22(2):205-209.
    [141] Rhee Y. Experimental evaluation of strain softening behaviour of normally, consolidated Chicago clay in plane strain compression: (Ph.D. Dissertation). Evanston, IL: Northwestern Unversity. 1991.
    [142] Viggarni G, Finno R J, Harris W W. Experimental observations of strain localization in plane strain compression of a stiff clay. Proc 3rd int. workshop localization theory for soils and rocks Aussois, Balkema, 1993.
    [143] 董建国,李蓓,袁聚云et al.上海浅层褐黄色粉质粘土剪切带形成的试验研究.岩土工程学报,2001,23(1):23-27.
    [144] 董建国,李蓓,袁聚云.上海暗绿色粉质粘土剪切带形成的试验研究.工程勘察,2001,(3):1-3.
    [145] 蒋明镜,沈珠江.岩土力学的理论与实践:土体应变局部化(剪切带)研究的现状.南京:河海大学出版社,1998.
    [146] Newland P L, Alley B H. Volume change during undrained triaxial tests on saturated dilatants granular materials. Geotechnique, 1959, 9(4): 174-182.
    [147] Garga V K, Zhang H. Volume changes during undrained triaxial tests on sands. Canadian Geotechnical Journal, 1997, 34(5): 762-772.
    [148] Nicholson P G, Seed R B, Anwar H A. Elimination of membrane compliance in undrained triaxial testing. Ⅰ. Measurement and evaluation. Canadian Geotechnical Journal, 1993, 30(5): 727-738.
    [149] 陈春霖,张惠明.饱和砂土三轴试验中的若干问题.岩土工程学报,2000,22(6):659-663.
    [150] 王洪瑾.三轴试验中橡皮膜顺变性对体积变化和孔隙水压力的影响.岩土工程学报,1985,7(1):76-84.
    [151] 王昆耀,常亚屏.粗粒土试样橡皮膜嵌入影响的初步研究。大坝观测与土工测试,2000,24(4):45-46,49.
    [152] Baldi G, Nova R. Membrane penetration effects in triaxial testing. Journal of Geotechnical Engineering, 1984, 110(3): 403-420.
    [153] 孔德志,朱俊高.邓肯—张模型几种改进方法的比较.岩土力学,2004,25(6):971-974.
    [154] Wood D M. Soil behaviour and critical state soil mechanics. Cambridge: Cambridge University Press, 1990.
    [155] 朱百里,沈珠江.计算土力学.上海:上海科学技术出版社,1990.
    [156] Duncan J M, Chang C. Nonlinear ansalysis of stress and strain in soils. Journal of soil mechanics and foundations division. Proceedings of the American society of civil engineers, 1970, 96(5): 1629-1653.
    [157] 罗刚,张建民.邓肯—张模型和沈珠江双屈服面模型的改进.岩土力学,2004,25(6):877-890.
    [158] 邱斌,徐志伟.中主应力对邓肯—张模型影响的真三轴试验研究.岩土工程技术,2002,(1):45-47.
    [159] 屈智炯,刘开明.粗粒土卸载再加载变形特性的研究.水电站设计,1994,10(3):24-31.
    [160] 王立忠,赵志远,李玲玲.考虑土体结构性的修正邓肯—张模型.水利学报,2004,(1):83-89.
    [161] 吴兴征,栾茂田.修正邓肯模型及在面板堆石坝应力与变形分析中的应用.岩石力学与工程学报,2001,20(A01):1098-1102.
    [162] 王复来.邓肯模型的改进.岩土工程学报,1979,1(1):80-86.
    [163] 张学言.岩土塑性力学.北京:人民交通出版社,1993.
    [164] 孔德志,朱俊高.邓肯—张模型几种改进方法的比较.岩土力学,2004,25(6):971-974.
    [165] 罗刚,张建民.邓肯—张模型和沈珠江双屈服面模型的改进.岩土力学,2004,25(6):877-890.
    [166] 田树玉,孟宪麒.土的非线性分析简化双曲线模型.水利学报,1994,(9):54-60
    [167] 邹越强,季益洪.泊松比对土石坝应力水平的影响.合肥工业大学学报(自然科学版),1995,18(4):63-69.
    [168] 何昌荣,杨桂芳.邓肯—张模型参数变化对计算结果的影响.岩土工程学报,2002,24(2):170-174.
    [169] Shibuya S. A non-linear stress-stiffness model for geomaterials at small to intermediate strains. Geotechnical and Geological Engineering, 2002, 20(4): 333-369.
    [170] Hoque E, Tatsuoka F. Effects of stress ratio on small-strain stiffness during triaxial shearing. Geotechnique, 2004, 54(7): 429-439.
    [171] 尹蓉蓉,朱合华.邓肯—张模型参数敏感性分析.华东船舶工业学院学报(自然科学版),2003,17(1):20-23.
    [172] Burland J B, Symes M J. A simple axial displacement gauge for use in the triaxial apparatus. Geotechnique, 1982, 32(1): 62-65.
    [173] 邓肯J M,胡文华(译).确定土体应力和位移有限元分析用的强度,应力应变和体积模量参数的方法.水电技术情报,1992,(8):1-42.
    [174] Domen N,徐常练(译).泊松比——学科间的桥梁.国外油气勘探,1996,8(3):325-328.
    [175] 刘智,王瑞刚.材料的塑性泊松比μp和弹塑性泊松比μep.塑性工程学报,1999,6(2):26-29.
    [176] 史炜,杨伟,李忠明 et al.负泊松比材料研究进展.高分子通报,2003,(6):48-57.
    [177] 杨呜波,阳霞.负泊松比材料的结构与性能.高分子材料科学与工程,2001,17(6):15-18,24.
    [178] 郝松林.负泊松比的分析与实验.力学与实践,1992,14(6):28-31.
    [179] 阳霞,杨鸣波,李忠明 et al.具有负泊松比效应的聚烯烃共混物.高分子学报,2003,(2):221-224.
    [180] 黄智,王万录,廖克俊 et al.具有负泊松比材料的研究进展.材料导报,2002,16(10):49-51.
    [181] 崔伟群,曾校丰.求取泊松比的理论探讨.地学前缘,1998,5(4):243-244。
    [182] 汤大明,曾纪全,胡应德 et al.关于泊松比的试验和取值讨论.岩石力学与工程学报,2001,20(增刊):1772-1775.
    [183] 吴世明,陈龙珠.饱和土的泊松比及含气量对它的影响.水利学报,1989,(1):37-43.
    [184] 司洪洋.论无粘性砂卵石与堆石的力学性质,1990,(6):31-41.
    [185] 徐志伟,殷宗泽.粉砂侧向变形特性的真三轴试验研究。岩石力学与工程学报,2000,19(5):626-629.
    [186] 徐志伟.中砂侧向变形特性的真三轴试验研究.岩土工程技术,1999,(4):27-30.
    [187] 徐志伟,赵江倩.围压增大条件下淤泥土弹性模量及侧向变形特性的真三轴试验研究.岩土工程技术,2000,(4):226-229.
    [188] 陆永青,计三有,戴诗亮et al.散体材料弹性参数的估计.武汉交通科技大学学报,1997,21(2):178-185.
    [189] 殷家瑜,赖安宁,姜朴.高压力下尾矿砂的强度与变形特性.岩土工程学报,1980,2(2):1-10.
    [190] 郭庆国.关于粗粒土应力应变特性及非线性参数的试验研究,1983,(11):44-50.
    [191] 沈珠江.堆石料的数学模型及混凝土面板堆石坝计算.In:濮家骝,ed.沈珠江土力学论文选集.北京:清华大学出版社,2005.
    [192] 沈珠江.考虑剪胀性的土和石料的非线性应力应变模式.In:濮家骝,ed.沈珠江土力学论文选集.北京:清华大学出版社,2005.
    [193] 赵彭年.松散介质力学.北京:地震出版社,1995.
    [194] 章根德,韦昌富.循环载荷下砂质土的本构模型.固体力学学报,1998,19(4):299-304.
    [195] 邱长林,阎澍旺,邓卫东.循环荷载作用下砂土的一种普遍弹塑性模型.天津大学学报,1999,32(2):154-158.
    [196] 马建勋,梅占馨.散粒体的增量型内时本构关系.土木工程学报,1995,28(3):17-92
    [197] Das Braja M. Advanced soil mechanics. Washington: Hemisphere Pub. Corp., 1983.
    [198] Lambe T W. Soil mechanics, SI version. New York: Wiley, 1979.
    [199] 孔亮,段建立,郑颖人.慢速往复荷载下饱和砂土变形特性试验研究.工程勘察,2001,6:1-4.
    [200] 梅迎军,粱乃兴.反复荷载作用下级配砂砾石基层的力学性能分析.重庆交通学院学报,2003,22(2):54-57.
    [201] 孙吉主,周健.往复荷载作用下土体的广义塑性分析.岩土力学,2001,22(2):126-129
    [202] Wichtmann T, Triantafyllidis T. Influence of a cyclic and dynamic loading history on dynamic properties of dry sand, part Ⅰ: cyclic and dynamic torsional prestraining. Soil Dynamics and Earthquake Engineering, 2004, 24:127-147.
    [203] Wichtmann T, Triantafyllidis T. Influence of a cyclic and dynamic loading history on dynamic properties of dry sand, part Ⅱ: cyclic axial preloading. Soil Dynamics and Earthquake Engineering, 2004, 24: 789-803.
    [204] NAKATA Y, MURATA H, YASUFUKU N. Deformation Characteristics of Sand Subjected to Drained Cyclic Loading. In. TOKIWADAI, 1992:11-21.
    [205] Moses G G, Rao S N, Rao P N. Undrained strength behaviour of a cemented marine clay under monotonic and cyclic loading. Ocean Engineering, 2003, 30(14): 1765-1789.
    [206] 钟辉虹,张亦静.循环荷载作用下软黏土变形特性研究.岩土工程学报,2002,24(5):629-632.
    [207] 丰土根,刘汉龙.砂土多机构边界面塑性模型初探。岩土工程学报,2002,24(3):382-385.
    [208] 阎澍旺,纪玉诚.往复荷载作用下软粘土地基的沉降及稳定分析.石油工程建设,1993,19(4):6-10.
    [209] 李广信,武世锋.土的卸载体缩的试验研究及其机理探讨.岩土工程学报,2002,24(1):47-50.
    [210] 李广信,郭瑞平.土的卸载体缩与可恢复剪胀.岩土工程学报,2000,22(2):158-161

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700