风扇/压气机非设计点性能计算和进气畸变影响预测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空燃气涡轮发动机在近半个多世纪的发展中,技术水平取得了空前的进步。风扇/压气机作为航空发动机的关键部件,性能指标随之不断提高,从而对风扇/压气机气动设计体系中的计算方法提出了更高的要求。风扇/压气机非设计点性能计算以及进气畸变影响的预测方法是风扇/压气机气动设计体系中的重要工具,也是业内人士一直以来研究的热点之一。
     本文开篇回顾了世界各国航空发动机发展历程及一些预研计划的内容,然后在总结风扇/压气机非设计点性能计算和进气畸变影响预测方法发展现状的基础上,详细阐述了本文的主要研究内容和取得的主要研究成果。本文主要开展了以下四个方面的研究工作:
     一、在系统论述传统的非设计点性能计算方法—基元叶栅法的基础上,发展了适合现代先进多级轴流风扇/压气机气动特点的非设计点性能和稳定边界的计算方法,并通过多台风扇/压气机性能和稳定边界的计算与试验结果的比较,验证了方法的有效性和广泛适用性。
     二、在均匀进气条件下风扇/压气机非设计点性能计算的基础上,发展了用于分析进气畸变对风扇/压气机性能和稳定性影响的准三维模型,构成了相对完整的多级轴流风扇/压气机非设计点性能和稳定性预测以及进气畸变影响的分析系统。已有算例的结果表明,准三维计算方法灵活、可靠,可应用于工程问题的分析研究,有着较强的工程适用性。
     三、借鉴三维彻体力模型思想和构成,发展了进气畸变对风扇/压气机性能和稳定性影响的三维非定常计算方法。本计算方法通过非定常激盘,将三维非定常Euler方程和基元叶栅法组成了完整的预测进气畸变对多级轴流风扇/压气机非设计点性能和稳定性影响的三维非定常分析系统。进气畸变条件下的三维计算结果与高、低速风扇/压气机试验结果的比较表明,计算方法快捷、有效,能够反映出进气畸变影响的三维效应,具有重要的学术研究价值和广阔的工程应用前景。
     四、利用南京航空航天大学低速双级轴流压气机试验器,针对安装畸变网的试验压气机,开展了较为详细的进气畸变试验研究,并详细分析了压气机进口AIP截面总压畸变特性,及其对压气机非设计点性能和稳定性以及压气机失速起始特性的影响。此外,试验验证了在AIP截面采用6支×6点测量方法确定总压畸变特性时,需要根据插值方法加以修正,并给出了针对畸变网的总压畸变特性的修正曲线。
     本文的主要创新点有:
     (1)发展了预测现代先进多级轴流风扇/压气机非设计点性能和稳定边界的计算方法,并通过雷诺数关系式的引入,使原有的计算方法具备了评估雷诺数对风扇/压气机性能和稳定性影响的能力。
     (2)在均匀进气条件下风扇/压气机非设计点性能计算的基础上,发展了计算进气畸变对风扇/压气机性能和稳定性影响的准三维模型,构成了一个相对完整的多级轴流风扇/压气机非设计点性能和稳定性预测及进气畸变影响的分析系统。
     (3)发展了进气畸变对风扇/压气机性能和稳定性影响的三维非定常计算方法,组成了一个完整的多级轴流风扇/压气机非设计点性能和稳定边界预测及进气畸变影响的三维非定常分析系统。
     (4)通过临界畸变角概念的引入,有效地将Koch最大静压升系数法应用于进气畸变条件下风扇/压气机稳定边界的预测。在均匀进气和畸变进气条件下,已有算例均验证了该方法的有效性和预测精度。
     (5)发展的均匀进气条件下风扇/压气机非设计点性能计算方法、进气畸变对风扇/压气机性能和稳定性影响的准三维计算方法,以及进气畸变对风扇/压气机性能和稳定性影响的三维非定常计算方法,构成了多级轴流风扇/压气机非设计点性能和稳定边界预测及进气畸变影响的子系统,可纳入风扇/压气机气动设计体系中,成为分析风扇/压气机非设计点性能和稳定性以及进气畸变影响的系统工具,在现代先进风扇/压气机的设计中起到重要的作用。
During the past decades, great progress of engineering techniques has been made for the gas turbine engines. The fan/compressor is a key component of aero-engines, thus its performance parameters are being improved continually, and also design methods. Among techniques, methods for off-design performance computation and for predicting and analyzing influences of the inlet flow distortion as hotspots for researchers are important tools in the fan/compressor aerodynamic design.
     At the beginning, this thesis reviews the development of aero-engines and the contents of several advanced research plans of the western countries. Based on analysis of the fan/compressor off-design performance computation and some predicting methods of the inlet flow distortion, the main research contents and achievements are expatiated in detail.
     The main research works are itemized below:
     Firstly, on the basis of the classical off-design performance computing method, element cascade method, according to aerodynamic characteristic of the modern advanced fan/compressor, a computing method of off-design performance and surge boundary of the multi-stage axial fan/compressor is established, and validated by related experimental data.
     Secondly, based on the above computation for the uniform inlet flow, a quasi-3D computational model and an integrated analytic system for analyzing the influences on the performance and stability of the fan/compressor in the condition of the distorted inlet flow are built up. The existing results testify that they are flexible, reliable and adaptable, could be used to resolve the engineering problems.
     Thirdly, enlightened by the theory and composition of the body force model, a 3D unsteady computational method is developed for predicting the influences on the fan/compressor performance and stability when the non-uniform inlet flow. Based on unsteady Euler equations, element cascade method and unsteady actuator method, a 3D unsteady integrated analytic system is set up for the multi-stage axial fan/compressor. Compared with the test results of a high speed and low speed fan/compressor, it is proved that the method is solved quickly and effectively, and can reflect the 3D effect of the inlet flow distortion. Thus the method has the important theoretical value and engineering application foreground.
     Fourthly, the experimental tests have been carried out in the low speed two-stage axial compressor in test rig with an inlet flow distortion screen in NUAA. The distorted total pressure characteristics and its effects on off-design performance, stability and the stall inception of the test compressor have been investigated emphatically. In addition, it is validated by test results that the distorted total pressure characteristics with the inlet flow distortion screen, measured at AIP by the 6×6 measurement method, have to be corrected for a given correcting method. Finally, some correction curves are given.
     The main highlights of the thesis consist of the following items:
     (1) The computing method of the off-design performance and surge boundary for the modern advanced multi-stage axial fan/compressor is developed. By introducing the Reynolds number relation, it can evaluate its influence on the fan/compressor performance and stability.
     (2) On the basis of the off-design performance computation for the uniform inlet flow, the quasi-3D computational model and the analytic system for analyzing the influences of the inlet flow distortion on the multi-stage fan/compressor performance and stability are built up.
     (3) The 3D unsteady computing method and the 3D analytic system for computing the multi-stage axial fan/compressor off-design performance, surge boundary and predicting the influence of inlet flow distortion are established.
     (4) By means of introducing the concept of the critical distortion angle, the Koch’s maximum pressure rise potential is used for confirming the surge boundary effectively and validated by the existing data on the different inlet flow condition.
     (5) The subsystem for calculating the multi-stage axial fan/compressor off-design performance, surge boundary and predicting the influences of the inlet flow distortion consists of the computing method of the off-design performance and surge boundary for the uniform inlet flow, the quasi-3D and the 3D computational method for analyzing the influences of the inlet flow distortion, and can be brought into the fan/compressor aerodynamic design system and developed as an important design tool.
引文
[1]王夕滋,论突破航空发动机技术的重要性,燃气涡轮试验与研究, 2002, 15(3):52-54, 61.
    [2]张恩和,对我国军用航空发动机发展的思考,航空发动机, 2001年第3期.
    [3]刘大响,航空动力发展的历史性机遇,航空发动机, 2005, 31(2):1-3.
    [4]江和甫,蔡毅,斯永华,对航空发动机研究和发展规律的认识,燃气涡轮试验与研究, 2001年3月.
    [5]方昌德,航空发动机百年回顾,燃气涡轮试验与研究, 2003, 16(4):1-5.
    [6]李勇,航空发动机产品和新型航空动力发展分析,航空发动机, 2006, 32(2):1-4.
    [7]陈金国,军用航空发动机的发展趋势,航空科学技术, 1994年第5期.
    [8]刘大响,程荣辉,世界航空动力技术的现状及发展动向,北京航空航天大学学报, oct.2002, 28(5):490-496.
    [9]刘大响,斯永华,夏光义,跨世纪航空发动机预研技术的发展,燃气涡轮试验与研究, 1998, 11(2):4-11.
    [10]李志广,未来航空发动机的发展展望,航空发动机, 1998年第3期.
    [11]刘大响,抓住机遇,加快航空动力的发展,航空制造技术, 2002年2期.
    [12]刘大响,抓住机遇,迎接挑战,实现航空动力跨越发展,燃气涡轮试验与研究, 2002, 15(1):1-5.
    [13]陈懋章,风扇/压气机技术发展和对今后工作的建议,航空动力学报, 2002, 17(1):1-15.
    [14]方昌德,航空发动机的发展前景,航空发动机, 2004, 30(1):1-5.
    [15]陈光,航空发动机发展综述,航空制造技术, 2000年6期:24-34.
    [16] Koop, W., The Integrated High Performance Turbine Engine Technology Program, ISABE 97-7175, 1997.
    [17]方昌德,航空发动机百年回顾,燃气涡轮试验与研究, 2003, 16(4):1-5.
    [18]陈懋章,中国航空发动机高压压气机发展的几个问题,航空发动机, 2006, 32(2):5-17, 37.
    [19]蒋浩兴,王尚义,蔡晓钟,风扇和压气机全三元气动设计体系的研究和发展,航空发动机, 1996年4期.
    [20]蒋浩兴,国外发展风扇/压气机设计体系的一些经验和启示,航空发动机, 2001年2期.
    [21] Howell, A.R., and Calvert, W.J., A New Stage Stacking Technique for Axial-Flow compressor Performance Prediction, Trans. ASME, Journal of Engineering for Power, Vol.100, October, 1978.
    [22] Jansen, W., Moffatt, W.C., The Off-Design Analysis of Axial-Flow Compressors, Trans.ASME, Journal of Enginnering for Power, October, 1967.
    [23] Denton, J.D., and Dawes, W.N., Computational Fluid Dynamics for Turbomachinery Design, Proceedings of the Institution of Mechanical Engineers, Journal of Mechnical Engineering Science, Part C, Vol.213, No.C2, 1999.
    [24]周燕佩,徐力平,计算流体动力学在航空叶轮机械中的应用—现状和展望, 21世纪航空动力发展研讨会,中国航空动力专业分会, 2000年北京.
    [25] AGARD-CP-571, Loss Mechanisms and Unsteady Flows in Turbomachines, January 1996.
    [26] Denton, J. D., Loss Mechanisms in Turbomachines, ASME Journal of Turbomachinery, 1993, 115:621-656
    [27] Johnsen, I., and Bullock, R., Aerodynamical Design of Axial-Flow Compressors, NASA SP-36, 1965.
    [28] Lieblein, S., Roudenbush, W. H., Theoretical Loss Relations for Low-speed Two- Dimensional Cascade Flow, NACA TN-3662, 1956.
    [29] Miller, G. R., Lewis, G. W., and Hartmann, M. J., Shock Losses in Transonic Compressor Blade Rows, ASME Journal of Engineering for Power, 1961, 83:235-242.
    [30] Creveling, H. F., Axial-Flow Compressor Computer Program for Calculating Off-Design Performance, NASA CR–72472, 1968.
    [31] Hobbs, D., and Weingold, H., Development of Controlled Diffusion Airfoils for Multistage Compressor Application, ASME J. Eng. Gas Turbines Power, 1984, 106:271-278.
    [32] Stephens, H., Application of Supercritical Airfoil Technology to Two-Dimensional Compre- ssor Cascades: Comparison of Theoretical and Experimental Results, AIAA J., 1979, 17(6): 594-600.
    [33] Rechter, H., Steinert, W., and Lehmann, K., Comparison of Controlled Diffusion Airfoils With Conventional NACA 65 Airfoils Developed for Stator Blade Application in a Multistage Axial Compressor, ASME J. Eng. Gas Turbines Power, 1985, 107: 494–498.
    [34] Dunker, R., Rechter, H., Starken, H., and Weyer, H. B., Redesign and Performance Analysis of a Transonic Axial Compressor Stator and Equivalent Plane Cascades With Subsonic Controlled Diffusion Blades, ASME J. Eng. Gas Turbines Power, 1984, 106: 279–287.
    [35] Sanger, N. L., The Use of Optimization Techniques to Design Controlled Diffusion Compre- ssor Blading, ASME J. Eng. Power, 1983, 105: 256–265.
    [36] Gustafson, B. A., A Simple Method for Supersonic Compressor Cascade Performance Prediction, Chalmers Univ. of Techn., Dept. for Turbomachinery, also ASME Paper No. 76-GT-64.
    [37] Koch, C. C., and Smith, L. H., Loss Sources and Magnitudes in Axial-Flow Compressors,ASME Journal of Engineering for Power, 1976, 98:411-424.
    [38] Wennerstrom, A. J., and Puterbaugh, S. L., A Three-Dimensional Model for the Prediction of Shock Losses in Compressor Blade Rows, ASME Journal of Engineering for Gas Turbines and Power, 1984, 106:295-299.
    [39]张扬军,陶德平,周盛,跨/超音压气机激波与附面层干扰研究,中国航空学会第三届动力年会, CSAA93-P-100(T), 1993.
    [40]张扬军,陶德平,周盛,跨音叶栅三维激波损失的改进模型,航空学报, 1995, 16(1):104-108.
    [41]张扬军,陶德平,周盛,跨音压气机叶栅的激波结构模型及损失,航空动力学报, 1995, 10(1):33-36.
    [42] K?ller, Ulf, M?nig, Reinhard, et.al., Development of Advanced Compressor Airfoils for Heavy-Duty Gas Turbines——Part I: Design and Optimization, Journal of Turbomachinery, July 2000, Vol.122, pp397-405.
    [43] K?ller, Ulf, M?nig, Reinhard, et.al., Development of Advanced Compressor Airfoils for Heavy-Duty Gas Turbines——Part II: Experimental and Theoretical Analysis, Journal of Turbomachinery, July 2000, Vol.122, pp406-415.
    [44] Fottner, L. and Lichtfuss, H. J., Design of Transonic Compressor Cascades for Minimal Shock Losses and Comparison with Test Results, AGARD CP No.351, pp4.1-4.22.
    [45] Tweedt, D. L., Schreiber, H. A., and Starken, H., Experimental Investigation of the Perform- ance of a Supersonic Compressor Cascade, ASME Journal of Turbomachinery, 1988, 110:456-466.
    [46] K?nig, W. M., Hennecke, D. K. and Fottner, L., .Improved Blade Profile Loss and Deviation Angel Models for Advanced Transonic Compressor Bladings: Part II.A Model for Supersonic Flow,. Transactions of the ASME, Journal of Turbomachinery, January 1996, 117:81-87.
    [47] Bloch, G. S., Copenhaver, W. W., and O.Brien, W. F., Development of an Off-Design Loss Model for Transonic Compressor Design, AGARD-CP-571, January 1996, 16-1~16-14.
    [48] Bloch, G. S., Copenhaver, W. W. and O.Brien, W. F., A Shock Loss Model for Supersonic Compressor Cascades, Transactions of the ASME, Journal of Turbomachinery, January 1999, 121:28-35.
    [49] Bloch, G. S., Flow Losses in Supersonic Compressor Cascades, Ph.D. dissertation, Mechan- ical Engineering Dept., Virginia Polytechnic Institute and State University, Blacksburg, VA, July 1996.
    [50] Boyer, K. M., An Improved Streamline Curvature Approach for Off-Design Analysis ofTransonic Compression Systems,’’Ph.D. dissertation, Mechanical Engineering Dept., Virginia Polytechnic Institute and State University, Blacksburg, VA, April 2001.
    [51] Boyer, K. M., and O’Brien,W. F., Application of an Improved Streamline Curvature Approach to a Modern, Two-Stage Transonic Fan: Comparison with Data and CFD, ASME Paper GT-2002-30383, June, 2002.
    [52] Boyer, K.M. and O.Brien, W.F., An Improved Streamline Curvature Approach for Off-Design Analysis of Transonic Axial Compression Systems, ASME Paper GT-2002-30444, June 2002.
    [53]程荣辉,雷丕霓,刘波等,一种工程实用的多级轴流压气机特性二维数值计算方法,航空动力学报, 2007, 22(6):955-960.
    [54] Aerospace Recommended Practice 1420, Gas Turbine Inlet Flow Distortion Guidelines, ARP-1420, Society of Automotive Engineers, 1978.
    [55] Campbell, A.F., An Investigation of Distortion Indices for Prediction of Stalling Behavior in Aircraft Gas Turbine Engines, MS Thesis, Virginia Polytechnic Institute and State University, Mechanical Engineering Department, 1981.
    [56] William, T. C., History, Philosophy, Physics, and Future Directions of Aircraft Propulsion System/ Inlet Integration, Proceedings of ASME Turbo Expo 2004, GT2004-54210, June 14-17, 2004.
    [57] Aerospace Information Report 1419, Inlet Total Pressure Distortion Considerations for Gas Turbine Engines, AIR 1419, Society of Automotive Engineers, 1983.
    [58] Aerospace Resource Document 50015, A Current Assessment of the Inlet/Engine Temperature Distortion Problem, ARD-50015, Society of Automotive Engineers, 1991.
    [59]国家军用标准GJB241-87,航空涡轮喷气和涡轮风扇发动机通用规范,国防科工委军标出版发行部, 1988年.
    [60]刘大响,叶培梁,胡骏,黄熙君,航空燃气涡轮发动机稳定性设计与评定技术,北京:航空工业出版社, 2004年6月.
    [61] Allen, E. F., Introduction to Distortion Induced Engine Instability, AGARD LS-72, November 1974.
    [62] Williams, D.D. and Yost, J.O., Some Aspects of Inlet/Engine Flow Compatibility, Aeronautical Journal, September 1973.
    [63] Reid, C., The Response of Axial Compressors to Intake Flow Distortion, ASME Paper No. 69-GT-29, 1969.
    [64] James, E.C., Charles, M.M., and Paul, L.B., Experimental Investigation of the Effect of Screen-Induced Total Pressure Distortion on Turbojet Stall Margin, NASA TMX-2239, 1971.
    [65] Pearson, H. and McKenzie, A.B., Wakes in Axial Compressors, Journal of the Royal Aero- nautical Society, July 1959, 63:415-416.
    [66] Mazzawy, R.S., Multiple Segment Parallel Compressor Model for Circumferential Flow Distortion, ASME J. Engineering for Power, April,1977,pp288-296.
    [67] Lecht, M., Investigation of the Behavior of Axial Compressor Stages with Steady Stage Inlet Distortions, DFVLR-FB 83-39, 1983.
    [68] Lecht, M., Improvement of Parallel Compressor by Consideration of Unsteady Blade Aerodynamics, AD-P005467, 1987.
    [69] Ehrich, F., Circumferential Inlet Distortions in Axial-Flow Compressors, Journal of the Aeronautical Sciences, June, 1957.
    [70] Rannie, W.D., and Marble, F.E., Unsteady Flows in Axial Turbomachines, Comptes Rendus des Journees Internationales de Science Aeronautique, ONERA, 1957.
    [71] Katz, R., Performance of Axial Compressor with Asymmetric Inlet Flows, Ph.D. Dissertation California Institute of Technology, 1958.
    [72] Yeh, H., An Acutuator Disc Analysis of Inlet Distortion and Rotating Stall in Axial Flow Turbomachines, Journal of the Aerospace Sciences, Nov. 1959.
    [73] Dunham, J., Non-Asymmetric Flows in Axial Compressors, Mechanical Engineering Science Monograph No.3, Institution of Mechanical Engineers, 1965.
    [74] Greitzer, E.M., Compressor-Diffuser Interaction with Circumferential Flow Distortion, J. Mech. Eng. Sci., 1976, 18:25-43.
    [75] Greitzer, E.M., Flow Field Couple between Compression System Components in Asymmetric Flow, ASME J. for Power, 1978, 100:66-72.
    [76] Hall, E.J., Heidegger, N.J. and Delaney, R.A., Performance Prediction of Endwall Treated Fan Rotors with Inlet Distortion, AIAA Paper 96-0244, 1996.
    [77] Hah, Ch., Rabe, D.C., Sullivan, Th.J. and Wadia, A.R., Effects of Inlet Distortion on the Flow Field in a Transonic Compressor Rotor, ASME Paper 96-GT-547, 1996.
    [78] Xu, L., Assessing Viscous Body Forces for Unsteady Calculations, ASME J. of Turbomach., July 2003, 125:425-432.
    [79] Unno, M. et., Unsteady Three Dimensional Navier-Stokes Simulations of Fan-OGV-Strut- Pylon Interaction, ISABE-2001-1197, 2001.
    [80] Giles, M. B., Stator/Rotor Interaction in a Transonic Turbine, J. Propul. Power, 1990, 6(5): 621–627.
    [81] Davis, M. W., Jr., A Stage-by-Stage Dual Spool Compression System Modeling Technique,ASME Paper 82-GT-189, 1982.
    [82] Williams, D. D., Review of Current Engine Response to Distorted Inflow Conditions, AGARD Conf. Proc., AGARD CP-400., 1986.
    [83] Hynes, T. P., and Greitzer, E. M., A Method for Assessing Effects of Inlet Flow Distortion on Compressor Instability, ASME J. Turbomach., 1987, 109:371-379.
    [84] O’Brien, W. F., Dynamic Simulation of Compressor and Gas Turbine Performance, AGARD Conf. Proc., AGARD-LS-183, 1992.
    [85] Escuret, J. F., and Garnier, V., Numerical Simulations of Surge and Rotating Stall in Multi- stage Axial Compressors, AIAA Pap., No. 94-3202., 1994.
    [86] Longley, J. P., Calculating the Flow Field Behavior of High Speed Multistage Compressors, ASME Paper 97-GT-468.
    [87] Joo, W. G., and Hynes, T. P., The Simulation of Turbomachinery Blade Rows in Asymmetric Flow Using Actuator Disks, ASME J. Turbomach., 1997,119:723-732.
    [88] Adamczyk, J. J., Model Equation for Simulating Flows in Multistage Turbomachinery, ASME Paper 85-GT-226, 1985.
    [89] Gong, Y. F. et al., A Computational Model for Short Wavelength Stall Inception and Develop- ment in Multi-Stage Compressors, ASME J. Turbomach., Oct. 1999, 121:726–734.
    [90] Gong, Y. F., A Computational Model for Rotating Stall and Inlet Distortions in Multi-Stage Compressors, Ph.D., Thesis, Massachusetts Institute of Technology, 1988.
    [91] Xu, L., Hynes, T. P., and Denton, J. D., Towards Long Length Scale Unsteady Modeling, Proc. Turbomachines, I Mech E, 2002, Vol.216, Part A: J. Power Energy, 216.
    [92] Hale, A., and O’Brien, W., A Three-Dimensional Turbine Engine Analysis Compressor Code (TEACC) for Steady-State Inlet Distortion, Transactions of the ASME, Journal of Turbomachinery, Vol. 120, July 1998, pp. 422-430.
    [93] Hale, A., Chalk, J., Klepper, J., and Kneile, K., Turbine Engine Analysis Compressor Code: TEACC - Part II: Multi-Stage compressors and Inlet Distortion, AIAA-99-3214, 17th AIAA Applied Aerodynamics Conference, Norfolk, VA, June 28 - July 1, 1999.
    [94] Hale, Davis, and Sirbaugh, A Numerical Simulation Capability for Analysis of Aircraft Inlet——Engine Compatibility, GT2004-53473
    [95]郑宁,邹正平,徐力平,风扇进气畸变三维非定常数值模拟技术研究,航空动力学报, 2007,22(1):60-65.
    [96]许开富,乔渭阳,伊进宝,畸变进气条件下风扇/压气机三维流动数值模拟研究,中国航空学会第十三届叶轮机学术讨论会论文集, 05-PTM-010,中航航空学会动力会分叶轮机专业委员会,宜昌, 2005年11月.
    [97] Cetin,M., Ucer, A.S., Hirsch, Ch., Serovy, G.K., Application of Modified Loss and Deviation Correlations to Transonic Axial-compressors, AGARD, ISBN 92-835-0346-4, 1987.
    [98] Swan, W.C., A Practical Method Predicting Transonic Compressor Performance, Trans. of the ASME, Journal of Eng. fo r Power, 1961: 322- 330.
    [99]徐纲,刘红,李军等,一种适用于超跨音叶型的非设计点损失和落后角模型,航空动力学报, 1996, 11(1):4-6.
    [100]曹志鹏,刘波,靳军,丁伟,一种损失和落后角模型在轴流压气机特性预估中的应用,汽轮机技术, 2005, 47(6):433-436. [101秦鹏(译),轴流压气机气动设计,国防工业出版社, 1975年.
    [102]赵勇,胡骏,郑大勇,用双激波模型计算风扇/压气机非设计点的性能,南京航空航天大学学报, 2006, 38(5):545-550.
    [103]胡骏,均匀与非均匀进气条件下多级轴流压气机性能计算—均匀进气及径向畸变的影响,航空动力学报, 2000, 15(3):225-228.
    [104]魏玉冰,多级轴流压气机性能预算,航空发动机, 1996年02期.
    [105]严汝群,钱肇琰,亚音速、跨音速轴流压气机叶栅尾迹特性的研究——平均流动模型,工程热物理学报, 1983, 4(3): 241-247.
    [106]崔济亚,跨音压气机参数关系式及其应用,航空与航天, 1983年第4期:pp24-32.
    [107]严汝群,钱肇琰,高压音速二元叶栅损失的理论分析和实验研究,工程热物理学报, 1981, 2(1):20-26.
    [108]强国芳,陈乃兴,压气机平面叶栅的最大升阻比关系式与扩压因子关系式,工程热物理学报, 1983, 4(2):127-133.
    [109]崔济亚,试论扩压因子D兼评跨音扩压叶栅损失公式,航空与航天, 1986年第1期:pp1-10.
    [110]唐狄毅,王永明,计算压气机特性的基元叶片法,航空动力学报, 1993, 8(3):217-220.
    [111] Citavy, J., Performance Prediction of Straight Compressor Cascades Having an Arbitrary Profile Shape. ASME Journal of Turbormachinery, January 1987, Vol.109, pp114-120.
    [112]陈葆实,胡国荣等,高马赫数、高负荷单级风扇设计和试验研究,航空发动机, 2000年第3期.
    [113]胡国荣,周亚峰等,高速、高负荷跨音速单级风扇设计与试验,工程热物理学报, 2001, 22(1):40-43.
    [114]王仲奇,秦仁,透平机械原理,北京:机械工业出版社, 1981: pp291-293.
    [115] Moeckel, W.E., Approximate Method for Predicting Form and Location of Deached ShockWaves Ahead of Plane or Axially Symmetric Bodies, NACA TN 1921, 1949.
    [116] Wright, P.I., Miller, D.C., An Improved Compressor Performance Prediction Mode, Conference on Turbomachinery, England: London, 1991, pp69-82.
    [117]胡骏,吴铁鹰,曹人靖,航空叶片机原理,北京:国防工业出版社, 2006年.
    [118]梁德旺,流体力学基础,北京:航空工业出版社, 1998年, pp193-202.
    [119] Koch, C.C., Stalling Pressure Rise Capability of Axial Flow Compressors Stages, ASME 81-GT-3.
    [120]有关数据由Universit?t der Bundeswehr München, Leonhard Fottner教授提供.
    [121]郝树成,风扇/增压级的设计及试验研究,中国航空学会动力分会第十届叶轮机学术年会,昆明:中国航空工业第608设计研究所主办, 1999年, 15~19.
    [122] Kurzke, J., Calculation of Installation Effects With in Performance Computer Programs, AGARD-LS-183, 1992.
    [123]胡骏,均匀与非均匀进气条件下多级轴流压气机性能计算—周向畸变的影响,航空动力学报, 2000, 15(3):229-232.
    [124]王永明,胡骏,邓艳,进气畸变对轴流压气机性能影响的准三维计算,推进技术, 2004,25(4):343~348.
    [125]赵勇,胡骏,某风扇/增压级非设计点性能计算及进气畸变影响分析,航空动力学报, 2007, 22(7):1087~1092.
    [126] MacCormack, R.W., The Effect of Viscosity in Hypervelocity Impact Cratering, AIAA Paper 69-354, 1969.
    [127] Pandolfi, M., and Zannetti, L., Some Permeable Boundaries in Multidimensional Unsteady Flows, the 6th International Conference on Numerical Methodsin Fluid-Flow, 1972.
    [128] Moore, F.K., and Greitzer, E.M., A Theory of Post-Stall Transients in Axial Compressor Systems: Part I—Development of Equations, ASME Paper No. 85-GT-171, 1985.
    [129]赵勇,胡骏,屠宝锋,李亮,进气畸变条件下三维非定常数值计算模型,中国航空学会第十四届叶轮机学术交流会,中航航空学会叶轮机专业委员会, 2007年9月于甘肃.
    [130] Jameson, A., Schmidt, W., and Turkel, E., Numerical Simulation of the Euler Equations by Finite Volume Method Using Runge-Kutta Time Stepping Schmes.AIAA Paper. 1981:1259.
    [131]周正贵,压气机叶片端壁附面层内叶型优化设计,南京航空航天大学博士论文, 2000年.
    [132] Numeca软件帮助手册.
    [133] Swanson, R.C., Turkel, E., Artificial Dissipaton and Central Differential Schemes for the Euler and Navier-Stokes Equations, AIAA paper 87-1107.
    [134]沈阳航空发动机设计研究所内部相关资料.
    [135]李传鹏,进气畸变增强压气机稳定性机理研究,南京航空航天大学博士论文, 2005年.
    [136]罗标能,压气机进口插板总压畸变稳定性研究,南京航空航天大学硕士论文, 2006年.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700