壳聚糖及其衍生物对放射性核素铀和钍吸附性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核能作为一种清洁能源,应对能源短缺将发挥不可替代的作用。然而,在核能的利用过程中又潜藏着无限危害的可能。因此,在发展核电过程中,始终都迫切要求有更加有效的放射性废水及废液处理技术。壳聚糖及其衍生物作为放射性核素吸附材料,具有无毒,易降解,不会对环境造成二次污染等优点,有望成为一种更为绿色环保的放射性核素去污材料。
     目的:
     通过探讨不同配体与金属离子的配位关系,筛选出最佳配位基团;利用基团改性方法调节壳聚糖对放射性核素铀和钍的吸附性能,并确定最佳吸附条件;将具有磁性核引入壳聚糖吸附材料,解决吸附材料从去污介质中分离、回收的难题。通过对壳聚糖及改性后的磁性壳聚糖微球的进行理化表征,及这种磁性壳聚糖对放射性核素铀和钍吸附性能的分析测定,为研究新型高效、高选择性并可再利用的固体吸附材料提供理论和实验依据。
     方法:
     采用酸碱滴定法、红外光谱和质谱分析法确定壳聚糖的脱乙酰度和聚合度信息;通过紫外可见光谱法,对金属离子Cu2+、Ni2+、Co2+与各种配体(氨基酸,壳聚糖,柠檬酸等)的配合物进行光谱分析,选择最佳配位基团;利用铀和钍分析测定方法检测壳聚糖对放射性核素铀和钍的吸附性能,确定最佳吸附条件;采用沉淀法制备磁性壳聚糖微球,利用扫描电镜显示磁性微球的结构及形态,XRD检测分析磁性核的物相;在最佳吸附条件下,对比分析壳聚糖及其磁性微球对放射性核素铀和钍的吸附性能。
     结果:
     1.通过紫外可见光谱法,对金属离子Cu2+、Ni2+、Co2+与各种配体(氨基酸,壳聚糖,柠檬酸等)的配合物进行可见扫描,通过光谱图的峰形变化,确定Cu2+与各种配体的配位能力,这种配位能力按照壳聚糖、氨基葡萄糖、氨基酸的顺序增强。
     2.采用酸碱滴定法测定出壳聚糖的脱乙酰度为90.1%,IR测定结果验证了不同壳聚糖中的乙酰基和氨基,MALDI-FT-MS进一步给出壳聚糖的脱乙酰度及聚合度的信息。
     3.通过壳聚糖吸附性能的研究发现,壳聚糖对放射性核素铀具有较强的吸附能力,吸附率在96%以上。即使在大量Cu2+存在情况下,仍可高效吸附放射性核素铀。在壳聚糖对钍吸附性能的研究中,发现壳聚糖对钍也有较好的吸附能力。
     4.通过沉淀法制备的磁性壳聚糖微球,电镜观察显示,壳聚糖形状规整,表面致密均匀;Fe3O4的扫描电镜显示多数纳米粒近似球形,整齐规则,大小在200~300nm;Fe3O4@SiO2的扫描电镜显示粒子分布均匀,形状整齐,粒子大小约500m;XRD的衍射结果表明Fe3O4在壳聚糖的包覆中没有受到影响,仍然保持较好的结晶度。
     5.通过与壳聚糖的吸附能力对比,磁性壳聚糖虽然对放射性核素铀和钍的吸附率有所降低,但仍然表现出很好的吸附性能。
     结论:
     1.在过渡金属离子与配体的配位能力的研究中,发现配体中的-NH2、-OH、-COO-等基团都可与过渡金属离子进行配位。在配体与Cu2+离子配位时,含有氨基的配体显示出较强的配位能力,这种配位能力按照壳聚糖、氨基葡萄糖、氨基酸的顺序增强。
     2.壳聚糖由于含有大量的氨基,所以对放射性核素铀有很好的吸附性能。即使在Cu2+存在的情况下,仍然有很高的吸附效率;壳聚糖对钍也表现出较好的吸附性能。
     3.将磁性核引入壳聚糖吸附材料后,磁性壳聚糖仍然保持较好的对放射性核素铀和钍的吸附能力,同时还能较方便地从去污介质中分离、回收。
Nowdays, nuclear energy as a type of green energy, is treated as a better solution and show important role for energy shortage. However, in the process of its utilization, high risk is hidden around the world. In the development process of nuclear power, the effective disposal technique of radioactive waste which contains wastewater appears especially important. As an adsorbent material, chitosan and its deviants has the advantage of non-toxicity, easy degradation and no extra pollution. All these above advantages are expected chitosan and its deviants to develop as an environmental eradicator.
     Objective:
     By discussing the coordination between different ligands and metal ions, the perfect coordinating group could be screen out. Through the method of changing the character of the group, the adsorption of radionuclide uranium and thorium with chitosan and its derivants were adjusted and the optimal adsorptive situation was confirmed. By enclosing the magnetic chitosan particle to the adsorbent material, to solve the difficulty of separation and reusing research from different radio eradicator medium. In this paper, the physic-chemical characterization of chitosan and its derivants were analyzed, including their adsorption, which provided not only the theoretical basis but also the experimental evidence of adsorbent material for high-efficiency reusing research.
     Method:
     Some physico-chemical characteristics of chitosan were studied by several methods to control degree of deacetylation (DD), the degree of polymer (DP) by acid-base titration, infrared spectroscopy and mass spectrometric analysis respectively. By ultraviolet-visible spectrometry, spectrum analysis was performed in composition of Cu2+, Ni2+, Co2+ with different ligands such as amino acid, chitosan and citric acid etc. Combined with the adsorption of radionuclide uranium and thorium with chitosan and its derivants, the best adsorption condition could be confirmed. Magnetic chitosan particle was prepared by precipitation. Through the scan electro-microscope the configuration and the shape of the particle was analyzed. Physical phase of the magnetic characteristic particle was analyzed by XRD. Contrast the adsorption of radionuclide uranium and thorium with chitosan and its magnetic derivants under the best adsorptive condition.
     Result:
     1. By ultraviolet-visible spectrometry, scan the coordinated composition of Cu2+ Ni2+ and Co2+ with some ligands such as amino acid, chitosan and citric acid etc. By overview the absorb peaks, the perfect coordination was found between Cu2+ and amino acid. The coordinated capability was increased according to the order of chitosan, glucosamine and amino acid.
     2. The degree of deacetylation test of chitosan by acid-base titration was detected as 90.1%. IR spectrum analyzed the acetyl and amino group, the degree of deacetylation and degree of polymer were observed by MALDI-FT-MS respectively. Further information was confirmed by these spectra.
     3. By the research of the adsorption, chitosan showed high adsorption of radionuclide uranium. The adsorption ratio was obtained more than 96%. Even under the exist condition of large amount of Cu2+, the adsorption was still particularly high. In the meanwhile, chitosan showed high adsorption of radionuclide thorium.
     4. The magnetic chitosan particle prepared by precipitation showed regular shape by electro-microscope. Reviewing the scan electric-microscope showed of Fe3O4, most grains were even distributed, and surface smooth, shape similar with roundness, size was about 200~300nm. The scan electric-microscope of Fe3O4@SiO2 showed the grains were even distributed and in good order, homogeneous texture, which size was around 500nm. In the enwraped of the chitosan, Fe3O4 had no effect, which still kept proper crystalization.
     5. By the contrast analysis, the adsorption of radionuclide uranium and thorium with magnetic chitosan particle was lowered, but still showed perfect adsorption of these radionuclides.
     Conclusion:
     1. In the research, the ligands such as -NH2,-OH,-COO- were found to be coordinated with metal ions. The ligand with amino group indicated strong ability of coordination. The coordinated capability was increased according to the order of chitosan, glucosamine and amino acid.
     2. Chitosan showed high adsorption of radionuclide uranium. Even under the exist condition of large amount of Cu2+, it still displayed proper adsorption. Meanwhile, it also had good adsorption of thorium.
     3. After cross-linking and enwrapping the magnetic particle, the magnetic chitosan particle still kept proper adsorption of the radionuclide uranium and thorium. The new magnetic material was very convenient to separate and recycle from the decontamination medium.
引文
[1]核电站安全发展:回顾我国放射化学百年历程.
    [2]谈树成.地球环境中的放射性污染[J].云南环境科学.2001,20(3):7-9.
    [3]石晓亮.放射性污染的危害及防护措施[J]2004,30(1):6-9.
    [4]黄明犬.放射性废水中低放射性废水处理现状与发展[J].西南给排水.2003,25(6):29-32.
    [5]张银生.中、低水平放射性废水的处理[J].上海环境科学.1992,12(5):38-39.
    [6]罗明标.氢氧化镁处理含铀放射性废水的研究[J].水处理技术.2002,28(5):274-277.
    [7]李永青,陈勤,薛明,彭小红.放射性废水处理方法及国内外处理状况[J].中国环境科学学会.2009,7(2):68-72.
    [8]李楷君.无机离子交换材料在放射性废水处理中的应用[J].水处理技术.1991,11(5):1-8.
    [9]李全伟.沸石净化弱放射性废水的工程试验[J].非金属矿.2003,26(4):42-43.
    [10]赵宝生.离子浮选法处理放射性废水[J].原子能科学技术.2004,38(4):382-384.
    [11]高永.膜技术处理低浓度放射性废水研究的进展[J].核科学与工程.2003,23(2):173-177.
    [12]姜德福.壳聚糖在环境污染防治上的应用[J].锦州师范学院学报.2001,(4):33-35.
    [13]张利平.天然吸附剂-壳聚糖的最新研究[J].阴山学刊,2001,7(5):42-44.
    [14]李龙,陶薇薇.甲壳素在废水处理中的应用[J].上海环境科学.1988,7(1):40-43.
    [15]杨腊梅,俞杰,张勇.放射性废水处理技术研究进展[J].污染防治技术.200720(4):35-37.
    [16]张艳雅.壳聚糖衍生物的合成及其对Cu2+, Pb2+的吸附研究[D].青岛:中国海洋大学,2006.
    [17]黄达卿.壳聚糖吸附处理重金属废水的研究[D].上海:东华大学,2005.
    [18]李青燕.多孔多胺化交联壳聚糖的合成及其对重金属离子的吸附性能研究[D].北京:北京化工大学,2003.
    [19]张海真.磁性壳聚糖微球的改性表征及吸附行为研究[D].武汉:中南民族大学,2008.
    [20]覃彩芹.壳低聚糖结构表征与分子量及其生物活性功能研究[D].武汉:武汉大学,2002.
    [21]黄金明等.天然高分了壳聚糖作为吸附剂的吸附特性研究[J].高等学校化学学报.1992,13(4):535-537.
    [22]张利平.天然吸附剂-壳聚糖的最新研究[J].阴山学刊.2001,10(5):42-44.
    [23]周安娜,张文艺.壳聚糖制备新工艺及生产废水处理[J].合成化学.2003,7(2):163-165.
    [24]覃采芹,杜予民.壳聚糖的降解及其结构表征[J].孝感学院学报.2002,22(6):5-8.
    [25]唐振兴,石陆娥,易喻.壳聚糖及其降解物分子量的测定[J].化工技术与开发.2004,33(6):38-39.
    [26]王伟,薄淑琴,秦汶.不同脱乙酰度壳聚糖Mark-Houwink方程的订定.中国科学B辑,1990,5(11):1126-1129.
    [27]Yuiang Cheng, Chiaiun Chen, Chiaiuan Chen. The chemically crosslinked metalcomp lexed chitosans for comparative adsorptions of Cu (Ⅱ), Zn (Ⅱ), Ni (Ⅱ) and Pb (Ⅱ) ions in aqueous medium [J]. Journal of Hazardous Materials,2009,163 (1):1068-1075.
    [28]党明岩,张廷安.交联壳聚糖的合成及其吸附处理废水的研究进展[J].环境保护科学.2004,4(30):4-6.
    [29]孙胜玲,王丽,吴瑾.王爱勤.壳聚糖及其衍生物对金属离子的吸附研究[J].高分子通报.2005,6(10):58-66.
    [30]刘维俊.高分子壳聚糖对微量金属离子的鳌合作用研究[J].环境科学与技术.2003,4(3):11-12.
    [30]黄达卿.壳聚糖吸附处理重金属废水的研究[D].上海:东华大学,2006.
    [31]Muzzarelli R.A.A.Chitin.Oxford:Pergamon Press[J],1977,184-187.
    [32]徐翠香.聚合物包裹纳米磁性微球的制备及对生物物质的吸附影响因素研究[D].扬州:扬州大学,2006.
    [33]ZhuZaisheng. Synthesis and Characterization of the Chelate Compound of Crosslinked Chitosan with Hg-(2+)[J]. Chemistry Online,2007,5:388-391.
    [34]ZhaoYuqing.Wang Fang. Preparation of chitosan complexes and their adsorption to Pb2+[J].2009,30,1121-1123.
    [35]Xue LQ, Chen S. Study on adsorption properties for Cu2+ of Chitosan (p-Hydroxybenzoic acid) [J] Journal of Fuqing Branch of Fujian Normal University,2010,10(5):42-45
    [36]Huang XJ,Wang AQ,Yuan GP. Study on the adsorption of Zn(II) of solution by chitosan [J] Ion exchange and adsorption 2000,16(1):60-65.
    [37]孙胜玲,王爱勤.铅模板交联壳聚糖对Pb(Ⅱ)的吸附性能[J].中国环境科学.2005,25(2):192-195.
    [38]Jin YR,Li DM,Zhang BC,Zhang LH. Preparation of magnetic chitosan and its properties in the adsorption of lanthanides ane actinides[J],ion exchange adsorption,1999,15(2):177-181.
    [39]Zhou LM, Wang YP,Huang QW. Adsorption properties of Cu-(2+),Cd-(2+)and Ni-(2+)by modified magnetic chitosan microspheres [J]. acta physico-chimica sinica,2007,23(12):1979-1984.
    [40]Cabaldon Carmen, Marzal Paula, Ferrer Jose, et al. Single and competitive adsorp tion of Cd and Zn onto a granular activated carbon[J]. Water Research,1996,30: 3050-3060.
    [41]吕慧丹,刘峥,刘勇平.磁性高分子微球的制备及生物医学应用[J].化工新型材料.2004,32(3):10-14.
    [42]胡书春,周祚万.磁性高分子微球研究进展[J].材料科学与工程学报.2003,21(4):616-619.
    [43]王延梅,封麟先.磁性高分子微球的研究进展[J].高分子材料科学与工程.1998,14(5):6-8.
    [44]程彬,朱玉瑞.无机-高分子磁性复合粒子的制备与表征[J].化学物理学报,2000,3(13):359-362.
    [45]马秀玲,黄丽梅,郑思宁等.磁性微球的制备及研究进展[J].广州化学.2003,28(3):58-64.
    [46]陈玲.磁性Fe3O4微粒和磁性明胶固定化酶对葵花籽壳酶水解的影响[D].长沙:湖南大学,2009.
    [47]秦润华,姜炜,刘宏英.Fe3O4纳米粒子的制备与超顺磁性[J].功能材料,2007,38(6):902-903.
    [48]Yang JQ,Ye SQ,Guo SY.Review of preparation and application of magnetic chitosan microspheres [J].Modern Food Science and Technology,2008,24(10) 1079-1081.
    [49]Park JH, Im KH, Lee SH,. Preparation and characterization of magnetic chitosan particles for hyperthermia application[J].Journal of Magnetism and Magnetic Materials,2005.293:328-333.
    [50]Chang YC, Chang SW, Chen DH. Magnetic chitosan nanoparticles:studies on chitosan binding and adsorption of Co2+ ions [J].Reactive & Functional polymers, 2006,66:335-341.
    [51]Donia AM, Atia AA, Elwakeel KZ. Recovery of Au3+ and Ag+ on a chemically modified chitosan with magnetic properties [J].Hydrometallurgy,2007,87:197-206.
    [52]Donia AM, Atia AA, Elwakeel KZ, et al. Selective separation of mercury(II) using magnetic chitosan resin modified with Schiff s base derived from thiourea and glutaraldehyde[J] Journal of HazardousMaterials,2008,151:372-379.
    [53]WongYC,SzetoYS,CheungWH,etal. Adsorption of aciddyes on chitosan-equilibrium isotherm analyses [J].Process Biochemistry,2004,39:693-702.
    [54]Cheung WH, Szeto YS, Mckay G, et al. Intra particle diffusion processes during acid dye adsorption onto chitosan[J].Bioresource Technology,2007,98:2897-2904.
    [55]Viera RS,Beppu MM. Interaction of natural and crosslinked chitosan membranes with Hg (Ⅱ)ions [J].Colloids and Surfaces A:Physicochemical Engineering Aspects,2006,279:196-207.
    [56]MargelS,BeitlerU.Polyacrolein-type microspheres[P].USP4,783,336,1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700