放射性核素显像在心血管疾病方面的临床应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分门控心肌代谢18F-FDG PET/CT相位分析与门控心肌灌注99mTc-MIBI SPECT相位分析在评价冠心病患者左心室同步性方面的比较
     目的:比较门控心肌代谢18F-FDG PET/CT相位分析与门控心肌灌注99mTc-MIBI SPECT相位分析测量冠心病患者左心室不同步参数间是否存在差异,测定两种方法的相关性和一致性,评价门控心肌代谢18F-FDG PET/CT相位分析测量左心室同步性的准确性。
     方法:回顾性分析连续收集的100例冠心病患者,所有患者均己行门控心肌代谢18F-FDG PET/CT显像与门控心肌灌注99mTc-MIBI SPECT显像。应用QGS心脏相位分析技术分别对重建后的门控心肌代谢18F-FDG PET/CT图像与门控心肌灌注99mTc-MIBI SPECT图像进行分析,获得左心室不同步参数,即相位直方图带宽(phase histogram bandwidth, BW)和相位标准差(standard deviation, SD)。分别计算门控心肌代谢18F-FDG PET/CT与门控心肌灌注99mTc-MIBI SPECT相位分析获得的BW值和SD值的相关性和一致性,并比较这两种方法分别测得的心肌活性以及最晚激动位点的一致性。
     结果:相关性分析显示门控心肌代谢18F-FDG PET/CT相位分析与门控心肌灌注99mTc-MIBI SPECT相位分析所得的Bw及SD值为中等相关(Bw:r=0.60;SD:r=0.58;p均<0.0001)。门控心肌代谢18F-FDG PET/CT相位分析测得Bw值及SD值均高于门控心肌灌注SPECT相位分析的结果(BW22.0。±46.8°;SD:6.4°±14.3。),门控心肌代谢18F-FDG PET/CT相位分析过高估计左心室不同步。多因素Logistic回归分析示:与门控心肌代谢18F-FDG PET/CT相位分析高估左心室不同步相关的因素有左心室是否发生显著重构、左心室功能参数(左心室收缩末期容积,ESV;左心室舒张末期容积,EDV;左心室射血分数,EF)以及心肌和心血池I8F-FDG摄取的比值(SUVT/B)。门控心肌代谢18F-FDG PET/CT与门控99mTc-MIBI SPECT显像在评估左心室最晚激动位点方面具有67.1%的一致性,与心肌灌注99mTc-MIBI SPECT显像相比,心肌代谢18F-FDG PET/CT显像可多检测出5.2%的存活心肌。
     结论:门控心肌代谢18F-FDG PET/CT相位分析与门控心肌灌注99mTc-MIBI SPECT相位分析在测量冠心病患者左心室同步性方面具有中等相关性。对于发生明显的左心室重构、左心室功能严重受损、以及心肌摄取18F-FDG较差的冠心病患者,应谨慎应用门控心肌代谢18F-FDG PET/CT相位分析技术评价左心室同步性。
     第二部分
     门控静息心肌灌注99BTc-MIBI SPECT相位分析测量左心室同步性在评价扩张型心肌病患者预后的临床价值
     目的:评价门控静息心肌灌注99mTc-MIBI SPECT显像预测扩张型心肌病患者预后的临床价值。
     方法:回顾性分析48例连续纳入的扩张型心肌病患者。所有患者均已行门控静息心肌灌注99mTc-MIBI SPECT显像。应用QGS心脏相位分析技术分别对重建后的门控静息心肌灌注99mTc-MIBI SPECT图像进行分析,获得左心室不同步参数,即相位直方图带宽(phase histogram bandwidth, BW)和相位标准差(standard deviation, SD)。对所有入选患者进行随访,以心脏性死亡作为观测终点事件。应用Cox回归分析找到对扩张型心肌病患者预后具有重要预测作用的因素。
     结果:所有患者随访期间(22.7±5.1月),12名患者(25.0%)发生心脏性死亡。与存活患者相比,发生心脏性死亡的患者的BW值(157.0°±37.9°vs.105.4°±58.1°,P<0.05)和SD值均显著增高(44.0°±11.0°vs.29.0°±15.9°,P<0.05)。单因素COX回归分析结果示体重指数(BMI)、QRS波时限>120ms以及重度左心室不同步三个因素是预测扩张型心肌病患者发生心脏性死亡事件的独立因子。多因素COX回归分析结果示重度左心室不同步(风险比值:9.607,95%可信区间:2.064-44.713,P=0.004)和BMI(风险比值:0.851,95%可信区间:0.732-0.989,P=0.036)可独立预测心脏性死亡事件的发生。左心室严重不同步的患者累计心脏性死亡率显著高于无左心室不同步的患者(55.6%vs.6.7%,P<0.0001)。正常体重指数组(BMI<25kg/m2)的累计心源性死亡率显著高于超重组(BMI≥25kg/m2)患者(36.7%vs5.6%,P=0.018)。
     结论:门控静息心肌灌注99mTc-MIBI SPECT相位分析测得左心室不同步以及患者体重指数对药物保守治疗的扩张型心肌病患者发生心脏性死亡事件具有重要的预测价值。
     第三部分
     18F-FDG PET心脏代谢显像与心脏磁共振成像在测定心力衰竭患者左心室功能参数方面的比较
     目的:左心室功能是评价心力衰竭患者预后的重要因子。本研究的目的在于比较18F-FDG PET心肌代谢显像与心脏磁共振成像测量心力衰竭患者左心室功能参数(左心室舒张末期容积、左心室收缩末期容积和左心室射血分数)的差异,计算两种方法的相关性和一致性,评价18F-FDG PET显像测量左心室功能的准确性。
     方法:89例(男69例,女20例,年龄(55±13)岁)确诊为心力衰竭的患者,并于一周内均行心脏18F-FDG PET心肌代谢显像和心脏磁共振成像。18F-FDG PET心脏代谢显像分别应用门控心肌显像QGS软件与4D-MSPECT软件测量左心室舒张末期容积(LVEDV).左心室收缩末期容积(LVESV)以及左心室射血分数(LVEF),与心脏磁共振成像测得的左心室功能参数进行相关性检验以及Bland-Al tman一致性检验。
     结果:18F-FDG PET显像(分别应用QGs软件、4D-MSPECT软件)与心脏磁共振成像在左心室容积及左心室射血分数方面相关性良好(QGS:LVEDV:r=0.92:LVESV: r=0.92:LVEF:r=0.76:4D-MSPECT:LVEDV:r=0.93:LVESV:r=0.94:LVEF: r=0.75:p均<0.001).18F-FDG PET显像应用QGS软件所得LVEDV及LVESV(LVEDV192.3±91.4ml;LVESV140.3±85.8ml)低于心脏磁共振成像所得结果(LVEDV220.3±90.7ml:LVESV158.9±85.8ml),均具有统计学意义(p均<0.05)。
     结论:18F-FDG PET心脏代谢显像与心脏磁共振成像在测定心力衰竭患者左心室功能参数方面相关性良好,但是两种方法测定左心室功能参数方面具有一定的差异,不能完全互相代替。临床应用18F-FDG PET心脏代谢显像测量左心室功能参数时应谨慎参考。
PartⅠ
     Phase analysis by gated F-18FDG PET/CT for left ventricular dyssynchrony assessment:comparison with gated Tc-99m sestamibi SPECT
     Purpose:To investigate the value of gated F-18FDG PET/CT on left ventricular (LV) dyssynchrony assessment in comparison with gated Tc-99m sestamibi SPECT in patients with coronary artery disease (CAD).
     Methods:The data of100consecutive CAD patients who underwent both gated myocardial Tc-99m sestamibi SPECT and F-18FDG PET/CT imaging were analyzed. Phase standard deviation (SD) and histogram bandwidth (BW) were derived from phase analysis using Cedars software package. The correlation and agreement of SD and BW between Tc-99m sestamibi SPECT and F-18FDG PET/CT were examined. Myocardial viability and the site of latest activation assessed by the two imaging methods were compared as well.
     Results:A moderate correlation for SD (r=0.58, p<0.0001) and BW (r=0.60, p<0.0001) was found between gated SPECT and gated F-18FDG PET/CT. Bland-Altman analysis revealed an overestimation of SD and BW (6.4°±14.3°and22.0°±■46.8°) by gated F-18FDG PET/CT. Multivariate logistic regression analysis identified that significant LV remodeling on SPECT imaging, LV functional parameters and F-18FDG uptake ratio of myocardium to blood pool (SUVM/B) were associated with the overestimation. Myocardial SPECT and F-18FDG PET/CT had a67.1%identity in determining the latest activation site and5.2%more viable myocardium was detected by18F-FDG PET/CT than SPECT.
     Conclusion:Gated F-18FDG PET/CT moderately correlated with gated Tc-99m sestamibi SPECT in assessing LV dyssynchrony. Gated F-18FDG PET/CT phase analysis should be cautiously applied in CAD patients with significant LV remodeling on SPECT imaging, severe LV functional impairment or poor myocardial F-18FDG uptake.
     Part Ⅱ
     Prognostic significance of left ventricular dyssynchrony by phase analysis of gated SPECT in medically treated patients with dilated cardiomyopathy
     Purpose:The study aimed to investigate the value of clinical variables and rest gated single photon emission computed tomography (SPECT) in predicting cardiac deaths in medically treated dilated cardiomyopathy (DCM) patients.
     Methods:This is a retrospective study. Fifty-six consecutive hospitalized DCM patients who underwent rest gated SPECT myocardial perfusion imaging (MPI) were initially recruited. Patients were further excluded for receiving heart transplantation, cardiac resynchronization treatment (CRT) and non-cardiac death during follow-up. The remaining48medically treated DCM patients were selected into the final analysis. Phase analysis of gated SPECT was conducted to identify LV dyssynchrony. Cardiac death during follow-up was considered as the only endpoint. Univariate and multivariate Cox proportional hazards regression analysis were performed to identify the independent predictors of cardiac death. Kaplan-Meier cumulative survival analysis with stratification was performed, and survival curves were compared by Log-rank test.
     Results:The mean age was47.5±15.8years (range,15-76y) and85.4%were men. The mean LV ejection fraction (LVEF) was22.2±7.7%. During the follow-up period (22.7±5.1months),12(25.0%) cardiac deaths occurred. Compared to survivors, patients with cardiac death had lower body mass index (BMI, P=0.010), higher percent of prolonged QRS duration (QRSD, P=0.043) and severe LV dyssynchrony (P=0.002). Multivariate Cox analysis demonstrated that severe LV dyssynchrony (hazard ratio=9.607,95%confidential interval,95%CI2.064-44.713, P=0.004) and BMI (hazard ratio=0.851,95%CI0.732-0.989, P=0.036) were predictive of cardiac death.
     Conclusion:Left ventricular dyssynchrony assessed by phase analysis of gated SPECT and BMI are predictive of cardiac death in medically treated DCM patients.
     Part III
     Gated F-18FDG PET for assessment of left ventricular volumes and ejection fraction using QGS and4D-MSPECT in patients with heart failure:comparison with cardiac MRI
     Purpose:Ventricular function is a powerful predictor of survival in patients with heart failure (HF). However, so far, studies on gated F-18FDG PET for assessment of the cardiac function are fairly rare. The aim of this study is to prospectively compare gated F-18FDG PET and cardiac MRI for assessment of ventricular volume and ejection fraction (EF) in patients with HF.
     Methods:Eighty-nine patients with diagnosed HF who underwent both gated F-18FDG PET/CT and cardiac MRI within3days were included. Left ventricular (LV) end-diastolic volume (EDV), end-systolic volume (ESV) and EF were obtained from gated F-18FDG PET/CT using Quantitative Gated SPECT (QGS) and4D-MSPECT software, respectively.
     Results:LV EDV and ESV measured by QGS were significantly lower than those of cardiac MRI (both P<0.0001), whereas the corresponding values of LV EDV for4D-MSPECT showed no statistical significance (P=0.595) and LV ESV showed an underestimation in borderline significance in comparison with cardiac MRI (P=0.047, respectively). LV EF measured by QGS showed no statistical significance in comparison with cardiac MRI (P=0.95) whereas the corresponding values for4D-MSPECT were lower than those of cardiac MRI (P<0.0001). The correlations of LV EDV, ESV and EF between gated F-18FDG PET/CT and cardiac MRI were excellent for both QGS (R=0.92,0.92and0.76, respectively) and4D-MSPECT (R=0.93,0.94and0.75, respectively). Bland-Altman analysis revealed significant systemic error that LV EDV (-27.9±37.0mL; bias significantly different from0, P=0.004) and ESV (-18.6±33.8mL; bias significantly different from0,P=0.01) were underestimated by QGS.
     Conclusion:For patients with HF, despite gated F-18FDG PET/CT correlated well with cardiac MRI in assessment of ventricular volumes and EF, variability between the two techniques did exist. Hence, in comparison with cardiac MRI, the two imaging techniques should not be used interchangeably and LV volumes and LV EF by gated F-18FDG PET/CT should be cautiously interpreted.
引文
1. Sanderson J E, Tse T F. Heart failure:a global disease requiring a global response[J]. Heart,2003,89(6):585-586.
    2. Fox K F, Cowie M R, Wood D A, et al. Coronary artery disease as the cause of incident heart failure in the population[J]. Eur Heart J,2001,22(3):228-236.
    3. Cha Y M, Rea R F, Wang M, et al. Response to cardiac resynchronization therapy predicts survival in heart failure:a single-center experience [J]. J Cardiovasc Electrophysiol,2007,18(10):1015-1019.
    4. Bax J J, Abraham T, Barold S S, et al. Cardiac resynchronization therapy:Part 1--issues before device implantation [J]. J Am Coll Cardiol,2005,46(12): 2153-2167.
    5. Abraham W T, Fisher W G, Smith A L, et al. Cardiac resynchronization in chronic heart failure[J]. N Engl J Med,2002,346(24):1845-1853.
    6. Singh J P, Heist E K, Ruskin J N, et al. "Dialing-in" cardiac resynchronization therapy:overcoming constraints of the coronary venous anatomy [J]. J Interv Card Electrophysiol,2006,17(1):51-58.
    7. Ypenburg C, Schalij M J, Bleeker G B, et al. Impact of viability and scar tissue on response to cardiac resynchronization therapy in ischaemic heart failure patients [J]. Eur Heart J,2007,28(1):33-41.
    8. Bax J J, Bleeker G B, Marwick T H, et al. Left ventricular dyssynchrony predicts response and prognosis after cardiac resynchronization therapy [J]. J Am Coll Cardiol,2004,44(9):1834-1840.
    9. Lee P W, Zhang Q, Yip G W, et al. Left ventricular systolic and diastolic dyssynchrony in coronary artery disease with preserved ejection fraction[J]. Clin Sci (Lond),2009,116(6):521-529.
    10. Chen J, Garcia E V, Folks R D, et al. Onset of left ventricular mechanical contraction as determined by phase analysis of ECG-gated myocardial perfusion SPECT imaging:development of a diagnostic tool for assessment of cardiac mechanical dyssynchrony[J]. J Nucl Cardiol,2005,12(6):687-695.
    11. Trimble M A, Borges-Neto S, Honeycutt E F, et al. Evaluation of mechanical dyssynchrony and myocardial perfusion using phase analysis of gated SPECT imaging in patients with left ventricular dysfunction[J]. J Nucl Cardiol,2008,15(5): 663-670.
    12. Chen J, Boogers M J, Bax J J, et al. The use of nuclear imaging for cardiac resynchronization therapy [J]. Curr Cardiol Rep,2010,12(2):185-191.
    13. Chen J, Garcia E V, Bax J J, et al. SPECT myocardial perfusion imaging for the assessment of left ventricular mechanical dyssynchrony[J]. J Nucl Cardiol,2011, 18(4):685-694.
    14. Gaemperli O, Kaufmann P A. PET and PET/CT in cardiovascular disease [J]. Ann N Y Acad Sci,2011,1228:109-136.
    15. Cooke C D, Esteves F P, Chen J, et al. Left ventricular mechanical synchrony from stress and rest 82Rb PET myocardial perfusion ECG-gated studies:differentiating normal from LBBB patients[J]. J Nucl Cardiol,2011,18(6):1076-1085.
    16. Pazhenkottil A P, Buechel R R, Nkoulou R, et al. Left ventricular dyssynchrony assessment by phase analysis from gated PET-FDG scans[J]. J Nucl Cardiol,2011, 18(5):920-925.
    17. Morton K A, Alazraki N P, Taylor A T, et al. SPECT thallium-201 scintigraphy for the detection of left-ventricular aneurysm[J]. J Nucl Med,1987,28(2):168-172.
    18. Yang M F, Dou K F, Jiang X J, et al. Tc-99m sestamibi/F-18 FDG myocardial SPECT in Takayasu arteritis with coronary artery involvement[J]. Clin Nucl Med, 2007,32(9):685-689.
    19. Yang M F, Dou K F, Jiang X J, et al. Tc-99m sestamibi/F-18 FDG myocardial SPECT in Takayasu arteritis with coronary artery involvement [J]. Clin Nucl Med, 2007,32(9):685-689.
    20. Trimble M A, Velazquez E J, Adams G L, et al. Repeatability and reproducibility of phase analysis of gated single-photon emission computed tomography myocardial perfusion imaging used to quantify cardiac dyssynchrony [J]. Nucl Med Commun,2008,29(4):374-381.
    21. Henneman M M, Chen J, Dibbets-Schneider P, et al. Can LV dyssynchrony as assessed with phase analysis on gated myocardial perfusion SPECT predict response to CRT?[J]. J Nucl Med,2007,48(7):1104-1111.
    22. Khandaker M H, Miller T D, Chareonthaitawee P, et al. Stress single photon emission computed tomography for detection of coronary artery disease and risk stratification of asymptomatic patients at moderate risk[J]. J Nucl Cardiol,2009, 16(4):516-523.
    23. Dilsizian V, Bacharach S L, Beanlands R S, et al. PET myocardial perfusion and metabolism clinical imaging [Z].2009:16,651.
    24. Bland J M, Altman D G. A note on the use of the intraclass correlation coefficient in the evaluation of agreement between two methods of measurement[J]. Comput Biol Med,1990,20(5):337-340.
    25. Bland J M, Altman D G. Statistical methods for assessing agreement between two methods of clinical measurement [J]. Lancet,1986,1(8476):307-310.
    26. Li D, Zhou Y, Feng J, et al. Impact of image reconstruction on phase analysis of ECG-gated myocardial perfusion SPECT studies[J]. Nucl Med Commun,2009, 30(9):700-705.
    1.顾东风,黄广勇,何江,等.中国心力衰竭流行病学调查及其患病率[Z].2003:31,3-5.
    2. Guidelines for the evaluation and management of heart failure. Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Evaluation and Management of Heart Failure)[J]. Circulation,1995,92(9):2764-2784.
    3. Zannad F, Briancon S, Juilliere Y, et al. Incidence, clinical and etiologic features, and outcomes of advanced chronic heart failure:the EPICAL Study. Epidemiologie de l'Insuffisance Cardiaque Avancee en Lorraine[J]. J Am Coll Cardiol,1999,33(3): 734-742.
    4. Bozkurt B, Mann D. Dilated cardiomyopathy. Cardiovascular medicine.2007. Section VI[Z].1233-1259.
    5. Richardson P, Mckenna W, Bristow M, et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of cardiomyopathies[J]. Circulation,1996,93(5): 841-842.
    6. Sutton M S, Keane M G. Reverse remodelling in heart failure with cardiac resynchronisation therapy[J]. Heart,2007,93(2):167-171.
    7. Pocock S J, Wang D, Pfeffer M A, et al. Predictors of mortality and morbidity in patients with chronic heart failure[J]. Eur Heart J,2006,27(1):65-75.
    8. Mcmurray J J, Adamopoulos S, Anker S D, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012:The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC[J]. Eur Heart J,2012,33(14):1787-1847.
    9. Cai M, Wang F, Zhang J, et al. Body mass index and rest myocardial perfusion defect predicts cardiac death in patients with chronic heart failure[J]. Int J Cardiovasc Imaging,2012,28 Suppl 1:77-85.
    10. Pazhenkottil A P, Buechel R R, Husmann L, et al. Long-term prognostic value of left ventricular dyssynchrony assessment by phase analysis from myocardial perfusion imaging[J]. Heart,2011,97(1):33-37.
    11. Uebleis C, Hellweger S, Laubender R P, et al. Left ventricular dyssynchrony assessed by gated SPECT phase analysis is an independent predictor of death in patients with advanced coronary artery disease and reduced left ventricular function not undergoing cardiac resynchronization therapy [J]. Eur J Nucl Med Mol Imaging,2012,39(10):1561-1569.
    12. Martin D T, Mcnitt S, Nesto R W, et al. Cardiac resynchronization therapy reduces the risk of cardiac events in patients with diabetes enrolled in the multicenter automatic defibrillator implantation trial with cardiac resynchronization therapy (MADIT-CRT)[J]. Circ Heart Fail,2011,4(3):332-338.
    13. Trimble M A, Velazquez E J, Adams G L, et al. Repeatability and reproducibility of phase analysis of gated single-photon emission computed tomography myocardial perfusion imaging used to quantify cardiac dyssynchrony[J]. Nucl Med Commun,2008,29(4):374-381.
    14. Hunt S A, Abraham W T, Chin M H, et al. ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult:a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure):developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation:endorsed by the Heart Rhythm Society[J]. Circulation,2005, 112(12):el54-e235.
    15. Bax J J, Marwick T H, Molhoek S G, et al. Left ventricular dyssynchrony predicts benefit of cardiac resynchronization therapy in patients with end-stage heart failure before pacemaker implantation[J]. Am J Cardiol,2003,92(10):1238-1240.
    16. Dauphin R, Nonin E, Bontemps L, et al. Quantification of ventricular resynchronization reserve by radionuclide phase analysis in heart failure patients:a prospective long-term study[J]. Circ Cardiovasc Imaging,2011,4(2):114-121.
    17. Aljaroudi W A, Hage F G, Hermann D, et al. Relation of left-ventricular dyssynchrony by phase analysis of gated SPECT images and cardiovascular events in patients with implantable cardiac defibrillators[J]. J Nucl Cardiol,2010,17(3): 398-404.
    18. Bader H, Garrigue S, Lafitte S, et al. Intra-left ventricular electromechanical asynchrony. A new independent predictor of severe cardiac events in heart failure patients[J]. J Am Coll Cardiol,2004,43(2):248-256.
    19. Fauchier L, Marie O, Casset-Senon D, et al. Interventricular and intraventricular dyssynchrony in idiopathic dilated cardiomyopathy:a prognostic study with fourier phase analysis of radionuclide angioscintigraphy[J]. J Am Coll Cardiol,2002, 40(11):2022-2030.
    20. Rouleau F, Merheb M, Geffroy S, et al. Echocardiographic assessment of the interventricular delay of activation and correlation to the QRS width in dilated cardiomyopathy[J]. Pacing Clin Electrophysiol,2001,24(10):1500-1506.
    21. Kashani A, Barold S S. Significance of QRS complex duration in patients with heart failure[J]. J Am Coll Cardiol,2005,46(12):2183-2192.
    22. Penicka M, Bartunek J, De Bruyne B, et al. Improvement of left ventricular function after cardiac resynchronization therapy is predicted by tissue Doppler imaging echocardiography[J]. Circulation,2004,109(8):978-983.
    23. Alonso C, Leclercq C, Victor F, et al. Electrocardiographic predictive factors of long-term clinical improvement with multisite biventricular pacing in advanced heart failure[J]. Am J Cardiol,1999,84(12):1417-1421.
    24. Leclercq C, Cazeau S, Ritter P, et al. A pilot experience with permanent biventricular pacing to treat advanced heart failure[J]. Am Heart J,2000,140(6): 862-870.
    25. Ghio S, Constantin C, Klersy C, et al. Interventricular and intraventricular dyssynchrony are common in heart failure patients, regardless of QRS duration[J]. Eur Heart J,2004,25(7):571-578.
    26. Chung E S, Leon A R, Tavazzi L, et al. Results of the Predictors of Response to CRT (PROSPECT) trial[J]. Circulation,2008,117(20):2608-2616.
    27. Chen J, Garcia E V, Bax J J, et al. SPECT myocardial perfusion imaging for the assessment of left ventricular mechanical dyssynchrony [J]. J Nucl Cardiol, 2011,18(4):685-694.
    28. Chen J, Garcia E V, Folks R D, et al. Onset of left ventricular mechanical contraction as determined by phase analysis of ECG-gated myocardial perfusion SPECT imaging:development of a diagnostic tool for assessment of cardiac mechanical dyssynchrony [J]. J Nucl Cardiol,2005,12(6):687-695.
    29. Trimble M A, Borges-Neto S, Honeycutt E F, et al. Evaluation of mechanical dyssynchrony and myocardial perfusion using phase analysis of gated SPECT imaging in patients with left ventricular dysfunction[J]. J Nucl Cardiol,2008,15(5): 663-670.
    30. Levine G N, Bates E R, Blankenship J C, et al.2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention:a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions [J]. Circulation,2011,124(23):e574-e651.
    31. Hillis L D, Smith P K, Anderson J L, et al.2011 ACCF/AHA Guideline for Coronary Artery Bypass Graft Surgery:a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines[J]. Circulation,2011,124(23):e652-e735.
    32. Cerqueira M D, Weissman N J, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association[J]. Circulation, 2002,105(4):539-542.
    33. Germano G, Kiat H, Kavanagh P B, et al. Automatic quantification of ejection fraction from gated myocardial perfusion SPECT[J]. J Nucl Med,1995,36(11): 2138-2147.
    34. Van Kriekinge S D, Nishina H, Ohba M, et al. Automatic global and regional phase analysis from gated myocardial perfusion SPECT imaging:application to the characterization of ventricular contraction in patients with left bundle branch block[J]. J Nucl Med,2008,49(11):1790-1797.
    35. Trimble M A, Velazquez E J, Adams G L, et al. Repeatability and reproducibility of phase analysis of gated single-photon emission computed tomography myocardial perfusion imaging used to quantify cardiac dyssynchrony[J]. Nucl Med Commun,2008,29(4):374-381.
    36. Henneman M M, Chen J, Dibbets-Schneider P, et al. Can LV dyssynchrony as assessed with phase analysis on gated myocardial perfusion SPECT predict response to CRT?[J]. J Nucl Med,2007,48(7):1104-1111.
    37. Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults:executive summary. Expert Panel on the Identification, Evaluation, and Treatment of Overweight in Adults[J]. Am J Clin Nutr,1998,68(4): 899-917.
    38. Sutton M S, Keane M G. Reverse remodelling in heart failure with cardiac resynchronisation therapy [J]. Heart,2007,93(2):167-171.
    39. Pocock S J, Wang D, Pfeffer M A, et al. Predictors of mortality and morbidity in patients with chronic heart failure[J]. Eur Heart J,2006,27(1):65-75.
    40. Higgins S L, Yong P, Sheck D, et al. Biventricular pacing diminishes the need for implantable cardioverter defibrillator therapy. Ventak CHF Investigators[J]. J Am Coll Cardiol,2000,36(3):824-827.
    41. Ermis C, Seutter R, Zhu A X, et al. Impact of upgrade to cardiac resynchronization therapy on ventricular arrhythmia frequency in patients with implantable cardioverter-defibrillators[J]. J Am Coll Cardiol,2005,46(12):2258-2263.
    42. Field M E, Sweeney M O. Socio-economic analysis of cardiac resynchronization therapy[J]. J Interv Card Electrophysiol,2006,17(3):225-236.
    43. Brenyo A, Zareba W. Prognostic significance of QRS duration and morphology [J]. Cardiol J,2011,18(1):8-17.
    44. Cleland J G, Freemantle N, Daubert J C, et al. Long-term effect of cardiac resynchronisation in patients reporting mild symptoms of heart failure:a report from the CARE-HF study[J]. Heart,2008,94(3):278-283.
    45. Linde C, Abraham W T, Gold M R, et al. Randomized trial of cardiac resynchronization in mildly symptomatic heart failure patients and in asymptomatic patients with left ventricular dysfunction and previous heart failure symptoms [J]. J Am Coll Cardiol,2008,52(23):1834-1843.
    46. Yu C M, Chan Y S, Zhang Q, et al. Benefits of cardiac resynchronization therapy for heart failure patients with narrow QRS complexes and coexisting systolic asynchrony by echocardiography[J]. J Am Coll Cardiol,2006,48(11):2251-2257.
    47. Trimble M A, Borges-Neto S, Velazquez E J, et al. Emerging role of myocardial perfusion imaging to evaluate patients for cardiac resynchronization therapy [J]. Am J Cardiol,2008,102(2):211-217.
    48. Abraham T, Kass D, Tonti G, et al. Imaging cardiac resynchronization therapy[J]. JACC Cardiovasc Imaging,2009,2(4):486-497.
    49. Oyenuga O A, Onishi T, Gorcsan J R. A practical approach to imaging dyssynchrony for cardiac resynchronization therapy [J]. Heart Fail Rev,2011,16(4): 397-410.
    50. Knebel F, Reibis R K, Bondke H J, et al. Tissue Doppler echocardiography and biventricular pacing in heart failure:patient selection, procedural guidance, follow-up, quantification of success[J]. Cardiovasc Ultrasound,2004,2:17.
    51. Borges A C, Kivelitz D, Walde T, et al. Apical tissue tracking echocardiography for characterization of regional left ventricular function:comparison with magnetic resonance imaging in patients after myocardial infarction[J]. J Am Soc Echocardiogr,2003,16(3):254-262.
    52. Rouleau F, Merheb M, Geffroy S, et al. Echocardiographic assessment of the interventricular delay of activation and correlation to the QRS width in dilated cardiomyopathy[J]. Pacing Clin Electrophysiol,2001,24(10):1500-1506.
    53. Kim W Y, Sogaard P, Mortensen P T, et al. Three dimensional echocardiography documents haemodynamic improvement by biventricular pacing in patients with severe heart failure[J]. Heart,2001,85(5):514-520.
    54. Godoy I E, Mor-Avi V, Weinert L, et al. Use of color kinesis for evaluation of left ventricular filling in patients with dilated cardiomyopathy and mitral regurgitation[J]. J Am Coll Cardiol,1998,31(7):1598-1606.
    55. Garrigue S, Jais P, Espil G, et al. Comparison of chronic biventricular pacing between epicardial and endocardial left ventricular stimulation using Doppler tissue imaging in patients with heart failure[J]. Am J Cardiol,2001,88(8):858-862.
    56. Mckee P A, Castelli W P, Mcnamara P M, et al. The natural history of congestive heart failure:the Framingham study[J]. N Engl J Med,1971,285(26):1441-1446.
    57. Fonarow G C, Srikanthan P, Costanzo M R, et al. An obesity paradox in acute heart failure:analysis of body mass index and inhospital mortality for 108,927 patients in the Acute Decompensated Heart Failure National Registry [J]. Am Heart J,2007, 153(1):74-81.
    58. Anker S D, Sharma R. The syndrome of cardiac cachexia[J]. Int J Cardiol,2002, 85(1):51-66.
    59. Aquilani R, Opasich C, Verri M, et al. Is nutritional intake adequate in chronic heart failure patients?[J]. J Am Coll Cardiol,2003,42(7):1218-1223.
    60. Kistorp C, Faber J, Galatius S, et al. Plasma adiponectin, body mass index, and mortality in patients with chronic heart failure[J]. Circulation,2005,112(12): 1756-1762.
    61. Aljaroudi W, Koneru J, Heo J, et al. Impact of ischemia on left ventricular dyssynchrony by phase analysis of gated single photon emission computed tomography myocardial perfusion imaging[J]. J Nucl Cardiol,2011,18(1):36-42.
    1.顾东风,黄广勇,何江,等.中国心力衰竭流行病学调查及其患病率[Z].2003:31,3-5.
    2. Mcmurray J J, Adamopoulos S, Anker S D, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012:The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC[J]. Eur Heart J,2012,33(14):1787-1847.
    3. Hesse B, Lindhardt T B, Acampa W, et al. EANM/ESC guidelines for radionuclide imaging of cardiac function[J]. Eur J Nucl Med Mol Imaging,2008,35(4):851-885.
    4. Mahmarian J J, Shaw L J, Filipchuk N G, et al. A multinational study to establish the value of early adenosine technetium-99m sestamibi myocardial perfusion imaging in identifying a low-risk group for early hospital discharge after acute myocardial infarction[J]. J Am Coll Cardiol,2006,48(12):2448-2457.
    5. Sharir T, Germano G, Kavanagh P B, et al. Incremental prognostic value of post-stress left ventricular ejection fraction and volume by gated myocardial perfusion single photon emission computed tomography [J]. Circulation,1999,100(10):1035-1042.
    6. Wackers F J, Berger H J, Johnstone D E, et al. Multiple gated cardiac blood pool imaging for left ventricular ejection fraction:validation of the technique and assessment of variability [J]. Am J Cardiol,1979,43 (6):1159-1166.
    7. van der Wall E E, Vliegen H W, de Roos A, et al. Magnetic resonance imaging in coronary artery disease[J]. Circulation,1995,92(9):2723-2739.
    8. Starling M R, Crawford M H, Sorensen S G, et al. Comparative accuracy of apical biplane cross-sectional echocardiography and gated equilibrium radionuclide angiography for estimating left ventricular size and performance[J]. Circulation,1981,63(5):1075-1084.
    9. Wang F, Zhang J, Fang W, et al. Evaluation of left ventricular volumes and ejection fraction by gated SPECT and cardiac MRI in patients with dilated cardiomyopathy[J]. Eur J Nucl Med Mol Imaging,2009,36(10):1611-1621.
    10. Iskandrian A E, Germano G, Vandecker W, et al. Validation of left ventricular volume measurements by gated SPECT 99mTc-labeled sestamibi imaging[J]. J Nucl Cardiol,1998,5(6):574-578.
    11. Schaefer W M, Lipke C S, Standke D, et al. Quantification of left ventricular volumes and ejection fraction from gated 99mTc-MIBI SPECT:MRI validation and comparison of the Emory Cardiac Tool Box with QGS and 4D-MSPECT[J]. J Nucl Med,2005,46(8):1256-1263.
    12.刘秀杰.充分发挥门控心肌断层显像的临床优势[Z].2002:22,261-262.
    13. Faber T L, Vansant J P, Pettigrew R I, et al. Evaluation of left ventricular endocardial volumes and ejection fractions computed from gated perfusion SPECT with magnetic resonance imaging:comparison of two methods[J]. J Nucl Cardiol,2001,8(6): 645-651.
    14. Germano G, Kiat H, Kavanagh P B, et al. Automatic quantification of ejection fraction from gated myocardial perfusion SPECT[J]. J Nucl Med,1995,36(11):2138-2147.
    15. Gaemperli O, Kaufmann P A. PET and PET/CT in cardiovascular disease[J]. Ann N Y Acad Sci,2011,1228:109-136.
    16. Kostkiewicz M. New techniques in diagnostic imaging--PET-CT for the imaging of cardiovascular disease [J]. Przegl Lek,2012,69(2):80-81.
    17. Moon J C, Lorenz C H, Francis J M, et al. Breath-hold FLASH and FISP cardiovascular MR imaging:left ventricular volume differences and reproducibility[J]. Radiology,2002,223(3):789-797.
    18. Sandstede J, Lipke C, Beer M, et al. Age- and gender-specific differences in left and right ventricular cardiac function and mass determined by cine magnetic resonance imaging[J]. Eur Radiol,2000,10(3):438-442.
    19. Dulce M C, Mostbeck G H, Friese K K, et al. Quantification of the left ventricular volumes and function with cine MR imaging:comparison of geometric models with three-dimensional data[J]. Radiology,1993,188(2):371-376.
    20. Schaefer W M, Lipke C S, Nowak B, et al. Validation of an evaluation routine for left ventricular volumes, ejection fraction and wall motion from gated cardiac FDG PET: a comparison with cardiac magnetic resonance imaging [J]. Eur J Nucl Med Mol Imaging,2003,30(4):545-553.
    21. Schaefer W M, Lipke C S, Nowak B, et al. Validation of QGS and 4D-MSPECT for quantification of left ventricular volumes and ejection fraction from gated 18F-FDG PET:comparison with cardiac MRI[J]. J Nucl Med,2004,45(1):74-79.
    22. Slart R H, Bax J J, de Jong R M, et al. Comparison of gated PET with MRI for evaluation of left ventricular function in patients with coronary artery disease [J]. J Nucl Med,2004,45(2):176-182.
    23. Mcmurray J J, Adamopoulos S, Anker S D, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012:The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC[J]. Eur J Heart Fail,2012,14(8):803-869.
    24. Dilsizian V, Bacharach S L, Beanlands R S, et al. PET myocardial perfusion and metabolism clinical imaging[Z].2009:16,651.
    25. Wang F, Zhang J, Fang W, et al. Evaluation of left ventricular volumes and ejection fraction by gated SPECT and cardiac MRI in patients with dilated cardiomyopathy[J]. Eur J Nucl Med Mol Imaging,2009,36(10):1611-1621.
    26. Carr J C, Simonetti O, Bundy J, et al. Cine MR angiography of the heart with segmented true fast imaging with steady-state precession[J]. Radiology,2001,219(3):828-834.
    27. Kramer C M, Barkhausen J, Flamm S D, et al. Standardized cardiovascular magnetic resonance imaging (CMR) protocols, society for cardiovascular magnetic resonance: board of trustees task force on standardized protocols[J]. J Cardiovasc Magn Reson,2008,10:35.
    28. Dulce M C, Mostbeck G H, Friese K K, et al. Quantification of the left ventricular volumes and function with cine MR imaging:comparison of geometric models with three-dimensional data[J]. Radiology,1993,188(2):371-376.
    29. Bland J M, Altman D G. Statistical methods for assessing agreement between two methods of clinical measurement[J]. Lancet,1986,1(8476):307-310.
    30. Kumita S, Cho K, Nakajo H, et al. Assessment of left ventricular diastolic function with electrocardiography-gated myocardial perfusion SPECT:comparison with multigated equilibrium radionuclide angiography [J]. J Nucl Cardiol,2001,8(5):568-574.
    31. Okazawa H, Takahashi M, Hata T, et al. Quantitative evaluation of myocardial blood flow and ejection fraction with a single dose of (13)NH(3) and Gated PET[J]. J Nucl Med,2002,43(8):999-1005.
    32. White H D, Norris R M, Brown M A, et al. Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction[J]. Circulation,1987,76(1):44-51.
    33. Yamaguchi A, Ino T, Adachi H, et al. Left ventricular volume predicts postoperative course in patients with ischemic cardiomyopathy[J]. Ann Thorac Surg,1998,65(2): 434-438.
    34. Ioannidis J P, Trikalinos T A, Danias P G. Electrocardiogram-gated single-photon emission computed tomography versus cardiac magnetic resonance imaging for the assessment of left ventricular volumes and ejection fraction:a meta-analysis[J]. J Am Coll Cardiol,2002,39(12):2059-2068.
    35. Khorsand A, Graf S, Eidherr H, et al. Gated cardiac 13N-NH3 PET for assessment of left ventricular volumes, mass, and ejection fraction:comparison with electrocardiography-gated 18F-FDG PET[J]. J Nucl Med,2005,46(12):2009-2013.
    36. Chander A, Brenner M, Lautamaki R, et al. Comparison of measures of left ventricular function from electrocardiographically gated 82Rb PET with contrast-enhanced CT ventriculography:a hybrid PET/CT analysis [J]. J Nucl Med,2008,49(10):1643-1650.
    37. Germano G, Kiat H, Kavanagh P B, et al. Automatic quantification of ejection fraction from gated myocardial perfusion SPECT[J]. J Nucl Med,1995,36(11): 2138-2147.
    [1]顾东风,黄广勇,何江,等.中国心力衰竭流行病学调查及其患病率[Z].2003:31,3-5.
    [2]陈在嘉,高润霖.冠心病[Z].北京:人民卫生出版社,2005.
    [3]Richardson P, Mckenna W, Bristow M, et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of cardiomyopathies[J]. Circulation,1996,93(5):841-842.
    [4]Schmidt M, Voth E, Schneider C A, et al. F-18-FDG uptake is a reliable predictory of functional recovery of akinetic but viable infarct regions as defined by magnetic resonance imaging before and after revascularization[J]. Magn Reson Imaging,2004,22(2):229-236.
    [5]张晓丽,刘秀杰,吴请玉.18F-FDG PET显像对冠心病左心功能受损患者的预后价值[Z].中华核医学杂志,2000:20,145-148.
    [6]Bax J J, Visser F C, Poldermans D, et al. Relationship between preoperative viability and postoperative improvement in LVEF and heart failure symptoms[J]. J Nucl Med,2001,42(1):79-86.
    [7]Gerber B L, Ordoubadi F F, Wijns W, et al. Positron emission tomography using(18)F-fluoro-deoxyglucose and euglycaemic hyperinsulinaemic glucose clamp:optimal criteria for the prediction of recovery of post-ischaemic left ventricular dysfunction. Results from the European Community Concerted Action Multicenter study on use of(18)F-fluoro-deoxyglucose Positron Emission Tomography for the Detection of Myocardial Viability [J]. Eur Heart J,2001,22(18):1691-1701.
    [8]Cleland J G, Calvert M, Freemantle N, et al. The Heart Failure Revascularisation Trial (HEART)[J]. Eur J Heart Fail,2011,13(2):227-233.
    [9]Bonow R O, Maurer G, Lee K L, et al. Myocardial viability and survival in ischemic left ventricular dysfunction[J]. N Engl J Med,2011,364(17):1617-1625.
    [10]刘秀杰.充分发挥门控心肌断层显像的临床优势[Z].2002:22,261-262.
    [11]Mahmarian J J, Shaw L J, Filipchuk N G, et al. A multinational study to establish the value of early adenosine technetium-99m sestamibi myocardial perfusion imaging in identifying a low-risk group for early hospital discharge after acute myocardial infarction[J]. J Am Coll Cardiol,2006,48(12):2448-2457.
    [12]Hesse B, Lindhardt T B, Acampa W, et al. EANM/ESC guidelines for radionuclide imaging of cardiac function[J]. Eur J Nucl Med Mol Imaging,2008,35(4):851-885.
    [13]Uebleis C, Hellweger S, Laubender R P, et al. Left ventricular dyssynchrony assessed by gated SPECT phase analysis is an independent predictor of death in patients with advanced coronary artery disease and reduced left ventricular function not undergoing cardiac resynchronization therapy [J]. Eur J Nucl Med Mol Imaging,2012,39(10):1561-1569.
    [14]Schaefer W M, Lipke C S, Nowak B, et al. Validation of an evaluation routine for left ventricular volumes, ejection fraction and wall motion from gated cardiac FDG PET:a comparison with cardiac magnetic resonance imaging[J]. Eur J Nucl Med Mol Imaging,2003,30(4):545-553.
    [15]Schaefer W M, Lipke C S, Nowak B, et al. Validation of QGS and 4D-MSPECT for quantification of left ventricular volumes and ejection fraction from gated 18F-FDG PET:comparison with cardiac MRI[J]. J Nucl Med,2004,45(1):74-79.
    [16]Slart R H, Bax J J, de Jong R M, et al. Comparison of gated PET with MRI for evaluation of left ventricular function in patients with coronary artery disease [J]. J Nucl Med,2004,45(2):176-182.
    [17]Lee P W, Zhang Q, Yip G W, et al. Left ventricular systolic and diastolic dyssynchrony in coronary artery disease with preserved ejection fraction[J]. Clin Sci (Lond),2009,116(6):521-529.
    [18]Cha Y M, Rea R F, Wang M, et al. Response to cardiac resynchronization therapy predicts survival in heart failure:a single-center experience [J]. J Cardiovasc Electrophysiol,2007,18(10):1015-1019.
    [19]Abraham W T, Fisher W G, Smith A L, et al. Cardiac resynchronization in chronic heart failure[J]. N Engl J Med,2002,346(24):1845-1853.
    [20]Bax J J, Abraham T, Barold S S, et al. Cardiac resynchronization therapy:Part 1--issues before device implantation [J]. J Am Coll Cardiol,2005,46(12): 2153-2167.
    [21]Singh J P, Heist E K, Ruskin J N, et al. "Dialing-in" cardiac resynchronization therapy:overcoming constraints of the coronary venous anatomy [J]. J Interv Card Electrophysiol,2006,17(1):51-58.
    [22]Ypenburg C, Schalij M J, Bleeker G B, et al. Impact of viability and scar tissue on response to cardiac resynchronization therapy in ischaemic heart failure patients[J]. Eur Heart J,2007,28(1):33-41.
    [23]Bax J J, Bleeker G B, Marwick T H, et al. Left ventricular dyssynchrony predicts response and prognosis after cardiac resynchronization therapy [J]. J Am Coll Cardiol,2004,44(9):1834-1840.
    [24]Cooke C D, Esteves F P, Chen J, et al. Left ventricular mechanical synchrony from stress and rest 82Rb PET myocardial perfusion ECG-gated studies:differentiating normal from LBBB patients[J]. J Nucl Cardiol,2011,18(6):1076-1085.
    [25]Pazhenkottil A P, Buechel R R, Nkoulou R, et al. Left ventricular dyssynchrony assessment by phase analysis from gated PET-FDG scans[J]. J Nucl Cardiol,2011,18(5):920-925.
    [26]Tennant R, Wiggers C J. The effect of coronary occlusion on myocardial contractions[Z].1935:112,351-361.
    [27]Depre C, Vatner S F. Cardioprotection in stunned and hibernating myocardium[J]. Heart Fail Rev,2007,12(3-4):307-317.
    [28]Depre C, Vatner S F. Mechanisms of cell survival in myocardial hibernation[J]. Trends Cardiovasc Med,2005,15(3):101-110.
    [29]Depre C, Kim S J, John A S, et al. Program of cell survival underlying human and experimental hibernating myocardium[J]. Circ Res,2004,95(4):433-440.
    [30]Camici P G, Rimoldi O E. Myocardial blood flow in patients with hibernating myocardium[J]. Cardiovasc Res,2003,57(2):302-311.
    [31]马寄晓,刘秀杰,何作祥.实用临床核医学[M].第三版.中国原子能出版社,2012.95-110.
    [32]王跃涛,刘德峰.存活心肌的影像学评价及比较[J].中国介入影像与治疗学,2009,6(5):473-476.
    [33]Rahimtoola S H, Dilsizian V, Kramer C M, et al. Chronic ischemic left ventricular dysfunction:from pathophysiology to imaging and its integration into clinical practice[J]. JACC Cardiovasc Imaging,2008,1(4):536-555.
    [34]Maddahi J, Schelbert H, Brunken R, et al. Role of thallium-201 and PET imaging in evaluation of myocardial viability and management of patients with coronary artery disease and left ventricular dysfunction[J]. J Nucl Med,1994,35(4):707-715.
    [35]Sawada S G, Allman K C, Muzik O, et al. Positron emission tomography detects evidence of viability in rest technetium-99m sestamibi defects[J]. J Am Coll Cardiol,1994,23(1):92-98.
    [36]Pagano D, Bonser R S, Townend J N, et al. Predictive value of dobutamine echocardiography and positron emission tomography in identifying hibernating myocardium in patients with postischaemic heart failure[J]. Heart,1998,79(3):281-288.
    [37]Bax J J, van der Wall E E, Harbinson M. Radionuclide techniques for the assessment of myocardial viability and hibernation[J]. Heart,2004,90 Suppl 5:v26-v33.
    [38]Partington S L, Kwong R Y, Dorbala S. Multimodality imaging in the assessment of myocardial viability[J]. Heart Fail Rev,2011,16(4):381-395.
    [39]Schelbert H R, Beanlands R, Bengel F, et al. PET myocardial perfusion and glucose metabolism imaging:Part 2-Guidelines for interpretation and reporting[J]. J Nucl Cardiol,2003,10(5):557-571.
    [40]Dilsizian V, Bacharach S L, Beanlands R S, et al. ASNC imaging guidelines for nuclear cardiology procedures:PET myocardial perfusion and metabolism clinical imaging[Z].2009:16.
    [41]Schelbert H R, Beanlands R, Bengel F, et al. PET myocardial perfusion and glucose metabolism imaging:Part 2-Guidelines for interpretation and reporting[J]. J Nucl Cardiol,2003,10(5):557-571,
    [42]Allman K C, Shaw L J, Hachamovitch R, et al. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction:a meta-analysis[J]. J Am Coll Cardiol,2002,39(7): 1151-1158.
    [43]Lloyd-Jones D, Adams R J, Brown T M, et al. Heart disease and stroke statistics--2010 update:a report from the American Heart Association[J]. Circulation,2010,121 (7):e46-e215.
    [44]Felker G M, Shaw L K, O'Connor C M. A standardized definition of ischemic cardiomyopathy for use in clinical research[J]. J Am Coll Cardiol,2002,39(2): 210-218.
    [45]Bax J J, Maddahi J, Poldermans D, et al. Preoperative comparison of different noninvasive strategies for predicting improvement in left ventricular function after coronary artery bypass grafting[J]. Am J Cardiol,2003,92(1):1-4.
    [46]Peovska I, Maksimovic J, Vavlukis M, et al. Relationship between myocardial viability and improvement in left ventricular function and heart failure symptoms after coronary artery bypass surgery[J]. Prilozi,2007,28(1):97-112.
    [47]Peovska I, Maksimovic J, Vavlukis M, et al. Functional outcome and quality of life after coronary artery bypass surgery in patients with severe heart failure and hibernated myocardium[J]. Nucl Med Commun,2008,29(3):215-221.
    [48]Underwood S R, Bax J J, Vom D J, et al. Imaging techniques for the assessment of myocardial hibernation. Report of a Study Group of the European Society of Cardiology [J]. Eur Heart J,2004,25(10):815-836.
    [49]Baker D W, Jones R, Hodges J, et al. Management of heart failure. III. The role of revascularization in the treatment of patients with moderate or severe left ventricular systolic dysfunction[J]. JAMA,1994,272(19):1528-1534.
    [50]Velazquez E J, Lee K L, O'Connor C M, et al. The rationale and design of the Surgical Treatment for Ischemic Heart Failure (STICH) trial [J]. J Thorac Cardiovasc Surg,2007,134(6):1540-1547.
    [51]Fang J C. Underestimating medical therapy for coronary disease... again[J]. N Engl J Med,2011,364(17):1671-1673.
    [52]Di Carli M F, Davidson M, Little R, et al. Value of metabolic imaging with positron emission tomography for evaluating prognosis in patients with coronary artery disease and left ventricular dysfunction[J]. Am J Cardiol,1994,73(8):527-533.
    [53]Beanlands R S, Nichol G, Huszti E, et al. F-18-fluorodeoxyglucose positron emission tomography imaging-assisted management of patients with severe left ventricular dysfunction and suspected coronary disease:a randomized, controlled trial (PARR-2)[J]. J Am Coll Cardiol,2007,50(20):2002-2012.
    [54]Kim R J, Wu E, Rafael A, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction[J]. N Engl J Med,2000,343(20):1445-1453.
    [55]Wellnhofer E, Olariu A, Klein C, et al. Magnetic resonance low-dose dobutamine test is superior to SCAR quantification for the prediction of functional recovery [J]. Circulation,2004,109(18):2172-2174.
    [56]Sawada S G, Dasgupta S, Nguyen J, et al. Effect of revascularization on long-term survival in patients with ischemic left ventricular dysfunction and a wide range of viability [J]. Am J Cardiol,2010,106(2):187-192.
    [57]Hage F G, Venkataraman R, Aljaroudi W, et al. The impact of viability assessment using myocardial perfusion imaging on patient management and outcome[J]. J Nucl Cardiol,2010,17(3):378-389.
    [58]Liao L, Cabell C H, Jollis J G, et al. Usefulness of myocardial viability or ischemia in predicting long-term survival for patients with severe left ventricular dysfunction undergoing revascularization[J]. Am J Cardiol,2004,93(10): 1275-1279.
    [59]Meluzin J, Cerny J, Spinarova L, et al. Prognosis of patients with chronic coronary artery disease and severe left ventricular dysfunction. The importance of myocardial viability[J]. Eur J Heart Fail,2003,5(1):85-93.
    [60]Petrasinovic Z, Ostojic M, Beleslin B, et al. Prognostic value of myocardial viability determined by a 201T1 SPECT study in patients with previous myocardial infarction and mild-to-moderate myocardial dysfunction[J]. Nucl Med Commun,2003,24(2):175-181.
    [61]Sicari R, Picano E, Cortigiani L, et al. Prognostic value of myocardial viability recognized by low-dose dobutamine echocardiography in chronic ischemic left ventricular dysfunction[J]. Am J Cardiol,2003,92(11):1263-1266.
    [62]He Z X, Yang M F, Liu X J, et al. Association of myocardial viability on nitrate-augmented technetium-99m hexakis-2-methoxylisobutyl isonitrile myocardial tomography and intermediate-term outcome in patients with prior myocardial infarction and left ventricular dysfunction[J]. Am J Cardiol,2003,92(6):696-699.
    [63]Podio V, Spinnler M T, Bertuccio G, et al. Prognosis of hibernating myocardium is independent of recovery of function:evidence from a routine based follow-up study[J]. Nucl Med Commun,2002,23(10):933-942.
    [64]Senior R, Kaul S, Raval U, et al. Impact of revascularization and myocardial viability determined by nitrate-enhanced Tc-99m sestamibi and Tl-201 imaging on mortality and functional outcome in ischemic cardiomyopathy[J]. J Nucl Cardiol,2002,9(5):454-462.
    [65]Douglas P S, Taylor A, Bild D, et al. Outcomes research in cardiovascular imaging: report of a workshop sponsored by the National Heart, Lung, and Blood Institute[J]. JACC Cardiovasc Imaging,2009,2(7):897-907.
    [66]Samady H, Elefteriades J A, Abbott B G, et al. Failure to improve left ventricular function after coronary revascularization for ischemic cardiomyopathy is not associated with worse outcome[J]. Circulation,1999,100(12):1298-1304.
    [67]Hundley W G, Bluemke D A, Finn J P, et al. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance:a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents[J]. Circulation,2010,121(22):2462-2508.
    [68]Gerber B L, Garot J, Bluemke D A, et al. Accuracy of contrast-enhanced magnetic resonance imaging in predicting improvement of regional myocardial function in patients after acute myocardial infarction[J]. Circulation,2002,106(9):1083-1089.
    [69]Saeed M, Lund G, Wendland M F, et al. Magnetic resonance characterization of the peri-infarction zone of reperfused myocardial infarction with necrosis-specific and extracellular nonspecific contrast media[J]. Circulation,2001,103(6):871-876.
    [70]Oshinski J N, Yang Z, Jones J R, et al. Imaging time after Gd-DTPA injection is critical in using delayed enhancement to determine infarct size accurately with magnetic resonance imaging[J]. Circulation,2001,104(23):2838-2842.
    [71]Kim R J, Lima J A, Chen E L, et al. Fast 23Na magnetic resonance imaging of acute reperfused myocardial infarction. Potential to assess myocardial viability [J]. Circulation,1997,95(7):1877-1885.
    [72]Rehwald W G, Fieno D S, Chen E L, et al. Myocardial magnetic resonance imaging contrast agent concentrations after reversible and irreversible ischemic injury[J]. Circulation,2002,105(2):224-229.
    [73]Wagner A, Mahrholdt H, Holly T A, et al. Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts:an imaging study[J]. Lancet,2003,361(9355):374-379.
    [74]Ibrahim T, Bulow H P, Hackl T, et al. Diagnostic value of contrast-enhanced magnetic resonance imaging and single-photon emission computed tomography for detection of myocardial necrosis early after acute myocardial infarction[J]. J Am Coll Cardiol,2007,49(2):208-216.
    [75]Choi K M, Kim R J, Gubernikoff G, et al. Transmural extent of acute myocardial infarction predicts long-term improvement in contractile function[J]. Circulation,2001,104(10):1101-1107.
    [76]Zamorano J, Delgado J, Almeria C, et al. Reason for discrepancies in identifying myocardial viability by thallium-201 redistribution, magnetic resonance imaging, and dobutamine echocardiography[J]. Am J Cardiol,2002,90(5):455-459.
    [77]Kitagawa K, Sakuma H, Hirano T, et al. Acute myocardial infarction:myocardial viability assessment in patients early thereafter comparison of contrast-enhanced MR imaging with resting (201)T1 SPECT. Single photon emission computed tomography[J]. Radiology,2003,226(1):138-144.
    [78]Klein C, Nekolla S G, Bengel F M, et al. Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging:comparison with positron emission tomography [J]. Circulation,2002,105(2):162-167.
    [79]Wang L, Zhu H Y, Tian J M, et al. Magnetic resonance imaging in determination of myocardial ischemia and viability:comparison with positron emission tomography and single-photon emission computed tomography in a porcine model[J]. Acta Radiol,2007,48(5):500-507.
    [80]Kuhl H P, Lipke C S, Krombach G A, et al. Assessment of reversible myocardial dysfunction in chronic ischaemic heart disease:comparison of contrast-enhanced cardiovascular magnetic resonance and a combined positron emission tomography-single photon emission computed tomography imaging protocol [J]. Eur Heart J,2006,27(7):846-853.
    [81]Baks T, van Geuns R J, Biagini E, et al. Recovery of left ventricular function after primary angioplasty for acute myocardial infarction[J]. Eur Heart J,2005,26(11):1070-1077.
    [82]Nijveldt R, Hofman M B, Hirsch A, et al. Assessment of microvascular obstruction and prediction of short-term remodeling after acute myocardial infarction:cardiac MR imaging study[J]. Radiology,2009,250(2):363-370.
    [83]Wackers F J, Berger H J, Johnstone D E, et al. Multiple gated cardiac blood pool imaging for left ventricular ejection fraction:validation of the technique and assessment of variability [J]. Am J Cardiol,1979,43(6):1159-1166.
    [84]van der Wall E E, Vliegen H W, de Roos A, et al. Magnetic resonance imaging in coronary artery disease[J]. Circulation,1995,92(9):2723-2739.
    [85]Starling M R, Crawford M H, Sorensen S G, et al. Comparative accuracy of apical biplane cross-sectional echocardiography and gated equilibrium radionuclide angiography for estimating left ventricular size and performance[J]. Circulation,1981,63(5):1075-1084.
    [86]Wang F, Zhang J, Fang W, et al. Evaluation of left ventricular volumes and ejection fraction by gated SPECT and cardiac MRI in patients with dilated cardiomyopathy[J]. Eur J Nucl Med Mol Imaging,2009,36(10):1611-1621.
    [87]Iskandrian A E, Germano G, Vandecker W, et al. Validation of left ventricular volume measurements by gated SPECT 99mTc-labeled sestamibi imaging [J]. J Nucl Cardiol,1998,5(6):574-578.
    [88]Ioannidis J P, Trikalinos T A, Danias P G. Electrocardiogram-gated single-photon emission computed tomography versus cardiac magnetic resonance imaging for the assessment of left ventricular volumes and ejection fraction:a meta-analysis[J]. J Am Coll Cardiol,2002,39(12):2059-2068.
    [89]Schaefer W M, Lipke C S, Standke D, et al. Quantification of left ventricular volumes and ejection fraction from gated 99mTc-MIBI SPECT:MRI validation and comparison of the Emory Cardiac Tool Box with QGS and 4D-MSPECT[J]. J Nucl Med,2005,46(8):1256-1263.
    [90]Gaemperli O, Kaufmann P A. PET and PET/CT in cardiovascular disease[J]. Ann N Y Acad Sci,2011,1228:109-136.
    [91]Kostkiewicz M. New techniques in diagnostic imaging--PET-CT for the imaging of cardiovascular disease[J]. Przegl Lek,2012,69(2):80-81.
    [92]Khorsand A, Graf S, Eidherr H, et al. Gated cardiac 13N-NH3 PET for assessment of left ventricular volumes, mass, and ejection fraction:comparison with electrocardiography-gated 18F-FDG PET[J]. J Nucl Med,2005,46(12):2009-2013.
    [93]Chander A, Brenner M, Lautamaki R, et al. Comparison of measures of left ventricular function from electrocardiographically gated 82Rb PET with contrast-enhanced CT ventriculography:a hybrid PET/CT analysis[J]. J Nucl Med,2008,49(10):1643-1650.
    [94]Moon J C, Lorenz C H, Francis J M, et al. Breath-hold FLASH and FISP cardiovascular MR imaging:left ventricular volume differences and reproducibility[J]. Radiology,2002,223(3):789-797.
    [95]Sandstede J, Lipke C, Beer M, et al. Age- and gender-specific differences in left and right ventricular cardiac function and mass determined by cine magnetic resonance imaging[J]. Eur Radiol,2000,10(3):438-442.
    [96]Dulce M C, Mostbeck G H, Friese K K, et al. Quantification of the left ventricular volumes and function with cine MR imaging:comparison of geometric models with three-dimensional data[J]. Radiology,1993,188(2):371-376.
    [97]Kumita S, Cho K, Nakajo H, et al. Assessment of left ventricular diastolic function with electrocardiography-gated myocardial perfusion SPECT:comparison with multigated equilibrium radionuclide angiography[J]. J Nucl Cardiol,2001,8(5):568-574.
    [98]Mcmurray J J, Adamopoulos S, Anker S D, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012:The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC[J]. Eur Heart J,2012,33(14):1787-1847.
    [99]Chen J, Garcia E V, Folks R D, et al. Onset of left ventricular mechanical contraction as determined by phase analysis of ECG-gated myocardial perfusion SPECT imaging:development of a diagnostic tool for assessment of cardiac mechanical dyssynchrony[J]. J Nucl Cardiol,2005,12(6):687-695.
    [100]Trimble M A, Borges-Neto S, Honeycutt E F, et al. Evaluation of mechanical dyssynchrony and myocardial perfusion using phase analysis of gated SPECT imaging in patients with left ventricular dysfunction[J]. J Nucl Cardiol,2008,15(5):663-670.
    [101]Chen J, Boogers M J, Bax J J, et al. The use of nuclear imaging for cardiac resynchronization therapy[J]. Curr Cardiol Rep,2010,12(2):185-191.
    [102]Chen J, Garcia E V, Bax J J, et al. SPECT myocardial perfusion imaging for the assessment of left ventricular mechanical dyssynchrony[J]. J Nucl Cardiol,2011,18(4):685-694.
    [103]Trimble M A, Borges-Neto S, Honeycutt E F, et al. Evaluation of mechanical dyssynchrony and myocardial perfusion using phase analysis of gated SPECT imaging in patients with left ventricular dysfunction[J]. J Nucl Cardiol,2008,15(5):663-670.
    [104]Wang L, Wei H X, Yang M F, et al. Phase analysis by gated F-18 FDG PET/CT for left ventricular dyssynchrony assessment:a comparison with gated Tc-99m sestamibi SPECT[J]. Ann Nucl Med,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700