放射性肝损伤的发病机制及防治策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原发性肝癌(PLC)是常见恶性肿瘤,尽管根治手术切除和肝移植仍为肝癌获得根治的主要途径,但80%患者明确诊断后即失去根治手术机会。越来越多确凿临床数据表明肝癌是放射敏感肿瘤。放射性肝损伤(RILD)是继发于肝脏放疗后并发的最严重、制约剂量递增的致死性并发症。肝脏是仅次于骨髓、淋巴组织的放射敏感器官,然而体外肝实质细胞却是放射抵抗细胞,很难用“经典的靶细胞理论”解释。前期研究中已经证实肝实质细胞微环境包括非实质细胞、放疗后产生的细胞因子级联效应参与肝脏放射损伤发生、发展,即放疗后的非靶向性效应(Non-target effect)在RILD中发挥重要作用。辐射诱导基因调控下多条信号传导途径进行细胞内及细胞间的信息传递,形成庞大调控网络,但它们之间的相互关系及调控模式仍不清楚。大量文献支持肝脏非实质细胞是放射敏感细胞,放疗后释放大量细胞因子是放射诱导非靶向性效应的关键因素。已经证实转化生长因子-β(TGF-p)在放射性肝损伤显著活化且高表达,TGF-β信号通路与RILD密切相关,但其确切作用机制仍然不清楚,本研究将在前面研究的基础上通过构建携带目的基因的重组腺病毒基因治疗阻断TGF-β信号通路或抑制Kupffer细胞,研究放射诱导的非靶向性效应与肝脏放射损伤的关系,从全新角度探索RILD分子机制及防控策略。
     第一部分应用AdMax系统构建TβIIR-IgFc融合基因重组腺病毒
     目的:应用AdMax系统构建携带Ⅱ型TGFβ受体(TβIIR)IgFc融合基因重组腺病毒,为进一步研究放射性肝纤维化干预打下基础。
     材料和方法:针对TβIIR设计引物,PCR目的基因TβI IR构建PDC316-TβIIR:针对工gFc设计引物,PCR目的基因IgFc,连入PDC316-T p IIR构建PDC316-TβIIR-IgFc;双质粒共转染293细胞,同源重组产生重组腺病毒,AdMax腺病毒包装系统由骨架质粒:pBHGl ox-E1,3Cre和穿梭质粒:pDC316-2501组成。使用LipOfectam lne2000法转染293细胞包装携带目的融合基因的重组腺病毒,少量提取重组腺病毒DNA检测证实为复制缺陷型TβIIR-IgFc基因重组腺病毒后大量扩增、生产、纯化及鉴定。
     结果:PCR扩增TβRII基因,酶切连接到pDC316-cmv-EGFP空载体,提取质粒酶切鉴定电泳检测正确;PCR扩增IgFC基因,酶切、连接PDC316-TβRII载体,再提取质粒,根据PDC316载体序列设计引物,PCR琼脂糖凝胶电泳与预期的目的基因片段一致,测序鉴定正确。双质粒共转染293细胞,转染后第9天出毒而在光学显微镜下观察出毒现象表现为细胞变大变圆,呈“葡萄串”样形态学特征,并开始出现明显噬斑。转染后第14天待细胞大部分病变并从底部脱落进行收毒,证明有感染能力病毒颗粒包装成功。重组腺病毒经RT-PCR扩增后,产物电泳观察出现一条特异性预期条带,证明该重组腺病毒携带目的基因。测得扩增后病毒滴度为2.6×1012pfu/m1。
     结论:应用AdMax系统可方便、快捷地构建携带目融合基因的复制缺陷型重组腺病毒。
     第二部分抑制TGF-β信号转导通路有效减轻大鼠放射性肝纤维化
     目的:本研究拟通过携带可溶性TβIIR的复制缺陷性重组腺病毒(AdTβRIIFc)选择性阻断TGF-β信号转导通路治疗晚期放射性损伤,明确TGF-β在放射性肝纤维化(RILF)发展中作用机制,进一步探索RILF的治疗策略。
     方法:RILF大鼠模型采用上腹部全肝30Gy单次照射,放疗后活过6个月的大鼠肝脏都出现晚期纤维化表现。随机分成4组,第1组模型组(RILFM);第2组携带目的基因重组腺病毒基因治疗组:腹腔注射1X1011 PFU AdTβRIIFc;第3组空病毒对照组,腹腔注射相同剂量和滴度的对照病毒;第4组生理盐水对照组,腹腔注射等体积的生理盐水(SALINE).
     结果:抑制TGF-β信号转导通路有效抑制放射性诱导肝星状细胞(HSC)活化、胶原蛋白-1(Col-I)和纤维粘连接蛋白(Fibronectin, FN)表达;阻断TGF-β信号转导通路可以减轻RILF阶段慢性氧化应急(Chronic Oxidative Stress, COS) DNA损伤。另外,抗TGF-β治疗可以有效释放TGF-β对肝细胞生长抑制效应,提高肝细胞代偿能力,有效缓解RILF对肝脏功能损伤。
     结论:TGF-β信号转导通路在RILF的形成和发展中发挥重要作用,阻断TGF-β信号转导通路有效缓解RILF。
     第三部分抑制肝脏Kupffer细胞减轻放射诱导肝脏细胞凋亡
     目的:通过放疗前三氯化钆抑制库痞细胞(KCs),全肝照射检测其对放射诱导肝脏凋亡保护作用,研究抑制KCs对放射性肝损伤的防护作用,从非实质细胞和实质细胞相互作用全新角度探索放射性肝脏损伤RILD)的发病机制和防护策略。
     材料和方法:Sprague-Dawley大鼠放疗前24小时腹腔注射三氯化钆(GdC1310 mg/kg体重)清除肝内KCs。大鼠随机分为4组:第1组假照射腹腔注射生理盐水;第2组假照射腹腔注射GdCl3;第3组腹腔注射生理盐水全肝照射;第4组腹腔注射GdCl3全肝照射。腹腔注射GdCl3后不同时间点通过KCs特异性免疫抗原CD-163(ED2)免疫组织化学染色检测肝脏KCs数量,确认GdCl3对肝内KCs细胞的抑制作用。放疗后不同时点全麻下去肝脏及血清标本,检测凋亡相关细胞因子TNF-α、IL-6及IL-1β基因和蛋白表达情况。通过肝细胞和肝内皮细胞凋亡、肝细胞微核技数评估放射诱导肝脏凋亡,进一步通过肝脏组织病理学和血清酶学改变评估肝脏损伤程度。
     结果:腹腔注射GdCl3对肝脏没有明显毒副作用,CD163 (ED2)是肝内KCs细胞的标记物,GdCl3注射后门脉周围ED2阳性KCs细胞数0,2,6,24和48小时分别是正常情况下11.8%±4.5%,11.5%±2.5%,12.5%±4.2%,9.5%±4.8%和12.5%±4.1%;小叶中心区域分别为7.9%±3.1%,8.2%±3.4%,9.3%±2.4%,8.0%±1.4%和9.5%±1.9%。第3组放疗后肝内凋亡细胞开始增多,6小时肝内凋亡细胞数达到高峰,第4组凋亡细胞数在放疗后各个时间点都显著低于第3组。通过双标记技术显示放疗后6小时肝窦内皮细胞凋亡细胞,第4组显著低于第3组。微核技术是反映射线对染色体损伤简单而有效的方法,30Gy照射组肝细胞微核数达到19.8%±5.5%,GdCl 3腹腔注射后减少到7.9%±2.6%。通过肝脏酶学和组织病理学分析都同样显示GdCl3抑制KCs细胞对放射性肝损伤的显著保护作用。抑制KCs后放射性肝损伤相关的细胞因子TNF-α, IL-6及IL-1B的基因及蛋白的表达都显著抑制。
     结论:选择性抑制Kupffer细胞可以显著抑制放射诱导肝脏损伤相关因子的表达减轻放射肝损伤。
Primary liver cancer (PLC) is a common malignant tumor, although radical surgical resection and liver transplantation are still the main way to cure,80%of patients missed opportunity to radical surgery after diagnosis. More and more conclusive clinical data supported that the PLC is a radiosensitive tumor. Radiaiton induced liver disease(RILD) is mainly fatal complications secondary to radiotherapy. The liver is a radiation sensitive organ in vivo similar to bone marrow, lymphoid tissues, however, hepatocytes are radiation resistance in vitro. It is difficult to explain using the "classical targeted cells theory". Previous studies have confirmed that intraheptic microenvironment, including non-parenchymal cells and released cytokines play the pivotal role in pathogenesis of RILD, which is called radiation induced non-targeted effect. Radiation-induced multiple intracellular signaling pathways activation contribute to information transfer between cells form a large regulatory networks, but the relationship between them and the control model is still unclear. Literatures support nonparenchymal cells are radiation sensitive cells and released large amounts of cytokines after radiotherapy. It has been confirmed that transforming growth factor-p (TGF-β) is closely related with the RILD, but the exact mechanism remains unclear. This study concentrated on radiation-induced non-targeted effects through inhibiting TGF-βsignaling or Kupffer cells in the pathogenesis of RILD.Try to explore the molecular mechanism and prevention strategies of RILD from a new perspective.
     Part I:Construction of recombinant adenovirus carrying the human soluble TβRII-Fc fusion gene using the AdMax system
     Purpose: To construct the adenovirus vector encoding the sequence of the type II TGF-βreceptor (TβRII) fused to the human immunoglobulin Fc fragment (IgFC).
     Methods:Human TβRII fusion gene were amplified by reverse transcriptase -polymerase chain reaction (RT-PCR). TβRII gene was cloned into pDC316-cmv-EGFP vector. Primers designing and PCR amplification for IgFC. Ligation for the PCR product and PDC316-TPRII to obtain PDC316-TβRII-IgFC. The positive plasmids are confirmed by complete sequencing. All gene sequences were confirmed by PCR verification, restriction digestion and sequencing.The PDC316-TβRII-IgFC plasmid was cotransfected with adenoviral backbone vectors pBHGlox_E1,3Cre into 293 cells to package therecombinant adenovirus. Extracted viral genomic DNA followed PCR verification the target gene. Product and purify virion, then schizolysis the purified viruses with 10×virus lysate buffer.
     Results:Recombinant adenoviral vector Ad TβRIIFC was constructed successfully, which was confirmed by restriction ellzyme digestion and GFP expression. Conclusion:The recombinant adenoviral vector carrying human TβRII-FC fusion gene was successfully constructed, and will be lay the foundation of application of gene therapy to radiation induced liver fibrosis.
     Part II:Radiation-Induced Liver Fibrosis is mitigated by gene therapy inhibiting transforming Growth Factor-βSignaling in the Rat
     Purpose:We determined whether anti-TGF-βintervention can halt the progression of established radiation-induced liver fibrosis.
     Methods:A replication-defective adenoviral vector expressing the extracellular portion of human TβRII and the Fc portion of immunoglobulin IgG fusion protein (AdTβRIIFc) was produced. The entire liver was exposed to 30 Gy irradiation to generate a RILF model (RILFM). Then, RILFM animals were treated with AdTβRIIFc (1×1011 PFU, TβRII), control virus (1×1011 PFU, AdGFP), or saline (SALIN). Delayed radiation liver injury was assessed by histology and immunohistochemistry. Chronic oxidative stress damage, hepatic stellate cell (HSC) activation, and hepatocyte regeneration were also analyzed.
     Results:In rats infected with AdTβRIIFc, fibrosis was significantly mitigated compared with rats treated with AdGFP or saline, as assessed by histology, hydroxyproline content, and the serum level of hyaluronic acid. Compared with AdGFP rats, AdTβRIIFc-treated rats exhibited decreased oxidative stress damage and HSC activation, and preserved liver function.
     Conclusions:Our results demonstrate that TGF-βplays a critical role in the progression of liver fibrosis and suggest that anti-TGF-βintervention is feasible and ameliorates established fibrotic livers. In addition, chronic oxidative stress may be involved in the progression of RILF.
     Part III:Inactivation of kupffer cells by Gadolinium Chloride protects murine liver from radiation-induced apoptosis.
     Purpose:To determine whether the inhibition of Kupffer cells before radiotherapy (RT) would protect hepatocytesfrom radiation-induced apoptosis.
     Materials and Methods:A single 30-Gy fraction was administered to the upper abdomen of Sprague-Dawley rats.The Kupffer cell inhibitor gadolinium chloride (GdC13; 10 mg/kg body weight) was intravenously injected 24 h before RT. The rats were divided into four groups:group 1, sham RT plus saline (control group); group 2, sham RT plus GdC13; group 3, RT plus saline; and group 4, RT plus GdC13. Liver tissue was collected for measurementof apoptoic cytokine expression and evaluation of radiation-induced liver toxicity by analysis of liver enzyme activities, hepatocyte micronucleus formation, apoptosis, and histologic staining.
     Results:The expression of interleukin-lb, interleukin-6, and tumor necrosis factor-a was significantly attenuated in group 4 compared with group 3 at 2,6,24, and 48 h after injection (p<0.05). At early points after RT, the rats in group 4 exhibited significantly lower levels of liver enzyme activity, apoptotic response, and hepatocyte micronucleus formation compared with those in group 3.
     Conclusion:Selective inactivation of Kupffer cells with GdC13 reduced radiation-induced cytokine production andprotected the liver against acute radiation-induced damage.
引文
1. Andarawewa KL, Paupert J, Pal A, Barcellos-Hoff MH. New rationales for using TGFbeta inhibitors in radiotherapy [J]. Int J Radiat Biol.2007;83(11-12):803-11.
    2. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signaling[J]. Nature.2003,425(6958):577-84.
    3. Anscher MS, Crocker IR, Jirtle RL. Transforming growth factor-beta 1 expression in irradiated liver[J]. Radiat Res 1990;122:77-85.
    4. Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K. Two major Smad pathways in TGF-beta superfamily signaling[J].Genes Cells.2002, 7(12):1191-204.
    5. Schultze-Mosgau S, Wehrhan F et al:Transforming growth factor-beta receptor-Ⅱ up-regulation during wound healing in previously irradiated graft beds in vivo[J].Wound Repair Regen.2003,11(4):297-305.
    6. Lusky M.Good manufacturing practice production of adenoviral vectors for clinical trials[J]. Hum Gene Ther.2005,16(3):281-91.
    7. Peroni CN, Gout PW, Bartolini P. Animal models for growth hormone gene therapy[J].Curr Gene Ther.2005,5(5):493-509.
    8. Shiratsuchi T, Rai U, Krause A, Worgall S, Tsuji M.Replacing adenoviral vector HVR1 with a malaria B cell epitope improves immunogenicity and circumvents preexisting immunity to adenovirus in mice[J].J Clin Invest.2010,doi:10.1172/ JCI39812
    9. DiMenna L, Latimer B, Parzych E,e t al. C.Augmentation of primary influenza A virus-specific CD8+T cell responses in aged mice through blockade of an immunoinhibitory pathway[J]. J Immunol.2010 May 15;184(10):5475-84.
    10. Hogg RT, Garcia JA, Gerard RD. Adenoviral targeting of gene expression to tumors[J].Cancer Gene Ther.2010,17(6):375-86.
    11.Nasz I, Adam E. New developments and trends in adenovirus research[J]. Orv Hetil 1997;138:2711-2724
    12. Kochanek S. High-capacity adenoviral vectors for gene transfer and somatic gene therapy[J]. Hum Gene Ther 1999;10:2451-2459
    13. Thomas CE, Schiedner G, Kochanek S, Castro MG, Lowenstein PR. Peripheral infection with adenovirus causes unexpected long-term brain inflammation in animals injected intracranially with first-generation, but not with high-capacity, adenovirus vectors:toward realistic long-term neurological gene therapy for chronic diseases[J]. Proc Natl Acad Sci USA 2000;97:7482-7487
    14. Zheng BJ, Graham FL, Prevec L. Transcription units of Ela, Elb and pIX regions of bovine adenovirus type 3. J Gen Virol 1999;80(Pt 7):1735-1742
    15. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B. A simplified system for generating recombinant adenoviruses[J]. Proc Natl Acad Sci USA 1998;95:2509-2514
    16. Graham FL. Adenovirus vectors for high-efficiency gene transfer into mammalian cells[J]. Immunol Today 2000;21:426-428
    17. Ng P, Parks RJ, Cummings DT, Evelegh CM, Graham FL. An enhanced system for construction of adenoviral vectors by the two-plasmid rescue method[J]. Hum Gene Ther 2000;11:693-699
    18. Ng P, Parks RJ, Cummings DT, Evelegh CM, Sankar U.A high-efficiency Cre/loxP-based system for construction of adenoviral vectors [J]. Hum Gene Ther.1999,10(16):2667-72.
    19. Maeda M, Namikawa K, Kobayashi I, et al. Targeted gene therapy toward astrocytoma using a Cre/loxP-based adenovirus system[J]. Brain Res, 2006,1081(1):34-43.
    20. Maeda Y, Kimura E, Uchida Y, et al.Cre/loxP-mediated adenovirus type 5 packaging signal excision demonstrates that core element VI is sufficient for virus packaging[J]. Virology,2003,309(2):330-338.
    21.Barnett BG, Crews CJ, Douglas JT. Targeted adenoviral vectors[J]. Biochim Biophys Acta 2002;1575:1-14
    22. Garcia-Banuelos J, Siller-Lopez F, Miranda A, Aguilar LK, Aguilar-Cordova E, Armendariz-Borunda J. Cirrhotic rat livers with extensive fibrosis can be safely transduced with clinical-grade adenoviral vectors[J]. Evidence of cirrhosis reversion. Gene Ther 2002;9:127-134
    23. Connelly S. Adenoviral vectors for liver-directed gene therapy[J]. Curr Opin Mol Ther 1999;1:565-572
    24. Nakatani T, Kuriyama S, Tominaga K, Tsujimoto T, Mitoro A, Yamazaki M, Tsujinoue H, Yoshiji H, Nagao S, Fukui H. Assessment of efficiency and safety of adenovirus mediated gene transfer into normal and damaged murine livers[J]. Gut 2000;47:563-570
    25. Haiping Z, Takayama K et al:Prevention of radiation-induced pneumonitis by recombinant adenovirus-mediated transferring of soluble TGF-beta type Ⅱ receptor gene[J]. Cancer Gene Ther.2006 Sep; 13(9):864-72..
    26. Nishioka A, Ogawa Y, et al:Histopathologic amelioration of Fibroproli-ferative change in rat irradiated lung using soluble transforming growthactor-beta (TGF-beta) receptor mediated by adenoviral vector[J]. Int J Radiat Oncol Biol Phys.2004,15; 58(4):1235-41.
    27. Rabbani ZN, Anscher MS, et al:Soluble TGFbeta type Ⅱ receptor genetherapy ameliorates acute radiation-induced pulmonary injury in rats[J]. Int J Radiat Oncol Biol Phys.2003 Oct 1; 57(2):563-72.
    28. Huaien Zheng, Junru Wang, Victor E. Koteliansky, Philip J. Gotwals and Martin Hauer-Jensen. Recombinant Soluble Transforming Growth Factor β Type Ⅱ Receptor Ameliorates Radiation Enteropathy in Mice[J]. Gastroenterology 2000 Nov; 19 (5):1286-1296.
    1. Fickert P, Stoger U, Fuchsbichler A, et al. A new xenobiotic-induced mouse model of sclerosing cholangitis and biliary fibrosis[J]. Am J Pathol 2007;171:525-536.
    2. Lee IJ, Seong J, Shim SJ, et al. Radiotherapeutic parameters predictive of liver complications induced by liver tumor radiotherapy[J]. Int J Radiat Oncol Biol Phys 2009;73:154-158.
    3. Lawrence TS, Robertson JM, Anscher MS, et al. Hepatic toxicity resulting from cancer treatment[J]. Int J Radiat Oncol Biol Phys 1995;31:1237-1248.
    4. Hill RP, Rodemann HP, Hendry JH, et al. Normal tissue radiobiology:from the laboratory to the clinic[J]. Int J Radiat Oncol Biol Phys 2001;49:353-365.
    5. Stone HB, McBride WH, Coleman CN. Modifying normal tissue damage postirradiation. Report of a workshop sponsored by the Radiation Research Program[J], National Cancer Institute, Bethesda, Maryland, September 6-8,2000. Radiat Res 2002;157:204-223.
    6. Coleman CN, Blakely WF, Fike JR, et al. Molecular and cellular biology of moderate-dose (1-10 Gy) radiation and potential mechanisms of radiation protection:report of a workshop at Bethesda, Maryland, December 17-18,2001[J]. Radiat Res 2003;159:812-834.
    7. Rubin P CG. Clinical radiation pathology as applied to curative radiotherapy [J]. Cancer. Vol 22; 1968. pp.767-778.
    8. Withers HR PL, Kogelnik HS. The pathobiology of late effects in irradiation. In: Meyn RE, Withers HR, editors. Radiation biology in cancer research[M]. New York:Raven Press 1980:439-448
    9. Denham JW, Hauer-Jensen M. The radiotherapeutic injury--a complex 'wound'[J]. Radiother Oncol 2002;63:129-145.
    10. Stone HB, Moulder JE, Coleman CN, et al. Models for evaluating agents intended for the prophylaxis, mitigation and treatment of radiation injuries. Report of an NCI Workshop, December 3-4,2003. [J] Radiat Res 2004;162:711-728.
    11. Stone HB, Coleman CN, Anscher MS, et al. Effects of radiation on normal tissue: consequences and mechanisms[J]. Lancet Oncol 2003;4:529-536.
    12. Andarawewa KL PJ, Pal A, Barcellos-Hoff MH. New rationales for using TGFβ inhibitors in radiotherapy[J]. Int J Radiat Biol 2007;83:803-811.
    13. Clarke DC LX. Decoding the quantitative nature of TGF-beta/Smad signaling[J]. Trends Cell Biol 2008;18:430-442.
    14. Anscher MS, Crocker IR, Jirtle RL. Transforming growth factor-beta 1 expression in irradiated liver[J]. Radiat Res 1990;122:77-85.
    15. Carmona-Cuenca I, Roncero C, Sancho P, et al. Upregulation of the NADPH oxidase NOX4 by TGF-beta in hepatocytes is required for its pro-apoptotic activity[J]. J Hepatol 2008;49:965-976.
    16. Robbins ME ZW. Chronic oxidative stress and radiation-induced late normal tissue injury: a review[J]. Int J Radiat Biol 2004;80:251-159.
    17. Haiping Z, Takayama K, Uchino J, et al. Prevention of radiation-induced pneumonitis by recombinant adenovirus-mediated transferring of soluble TGF-beta type II receptor gene[J]. Cancer Gene Ther 2006;13:864-872.
    18. Seong J, Kim SH, Chung EJ, et al. Early alteration in TGF-beta mRNA expression in irradiated rat liver[J]. Int J Radiat Oncol Biol Phys 2000;46:639-643.
    19. Zhen H JW, Victor E et al. Recombinant Soluble Transforming Growth Factor (3 Type Ⅱ Receptor Ameliorates Radiation Enteropathy in Mice[J]. Gastroenterology 2000;119:1286-1296.
    20. de Visser KE, Kast WM. Effects of TGF-beta on the immune system: implications for cancer immunotherapy[J]. Leukemia 1999;13:1188-1199.
    21. Bergman I, Loxley R. The determination of hydroxyproline in urine hydrolysate[J]. Clin Chim Acta 1970;27:347-349.
    22. Parsons CJ, Bradford BU, Pan CQ, et al. Antifibrotic effects of a tissue inhibitor of metalloproteinase-1 antibody on established liver fibrosis in rats[J]. Hepatology 2004;40:1106-1115.
    23. Geraci JP, Mariano MS. Radiation hepatology of the rat:association of the production of prostacyclin with radiation-induced hepatic fibrosis[J]. Radiat Res 1996;145:93-97.
    24. Geraci JP, Mariano MS, Jackson KL. Radiation hepatology of the rat: time-dependent recovery[J]. Radiat Res 1993;136:214-221.
    25.彭瑞云,王德文,徐在海等。放射性肝纤维化的免疫组织化学研究.中华放射医学及防护[J].1994;14(4),242-245。
    26. Weber MS, Prod'homme T, Youssef S, et al. Type Ⅱ monocytes modulate T cell-mediated central nervous system autoimmune disease[J]. Nat Med 2007;13:935-943.
    27. Ashcroft GS YX, Glick A, Weinstein M, Letterio JJ, Mizel DE,, Anzano M G-WT, Wahl SM, Deng C, Roberts AB. Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory resonse[J]. Nat Cell Biol 1999;1:260-266.
    28. Zhao W, Robbins ME. Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury:therapeutic implications[J]. Curr Med Chem 2009;16:130-143.
    29. Giaid A, Lehnert SM, Chehayeb B, et al. Inducible nitric oxide synthase and nitrotyrosine in mice with radiation-induced lung damage[J]. Am J Clin Oncol 2003;26:e67-72.
    30. Ramanan S, Kooshki M, Zhao W, et al. PPARalpha ligands inhibit radiation-induced microglial inflammatory responses by negatively regulating NF-kappaB and AP-1 pathways[J]. Free Radic Biol Med 2008;45:1695-1704.
    31. Zhao T, Bokoch GM. Critical role of proline-rich tyrosine kinase 2 in reversion of the adhesion-mediated suppression of reactive oxygen species generation by human neutrophils[J]. J Immunol 2005;174:8049-8055.
    32. Cohen EP, Hussain S, Moulder JE. Successful treatment of radiation nephropathy with angiotensin Ⅱ blockade[J]. Int J Radiat Oncol Biol Phys 2003;55:190-193.
    33. Frank J, Pompella A, Biesalski HK. Histochemical visualization of oxidant stress[J]. Free Radic Biol Med 2000;29:1096-1105.
    34. Molteni A, Moulder JE, Cohen EP, et al. Prevention of radiation-induced nephropathy and fibrosis in a model of bone marrow transplant by an angiotensin II receptor blocker[J]. Exp Biol Med (Maywood) 2001;226:1016-1023.
    35. Molteni A, Moulder JE, Cohen EF, et al. Control of radiation-induced pneumopathy and lung fibrosis by angiotensin-converting enzyme inhibitors and an angiotensin II type 1 receptor blocker[J]. Int J Radiat Biol 2000;76:523-532.
    36. Salvemini D, Riley DP, Cuzzocrea S. SOD mimetics are coming of age[J]. Nat Rev Drug Discov 2002;1:367-374.
    37. Andarawewa KL, Paupert J, Pal A, Barcellos-Hoff MH. New rationales for using TGFbeta inhibitors in radiotherapy[J]. Int J Radiat Biol.2007;83(11-12):803-11.
    38. Wiegman EM, Blaese MA, Loeffler H, Coppes RP, Rodemann HP.TGFbeta-1 dependent fast stimulation of ATM and p53 phosphorylation following exposure to ionizing radiation does not involve TGFbeta-receptor I signalling[J]. Radiother Oncol.2007,83(3):289-95.
    39. Kirshner J, Jobling MF, Pajares MJ, Ravani SA, Glick AB, Lavin MJ, Koslov S, Shiloh Y, Barcellos-Hoff MH.Inhibition of transforming growth factor-betal signaling attenuates ataxia telangiectasia mutated activity in response to genotoxic stress[J]. Cancer Res.2006;66(22):10861-9.
    40. Fransvea E, Mazzocca A, Antonaci S, Giannelli G. Targeting transforming growth factor (TGF)-betaRI inhibits activation of betal integrin and blocks vascular invasion in hepatocellular carcinoma[J]. Hepatology.2009.49(3):839-50.
    41. Mazzocca A, Fransvea E, Lavezzari G, Antonaci S, Giannelli G.. nhibition of transforming growth factor beta receptor I kinase blocks hepatocellular carcinoma growth through neo-angiogenesis regulation[J]. Hepatology.2009,50(4):1140-51.
    42. Suzuki E, Kapoor V, Cheung HK, Ling LE, DeLong PA, Kaiser LR, Albelda SM. Soluble type Ⅱ transforming growth factor-beta receptor inhibits established murine malignant mesothelioma tumor growth by augmenting host antitumor immunity[J]. Clin Cancer Res.2004,10(17):5907-18.
    43. Shi-Suo Du, Min Qiang, Zhao-Chong Zeng et al. Radiation-Induced Liver Fibrosis Is Mitigated by Gene Therapy Against Transforming Growth Factor-(3 Signaling in th eRat[J]. Int. J. Radiation Oncology Biol. Phys. DOI:10.1016/j.ijrobp.2010.06.046.(本研究的结果)
    1. Lawrence TS, Robertson JM, Anscher MS et al. Hepatic toxicity resulting from cancer treatment. Int J Radiat Oncol Biol Phys[J] 1995;31(5):1237-1248.
    2. Khozouz RF, Huq SZ, Perry MC. Radiation-induced liver disease[J]. J Clin Oncol 2008;26(29):4844-4845.
    3. Terashima M, Ogawa Y, Hamada N et al. Development of apoptosis induced by whole-body irradiation in murine liver. [J] Nippon Igaku Hoshasen Gakkai Zasshi 1995;55(9):700-702.
    4. Roberts RA, Ganey PE, Ju C et al. Role of the Kupffer cell in mediating hepatic toxicity and carcinogenesis[J]. Toxicol Sci 2007;96(1):2-15.
    5. Christiansen H, Saile B, Neubauer-Saile K et al. Irradiation leads to susceptibility of hepatocytes to TNF-alpha mediated apoptosis[J]. Radiother Oncol 2004;72(3):291-296.
    6. Iwamoto KS, McBride WH. Production of 13-hydroxyoctadecadienoic acid and tumor necrosis factor-alpha by murine peritoneal macrophages in response to irradiation[J]. Radiat Res 1994;139(1):103-108.
    7. Thornton SC, Walsh BJ, Bennett S et al. Both in vitro and in vivo irradiation are associated with induction of macrophage-derived fibroblast growth factors[J]. Clin Exp Immunol 1996;103(1):67-73.
    8. Fedorocko P, Egyed A, Vacek A. Irradiation induces increased production of haemopoietic and proinflammatory cytokines in the mouse lung[J]. Int J Radiat Biol 2002;78(4):305-313.
    9. Linard C, Marquette C, Mathieu J et al. Acute induction of inflammatory cytokine expression after gamma-irradiation in the rat:effect of an NF-kappaB inhibitor. Int J Radiat Oncol Biol Phys 2004;58(2):427-434.
    10. Geraci JP, Mariano MS. Radiation hepatology of the rat:parenchymal and nonparenchymal cell injury. Radiat Res 1993;136(2):205-213.
    11. Gehring S, Dickson EM, San MM et al. Kupffer cells abrogate cholestatic liver injury in mice. Gastroenterology 2006;130(3):810-822.
    12. Ramadori G, Armbrust T. Cytokines in the liver. Eur J Gastroenterol Hepatol 2001;13(7):777-784.
    13. Kumagai K, Kiyosawa N, Ito K et al. Influence of Kupffer cell inactivation on cycloheximide-induced hepatic injury. Toxicology 2007;241(3):106-118.
    14. Nakashima H, Kinoshita M, Nakashima M et al. Superoxide produced by Kupffer cells is an essential effector in concanavalin A-induced hepatitis in mice. Hepatology 2008;48(6):1979-1988.
    15. Symon Z, Levi M, Ensminger WD et al. Selective radioprotection of hepatocytes by systemic and portal vein infusions of amifostine in a rat liver tumor model. Int J Radiat Oncol Biol Phys 2001;50(2):473-478.
    16. Huang XW, Yang J, Dragovic AF et al. Antisense oligonucleotide inhibition of tumor necrosis factor receptor 1 protects the liver from radiation-induced apoptosis. Clin Cancer Res 2006;12(9):2849-2855.
    17. Zimmerman HJ. Hepatotoxicity. Dis Mon 1993;39(10):675-787.
    18. Alati T, Van Cleeff M, Strom SC, Jirtle RL. Radiation sensitivity of adult human parenchymal hepatocytes. Radiat Res 1988;115(1):152-160.
    19. Jirtle RL, DeLuca PM, Hinshaw WM, Gould MN. Survival of parenchymal hepatocytes irradiated with 14.3 MeV neutrons. Int J Radiat Oncol Biol Phys 1984;10(6):895-899.
    20. Hoek JB, Pastorino JG. Ethanol, oxidative stress, and cytokine-induced liver cell injury. Alcohol 2002;27(1):63-68.
    21. Neubauer K, Saile B, Ramadori G. Liver fibrosis and altered matrix synthesis. Can J Gastroenterol 2001;15(3):187-193.
    22. Liang L, Hu D, Liu W et al. Celecoxib reduces skin damage after radiation: selective reduction of chemokine and receptor mRNA expression in irradiated skin but not in irradiated mammary tumor[J]. Am J Clin Oncol 2003;26(4):114-121.
    23. Fedorocko P, Egyed A, Vacek A. Irradiation induces increased production of haemopoietic and proinflammatory cytokines in the mouse lung[J]. Int J Radiat Biol 2002;78(4):305-313.
    24. Linard C, Marquette C, Mathieu J et al. Acute induction of inflammatory cytokine expression after gamma-irradiation in the rat:effect of an NF-kappa B inhibitor[J]. Int J Radiat Oncol Biol Phys 2004;58(2):427-434.
    25. Haire WD. Multiple organ dysfunction syndrome in hematopoietic stem cell transplantation[J]. Crit Care Med 2002;30(5 Suppl):257-262.
    26. Christiansen H, Sheikh N, Saile B et al. x-Irradiation in rat liver:consequent upregulation of hepcidin and downregulation of hemojuvelin and ferroportin-1 gene expression[J]. Radiology 2007;242(1):189-197.
    27. Bradshaw G, Gutierrez A, Miyake JH et al. Facilitated replacement of Kupffer cells expressing a paraoxonase-1 transgene is essential for ameliorating atherosclerosis in mice[J]. Proc Natl Acad Sci U S A 2005;102(31):11029-11034.
    28. Soory M. Hormone mediation of immune responses in the progression of diabetes, rheumatoid arthritis and periodontal diseases[J]. Curr Drug Targets Immune Endocr Metabol Disord 2002;2(1):13-25.
    29. Streetz K, Leifeld L, Grundmann D et al. Tumor necrosis factor alpha in the pathogenesis of human and murine fulminant hepatic failure[J]. Gastroenterology 2000;119(2):446-460.
    30. Rudiger HA, Clavien PA. Tumor necrosis factor alpha, but not Fas, mediates hepatocellular apoptosis in the murine ischemic liver[J]. Gastroenterology 2002;122(1):202-210.
    31. Epperly M, Bray J, Kraeger S et al. Prevention of late effects of irradiation lung damage by manganese superoxide dismutase gene therapy[J]. Gene Ther 1998;5(2):196-208.
    32. Epperly MW, Guo HL, Jefferson M et al. Cell phenotype specific kinetics of expression of intratracheally injected manganese superoxide dismutase-plasmid/liposomes (MnSOD-PL) during lung radioprotective gene therapy[J]. Gene Ther 2003;10(2):163-171.
    33. Epperly MW, Gretton JA, DeFilippi SJ et al. Modulation of radiation-induced cytokine elevation associated with esophagitis and esophageal stricture by manganese superoxide dismutase-plasmid/liposome (SOD2-PL) gene therapy[J]. Radiat Res 2001;155(1 Pt 1):2-14.
    34. Guo H, Jr Seixas-Silva JA, Epperly MW et al. Prevention of radiation-induced oral cavity mucositis by plasmid/liposome delivery of the human manganese superoxide dismutase (SOD2) transgene[J]. Radiat Res 2003;159(3):361-370.
    35. Epperly MW, Sikora CA, DeFilippi SJ et al. Manganese superoxide dismutase (SOD2) inhibits radiation-induced apoptosis by stabilization of the mitochondrial membrane[J]. Radiat Res 2002;157(5):568-577.(5):568-577.
    36. Geraci JP, Mariano MS, Jackson KL (1993) Radiation hepatology of the rat: time-dependent recovery[J]. Radiat Res 136:214-221
    37. Alati T, Van CM, Strom SC, Jirtle RL Radiation sensitivity of adult human parenchymal hepatocytes[J]. Radiat Res 1988; 115:152-160.
    38. Hageman J, Eggen BJ, Rozema T, Damman K, Kampinga HH, Coppes RP.Radiation and transforming growth factor-beta cooperate in transcriptional activation of the profibrotic plasminogen activator inhibitor-1 gene[J]. Clin Cancer Res.2005.15;11(16):5956-64
    39. Hans Christiansena,Bernhard Saileb,Katrin Neubauer-Saile et al. Irradiation leads to susceptibility of hepatocytes to TNF-a mediated apoptosis[J]. Radiotherapy and Oncology 2004.72;291-296
    40. Shisuo Du, Zhao-chong Zeng et al. Regenerative capacity of normal and irradiated liver following partialhepatectomy in rats[J], Int. J. Radiat. Biol., 2009.85:1114-1125(我们研究结果)
    41. Tello K, Christiansen H, Gurleyen H, et al. Irradiation leads to apoptosis of Kupffer cells by a Hsp27-dependant pathway followed by release of TNF-alpha[J]. Radiat Environ Biophys.2008.47(3):389-97.
    42. Huang XW, Yang J, Dragovic AF, et al. Antisense oligonucleotide inhibition of tumor necrosis factor receptor 1 protects the liver from radiation-induced apoptosis[J]. Clin Cancer Res.2006.12(9):2849-55.
    43. Shi-suo Du, Min Qiang,Zhao-chong Zeng.et al. Inactivation of Kupffer Cells by GdC13 Protects the Murine Liver from Radiation-induced Apoptosis[J]. Int J Radiat Oncol Biol Phys.2010.76(4):1225-1234. (本课题论文发表文章)
    1. Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics. CA Cancer J Clin 2005.55:74-108.
    2. Cormier JN, Thomas KT, Chari RS. et al. Management of hepatocellular carcinoma., J Gastro intest Surg.2006 10:761-80.
    3. Krishnan S, Dawson LA, Seong J et al. Radiotherapy for hepatocellular carcinoma: an overview Ann Surg Oncol.2008.15:1015-24.
    4. Hawkins MA, Dawson LA. Radiation therapy for hepatocellular carcinoma:from palliation to cure. Cancer.2006.106:1653-63.
    5. James F. Pingpank Jr. Therapy for unresectable hepatocelluar carcinoma :Time for XRT. Cancer J 2004.10.1015-24.
    6. Dawson LA, Lawrence TS. The role of radiotherapy in the treatment of liver metastases.Cancer J.2004 10:139-44.
    7. Fajardo LF, Colby TV. Pathogenesis of veno-occlusive liver disease after radiation. Arch Pathol Lab Med.1980.104:584-8.
    8. Lawrence TS, Robertson JM et al:Hepatic toxicity resulting from cancer treatment. Int J Radiat Oncol Biol Phys.199531:1237-48.
    9. Radwan F. Khozouz, Syed Z. Huq. Radiation-Induced Liver Disease. Journal of Clinical Oncology.2008.26.4844-4845.
    10. Dawson LA, Normolle D et al. Analysis of radiation-induced liver disease using the Lyman NTCP model. Int J Radiat Oncol Biol Phys.2002.53:810-21.
    11. Xu ZY, Liang SX, Zhu J, Zhu XD et al. Prediction of radiation-induced liver disease by Lyman normal-tissue complication probability model in three-dimensional conformal radiation therapy for primary liver carcinoma. Int J Radiat Oncol Biol Phys.2006.65:189-95.
    12.Kim TH, Kim DY, Park JW, et al. Dose-volumetric parameters predicting radiation-induced hepatic toxicity in unresectable hepatocellular carcinoma patients treated with three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys.2006.67:225-31.
    13. Williams, J. R, Zhang, Y., Russell, J.et al. Human tumor cells segregate into radiosensitivity groupsthat associate with ATM and TP53 status. Acta Oncologica. 2007.46,628-638.
    14. Chen, Y., Williams, J., Ding, I. et al. Radiation pneumonitis and early circulatorycytokine markers. Seminars in Radiation Oncology,200212:26-33.
    15.Andreassen, C. N., Alsner, J., Overgaard, M. et al. Risk of radiation-induced subcutaneous fibrosis in relation to single nucleotide polymorphisms in TGFB1,SOD2, XRCC1, XRCC3, APEX and ATM-A study based on DNA from formalin fixed paraffin embedded tissue samples. International Journal of Radiation Biology,2006.82,577-586.
    16.Paul Okunieff, Yuhchyau Chen, David J. et al. Molecular markers of radiation-related normal tissue toxicity. Cancer Metastasis Rev 2008.27:363-374
    17. Rubin, P., Johnston, C. J., Williams, J. et al. A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis. International Journal of Radiation Oncology, Biology, Physics,1995.33,99-109.
    18.Marchetti, F, Coleman, M. A., Jones, I. M. et al. Candidate protein biodosimeters of human exposure toionizing radiation. International Journal of Radiation Biology,2006.82,605-639.
    19. Lin RX, Zhao HB, Li CR,et al. Proteomic analysis of ionizing radiation-induced proteins at the subcellular level.J Proteome Res.20098:390-9.
    20.Menard, C, Johann, D, Lowenthal, M., et al. Discovering clinical biomarkers of ionizing radiation exposure with serum proteomic analysis. Cancer Research, 2006.66,1844-1850.
    21.Cynthia Me'nard, Donald Johann,Mark Lowenthal, et al. Discovering Clinical Biomarkers of Ionizing Radiation Exposure with Serum Proteomic Analysis. Cancer Res 2006;66:243-248.
    22.Quarmby, S, West, C., Magee, B., Stewart, A., Hunter, R., Kumar, S. Differential expression of cytokine genes infibroblasts derived from skin biopsies of patients who developed minimal or severe normal tissue damage after radiotherapy. Radiation Research,2002.157:243-248.
    23.Rieger, K. E., Hong, W. J., Tusher, V. G., Tang, J., Tibshirani, R., Chu, G. Toxicity from radiation therapy associated with abnormal transcriptional responses to DNA damage. Proceedings of the National Academy of Sciences of the United States of America,2004;101:6635-6640.
    24.Mayo, M. S., Gajewski, B. J., & Morris, J. S.. Some statistical issues in microarray gene expression data. Radiation Research,2006;165:745-748.
    25.Vaupel, P., Kallinowski, F., & Okunieff, P.. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors:A review. Cancer Research,1989;49:6449-6465.
    26. Cheng JC, Wu JK, Lee PC, et al. Biologic susceptibility of hepatocellular carcinoma patients treated with radiotherapy to radiation-induced liver disease. Int J Radiat Oncol BiolPhys.2004;60:1502-1509.
    27.Trotti A, Byhardt R, Stetz J, et al. Common Toxicity Criteria,version 2.0:An improved reference for grading the acute effects of cancer treatment-Impact on radiotherapy. Int JRadiat Oncol Biol Phys 2000:47:13-47.
    1. Trotti A,Byhardt R,stetz J,et al. Common Toxicity Criterria:version 2.0 An improved reference for grading the acute effects of cancer treatment:impact on radiotherapy. Int J Badiat Oncol Bid Pbys.2000,47:13-47.
    2. Geraci JP, Mariano MS. Radiation hepatology of the rat: parenchymal and nonparenchymal cell injury. Radiat Res.1993,36:205-13.
    3. Du SS, Qiang M, Zeng ZC. et al. Radiation-induced liver Fibrosis Is Mitigated byGene Therapy Against Transforming Growth Factor-β Signaling in the Rat. Int. J Radiat Oncol Biol Phys DOI:10.1016/j.ijrobp.2010.06.046.Inpress online.
    4. 曾昭冲.肝脏放疗应采取何种分割剂量?中华放射肿瘤学杂志2006,4:347.
    5. Liang SX, Zhu XD, Xu ZY, et al. Radiation-induced liver disease in three-dimensional conformal radiation therapy for primary liver carcinoma: the risk factors and hepatic radiation tolerance. Int J Radiat Oncol Biol Phys 2006,65: 426-434.
    6. Du SS, Zeng ZC, Tang ZY, et al. Regenerative capacity of normal and irradiated liver following partial hepatectomy in rats. Int J Radiat Biol.2009,85:1114-25.
    7.杜世锁,曾昭冲,汤钊猷等, 放射对大鼠肝脏术后再生能力影响的实验研究。中华放射肿瘤学杂志,2008,17:55-59
    8. Alati T, Van CM, Strom SC, Jirtle RL Radiation sensitivity of adult human parenchymal hepatocytes. Radiat Res 1988,115:152-160.
    9. Khozouz RF, Huq SZ, Perry MC. Radiation-induced liver disease. J Clin Oncol. 2008.26.4844-4845.
    10. Huang XW, Yang J, Dragovic AF, et al. Antisense oligonucleotide inhibition of tumor necrosis factor receptor 1 protects the liver from radiation-induced apoptosis. Clin Cancer Res 2006; 12:2849-2855.
    11. Du SS, Qiang M, Zeng ZC, et al. Inactivation of Kupffer Cells by GdC13 Protects the Murine Liver from Radiation-induced Apoptosis. Int J Radiat Oncol Biol Phys 2010.76:1225-1234.
    12. Bataller R, Brenner DA. Hepatic stellate cells as a target for the treatment of liver fibrosis. Semin Liver Dis.2001;21:437-51.
    13. Bataller R, Brenner DA. Liver fibrosis. J Clin Invest.2005;115:209-18.
    14. Sobrevals L, Rodriguez C, Romero-Trevejo JL et al. Insulin-like growth factor I gene transfer to cirrhotic liver induces fibrolysis and reduces fibrogenesis leading to cirrhosis reversion in rats. Hepatology.2010;51:912-21
    15. Ben-josef E, Lawrence TS. Radiotherapy for un-resectable hepatic malignancies. Semin Radiat Oncol.2005,15:273-278.
    16. Iliakis G, Wang Y, Guan J, Wang H. DNA damage checkpoint control in cells exposed to ionizing radiation. Oncogene.2003;22:5834-47.
    17. Blasina A, Paegle ES, McGowan CH. The role of inhibitory phosphorylation of CDC2 following DNA replication block and radiation-induced damage in human cells. Mol Biol Cell 1997;8:1013-1023
    18. Blanchard J, Sawers SJ. The absolute bioavailability of caffeine in man. Eur J Clin Pharmacol 1983;24:93-8.
    19. Wang TJ, Liu ZS, Zeng ZC, et al. Caffeine enhances radiosensitization to orthotopic transplant LM3 hepatocellular carcinoma in vivo. Cancer Sci 2010 doi: 10.1111/J.1349-7006.2010.01564.x
    20. Wang TJ, Liu ZS, Zeng ZC, et al. Caffeine does not enhance radiosensitivity of normal liver tissue in vivo. Cancer Sci 2010 under review

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700