磁共振扩散成像在淋巴结病变诊治中的价值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、研究目的
     1、通过比较动物模型良恶性淋巴结的ADC值、rADC值评价MRI扩散成像鉴别良恶性淋巴结的能力。
     2、通过比较DWI及PET两者对良恶性淋巴结鉴别能力,评价扩散成像在临床应用的价值。
     3、通过测量动物淋巴结模型放疗前后ADC值的变化,结合病理学结果,评价扩散成像在评价淋巴结放疗疗效中的价值。
     4、通过测量临床鼻咽癌转移性淋巴结放疗前后ADC值,验证扩散成像对放疗疗效评价的能力。
     二、研究内容
     第一部分良恶性淋巴结MRI扩散成像的动物研究
     建立转移性淋巴结及炎性淋巴结动物模型,通过MRI常规检查测量两组淋巴结的形态学指标,包括淋巴结的最短径,淋巴结的边界(光滑、分叶或模糊)及淋巴结内坏死情况;MRI DWI检查测量淋巴结的ADC值,并以肌肉的ADC值为参照计算rADC值,比较两者鉴别良恶性淋巴结的价值。
     第二部分良恶性淋巴结鉴别的比较影像学研究
     建立转移性淋巴结及炎性淋巴结动物模型,分别行MRI扩散成像及双期PET检查,分别测量良恶性淋巴结的ADC值、rADC值、早期SUV值及延迟SUV值。ROC曲线分析四组数据鉴别良恶性淋巴结的能力。
     第三部分扩散成像对转移性淋巴结放疗疗效评价的价值研究
     建立转移性淋巴结动物模型,将其分为治疗组及对照组,治疗组接受放射治疗。分别于放疗前、放疗后第1、3、7天行MRI常规及DWI检查,测量淋巴结的大小、ADC值,比较两组之间的差异,评价放疗后淋巴结ADC值变化规律与对照组之间的差异。治疗组兔子分别于放疗后第1、3天每天各处死一只兔子,剩余兔子在第7天全部处死,取被测淋巴结行病理学检查,探讨放疗后ADC值变化与淋巴结病理改变之间的相关性。
     第四部分扩散成像评价颈部转移性淋巴结放疗疗效的临床研究
     通过随访鼻咽癌治疗后淋巴结大小的改变,将其分为有效组及无效组。所有患者行MRI及扩散成像检查,测量颈部转移淋巴结治疗前、治疗后第7天、第14天扩散成像ADC值的变化。利用重复测量分析评价各时间点ADC值的变化,探讨扩散成像评价疗效的可能性。
     三、研究结果第一部分16枚转移淋巴结最短径8.96±1.67mm,10枚炎性淋巴结最短径7.23±0.66mm,两者没有明显的统计学差异(P=0.005)。两组淋巴结均境界清楚,T1WI等信号,T2WI稍高信号。8枚转移性淋巴结内可见坏死,其中1枚完全囊变;10枚炎性淋巴结内未见明显坏死高信号。两组淋巴结实质部分DWI上均呈高信号,ADC图呈低信号;坏死区在DWI呈低信号,ADC图上为高信号。低b值条件下(0~500 s/mm2)良恶性淋巴结的ADC值及rADC没有明显统计学差异;高b值条件下(0~1000 s/mm2)良恶性淋巴结的ADC值及rADC值均有统计学差异。ROC曲线分析高b值组良恶性淋巴结ADC值ROC曲线下面积(AUC)为0.817,阈值0.88×10-3mm2/s,敏感性86.67%,特异性为80%;rADC值AUC为0.973,阈值为0.640,敏感性93.33%,特异性90%。第二部分两组淋巴结均境界清楚,T1WI等信号,T2WI稍高信号。3枚转移性淋巴结内可见坏死;9枚炎性淋巴结内信号均匀。淋巴结实质部分DWI上均呈高信号,ADC图呈低信号;坏死区在DWI呈低信号,ADC图上为高信号。良恶性淋巴结的ADC值及rADC值之间均有统计学差异。恶性淋巴结的SUVearly值及SUVdelay值明显大于良恶性淋巴结,良恶性淋巴结之间存在统计学差异。四者进行ROC曲线下分析,ADC值与rADC值之间存在差异,其余均未见明显统计学差异。
     第三部分放疗前1天,淋巴结体积在56.12~103.22mm2。淋巴结T1WI等信号、T2WI高信号。10枚淋巴结内可见坏死,其中治疗组8枚,对照组2枚。治疗组4枚淋巴结第7天信号开始不均匀,在淋巴结实质内出现小斑片状长T1长T2信号;对照组淋巴结信号未见明显改变。两组放疗前后各对应时间点淋巴结体积未见明显差异。放疗前、放疗后第1、3天两组淋巴结ADC值未见明显差异,放疗后第7天两组淋巴结的ADC值之间存在统计学差异。重复测量分析显示两组重复测量的结果之间存在明显差异(P=0.000)。放疗后第1天,治疗组淋巴ADC值轻度降低,与放疗前没有明显统计学差异。放疗后第3天开始,治疗组淋巴结ADC值明显升高,与放疗前及放疗后第1天ADC值有统计学差异。对照组放疗前后各时间点ADC值未见明显统计学差异。
     第四部分放疗前24例患者共发现75枚淋巴结。放疗结束后第4周,有效组共68枚淋巴结,其中51枚淋巴结完全消失,7枚淋巴结达到部分有效,7枚淋巴结病灶稳定。无效组共10枚淋巴结。24例患者中12例为左侧淋巴结转移,6例为右侧淋巴结转移,6例为双侧颈部淋巴结转移。治疗前及治疗后第7天两组淋巴结T1WI呈等信号,T2WI稍高信号,增强后淋巴结可见强化。治疗后第14天7枚淋巴结内可见少许坏死灶。两组淋巴结DWI呈高信号,ADC呈低信号。有效组及无效组放疗前及放疗第7、14天淋巴结体积存在明显差异。放疗前有效组及无效组淋巴结的ADC值未见明显差异(t=0.582,P=0.562);放疗第7天及第14天两组淋巴结ADC值存在统计学差异(t=-2.219,P=0.30;t=-2.597,P=0.011)。重复测量分析显示重复测量的结果之间存在高度相关性(P=0.000),测量指标有随时间变化的趋势并且时间因素的作用随着分组不同而不同。有效组各时间点ADC值逐渐升高,彼此之间有明显的差异;无效组第14天ADC值与治疗前及治疗后第7天有明显差异(P=0.004,P=0.013)。
     四、研究结论
     1、高b值较低b值能更好的区分良恶性淋巴结。恶性淋巴结的ADC值及rADC值明显高于良性淋巴结。rADC值能较ADC值更好的区分良恶性。
     2、扩散成像能够有效的区分良恶性淋巴结,与PET成像效果相似。其中rADC值诊断能力优于ADC值。扩散成像是诊断良恶性淋巴结的有效方法,在临床有重要的应用价值。
     3、扩散成像能够早期间接反应组织放疗后的改变,对于监测淋巴结的疗效有一定帮助。
     4、鼻咽癌颈部转移性淋巴结治疗后,扩散成像能反应早期各时间点有效组及无效组之间的差异,对于疗效的监测有一定帮助。
1. Background
     Lymph node metastasis is a most common malignant tumor migration path, through the imaging evaluation of the nature of lymph node lesions is conducive to the development and prognosis of treatment options. MRI technology, with its excellent soft tissue resolution, can identify the quality of lymph nodes diseases more accurately than CT and ultrasound. But the signal intensity on Tl-weighted imaging and T2-weighted imaging of benign and malignant lymph nodes have some overlaps in conventional MRI, and can not determine the nature of the lymph nodes based on them. Up to now, conventional imaging techniques play important roles in assessment of the lymph node status, which rely on lymph node morphology such as shape, size, necrosis and extracapsular spread. The shortest axis of malignant lesions is larger than 1cm and the shape is similarly round. Conversely, the shortest axis of benign lesions is smaller than 1 cm and the shape is oval, in which the ratio of large and short axis is approximately 2. Necrosis of malignant lymph nodes is more common, and often shows extracapsular spread. However, many studies have found that these criteria can not completely distinguish benign from malignant lymph nodes, especially for small lymph node lesions, in which may already exist micro-metastases, meanwhile morphological diagnosis becomes lagging.
     With the development of radiological imaging technology, the functional imaging technologies are used to reveal the functional changes in different way. MRI diffusion-weighted imaging can reveal micro-movement of water molecules in vivo, and is used to detecte early physiological and functional changes related to tissue water content. A few researches are mainly concentrated in cervical lymph nodes. Razek et al. found that diffusion-weighted imaging can found lesions with the smallest diameter of 0.9cm, while the malignant nodules ADC value are lower than benign nodules. Sumi etc al. found that ADC values of cervical lymph node metastasis were significantly higher than benign lymph node lesions. Although DWI can be more sensitive and more accurate to diagnosis, the results between different studies had some differences. DWI imaging is a potent technology with short examination time, non-invasive, no radiation, and no injection of contrast agents, so a comprehensive and systematic evaluation of DWI in the diagnosis and treatment of benign and malignant lymph nodes plays an important role in its clinical practice.
     2. Objectives
     1. To evaluate the value of ADC values and relative ADC values in the differentiation of benign and malignant lymph nodes in animal models with MRI diffusion-weighted. imaging, and estimate its clinical application value by comparison with PET imaging.
     2. To analysis of the value of diffusion-weighted imaging and PET in discrimination of benign and malignant lymph nodes by compared of the ADC values, relative values, early SUV and delayed SUV.
     3. To evaluate the value of DWI in assessment of radiation effect by comparison with pre-and pro-radiation ADC values of lymph nodes, combined with pathological results.
     4. To collect ADC values of metastatic lymph node in patients before and after irradiation, and verify the value of DWI in assessment of radiation effect.
     3. Material and methods
     Part I Value of MRI diffusion-weighted imaging in the differential diagnosis of benign and malignant lymph nodes
     Two groups of animal models, including metastatic lymph node and inflammatory lymph nodes, were established. Some morphological indicators of lymph nodes were measured in conventional MRI, including shortest diameter, border (smooth, lobulated or indistinct), and necrosis. ADC values of lymph nodes also were measured in MRI DWI. The contralateral quadriceps femoris was selected as the reference site for rADC values. rADC was calculated by ADCiesion/ADCreference site.The benefit of rADC over ADC was validated for identifying metastatic lymph nodes.
     SUVs of benign and malignant lymph nodes of PET were measured. By comparing the values between ADC values and SUVs in identifying the nature of lymph nodes, the clinical value of DWI was evaluated.
     PartⅡStudy of different imaging methods in discrimination of benign and malignant lymph nodes
     The animal models of metastatic lymph node and inflammatory lymph nodes were established respectively. MRI diffusion-weighted imaging and dual-phase PET examination were both made. All ADC values, rADC values and the value of early and delayed SUV of benign and malignant lymph nodes were measured. ROC curve analysis was made to evaluate the ability of four sets of data to identify benign and malignant lymph nodes.
     PartⅢValue of DWI in evaluation of metastatic lymph nodes response to radiation therapy
     The animal models of metastatic lymph nodes were established. Then they were divided into control group and therapy group. And the therapy group received radiotherapy. MRI and DWI were performed respectively pretreatment,1,3,7 days after radiotherapy. The volumns of lymph nodes and ADC values were measured. The difference between the two groups was compared. In 1 day and 3days, one rabbit were sacrificed every day. The remaining rabbits in 7 days all were killed. Correlation between pathological changes and ADC values of lymph nodes after radiotherapy was explored.
     PartⅣMR diffusion-weighted imaging for evaluation of therapeutic responds in neck metastastic lymph nodes
     By follow-up of nasopharyngeal carcinoma, according to the size of lymph nodes, all patients were divided into an effective group and an ineffective group. All patients were examined with MRI and diffusion imaging. The ADC values of cervical metastastic lymph nodes were measured before treatment and the 7th and 14th days after treatment. Repeated measures analysis was made to evaluate ADC values at different time points, and to explore the possibility of diffusion-weighted imaging in predicting therapeutic effect.
     4. Results
     Part I The mean shortest diameter of 16 metastatic lymph nodes was 8.96±1.67mm, and of inflammatory lymph nodes was 7.23±0.66mm, that there is no statistically significant difference (P= 0.005). Two groups of lymph nodes were clear boundary, and iso-intensity on T1WI and slight hyperintensity on T2WI. Necrosis was observed in eight metastatic lymph nodes, in which one is an entirely cysti. There was no necrosis in the ten inflammatory lymph nodes. All lymph nodes were hyperintensity in DWIs, hypointensity in ADC maps; necrotic areas in DWI showed low signal, hyperintensity in ADC maps. Under the conditions of the low b values (0~500s/mm2), the ADC and rADC value between benign and malignant lymph nodes had no significant statistical difference; under conditions of high b values (0~1000s/mm2), the ADC and rADC value between benign and malignant lymph nodes had statistically difference. ROC curve analysis of benign and malignant lymph nodes was made. The area under the ROC curve (AUC) of ADC value was 0.817. When the threshold was 0.88×10-3mm2/s, the sensitivity was 86.67%and the specificity was 80%. The AUC of rADC value was 0.973. When the threshold value was 0.640, the sensitivity was 93.33%and the specificity was 90%.
     Part II The boundaries of all lymph nodes were clear. They are iso-intensity on T1WI and slightly hyperintensity on T2WI. Necrosis was seen in three metastatic lymph nodes. The signals of all inflammatory lymph nodes were homogenous. Parechymal parts of all lymph nodes revealed hyperintensity on DWI, and hypointensity on ADC maps. Necrotic areas showed hypointensity on DWI and hyperintensity on ADC maps. The ADC and rADC values were significant differences between two groups. SUVearly value and SUVdelay of malignant lymph nodes were significantly greater than those of benign nodes, and there was statistical difference. ROC curve analysis was done, and only ADC values and rADC values revealed statistical difference.
     PartⅢBefore treatment, the sizes of lymph node were from 56.12-103.22mm2. Lymph nodes were iso-intenstiy on TiWI and hyperintensity on T2WI. Necrosis was seen in ten lymph nodes, in which eight was belong to therapy group and two lay in control group. In 7 days after treatment, signals of four lymph nodes begun uneven. In control group, signals had no significant change. There were no significant differences between the two groups at each time point before and after radiotherapy in lymph node size. There were significant difference of ADC values between the third and seventh day after treatment and pretreatment and once day after treatment. Repeated measurements indicated significantly difference between the two groups. In the third day after radiotherapy, ADC values of the treatment group were significantly higher than before and the first day after treatment. The control group at all time points before and after radiotherapy revealed no significant difference in ADC values.
     PartIV Seventy-five lymph nodes were found in 24 patients before radiotherapy. After 4 weeks of the end of radiotherapy,51 lymph nodes in effective group completely disappeared, seven lymph nodes were partial response and seven lymph nodes were stable. A total of 10 lymph nodes were no response. Metastastic lymph nodes in 12 cases located in left necks,6 cases located in right necks, and 6 cases located in bilateral necks. All lymph nodes were iso-intensity on T1WI and hyperintensity on T2WI. After enhancement, all lymph nodes can be enhanced. The 14th days after treatment, within seven lymph nodes necrotic foci can be seen. Two groups of lymph nodes showed high signals on DWI,and low signals on ADC maps. There were significant difference between effective group and ineffective group before and after radiotherapy in lymph node sizes. There was no significant difference of ADC values between the effective group and ineffective group before (t=0.582, P=0.562), the 7th and 14th days after treatment(t=-2.219, P=0.30; t=-2.597, P=0.011). Effective group at each time point ADC values gradually increased, there were obvious differences between them; in ineffective group, ADC values in the 14th day after treatment revealed significant difference between before treatment and the 7th day after treatment (P=0.004, P=0.013).
     5. Conclusion
     1. DWI with high b value can better distinguish between benign and malignant lymph nodes than those with a low b values. The ADC values and rADC values of malignant lymph nodes were significantly higher than benign lymph nodes. rADC values can better distinguish between benign and malignant lymph nodes than the ADC value.
     2. DWI can effectively distinguish between benign and malignant lymph nodes, and is similar to PET imaging. rADC values are better than ADC values in diagnostic capabilities. DWI is an effective method and has important clinical value.
     3. DWI can reflect response indirectly of foci early after radiotherapy, and help to monitor radiation efficacy of lymph nodes.
     4. After treatment in nasopharyngeal carcinoma metastatic cervical lymph nodes, diffusion imaging can reflect differences between effective and ineffective group at different time points of early response. And it is useful to monitor the treatment responds.
引文
[1]Holzapfel K, Duetsch S, Fauser C, et al. Value of diffusion-weighted MR imaging in the differentiation between benign and malignant cervical lymph nodes. Eur J Radiolo 2009; 72(3):381-387.
    [2]van den Brekel MW, Stel HV, Castelijins JA, et al. Cervical lymph node metastasisi: assessment of radiologic criteria. Radiology 1990; 177(2):379-384.
    [3]Steinkamp HJ, Hosten N, Richter C, et al. Enlarged cervical lymph nodes at helical CT. Radiology 1994; 191(3):795-798.
    [4]Sumi M, Van Cauteren M, Nakamura T. MR microimaging of benign and malignant nodes in the neck. AJR 2006; 186(3):749-757.
    [5]King AD, Tse GM, Ahuja AT, et al. Necrosis in metastatic neck node:diagnostic accuracy of CT, MRI imaging, and US. Radiology 2004;230(3):720-726.
    [6]Steinkamp HJ, van der Hoeck E, Bock JC, et al. The extracapsular spread of cervical lymph node metastases:the diagnostic value of computed tomography. Rofo 1999; 170(5):457-462.
    [7]Razek AA, Soliman NY, Elkhamary S, et al. Role of diffusion-weighted MR imaging in cervical lymphadenopathy. Euro Radiol 2006; 16:1468-1477.
    [8]Sumi M, Sakihama N, Sumi T, et al. Discrimination of Metastatic cervical lymph nodes with diffusion-weighted MR imaging in patients with head and neck cancer. AJNR 2003; 24:1627-1634.
    [9]King AD, Ahuja AT, Yeung DK, et al. Malignant cervical lymphadenopathy: Diagnostic accuracy of diffusion-weighted MR imaging. Radiology 2007; 245:806-813.
    [1]Shoenfeld A, Luqmani Y, Smith D, et al. Detection of breast cancer micro-metastases in axillary lymph nodes by using polymerase chain reaction[J]. Cancer Res 1994; 54: 2986-2990.
    [2]Holzapfel K, Duetsch S, Fauser C, et al. Value of diffusion-weighted MR imaging in the differentiation between benign and malignant cervical lymph nodes[J]. Eur J Radiolo 2009; 72(3):381-387.
    [3]van den Brekel MW, Stel HV, Castelijins JA, et al. Cervical lymph node metastasisi: assessment of radiologic criteria[J]. Radiology 1990; 177(2):379-384.
    [4]Steinkamp HJ, Hosten N, Richter C, et al. Enlarged cervical lymph nodes at helical CT[J]. Radiology 1994; 191(3):795-798.
    [5]Sumi M, Van Cauteren M, Nakamura T. MR microimaging of benign and malignant nodes in the neck[J]. AJR 2006; 186(3):749-757.
    [6]King AD, Tse GM, Ahuja AT, et al. Necrosis in metastatic neck node:diagnostic accuracy of CT, MRI imaging, and US[J]. Radiology 2004;230(3):720-726.
    [7]Sugita R, Ito K, Fujita N, et al. Diffusion-weighted MR in abdominal oncology:clinical applications[J]. World J Gastroenterol 2010;16(7):832-836.
    [8]Cui Y, Zhang X-P, Sun Y-S, et al. Apparent diffusion coefficient:potential imaging biomarker for prediction and early detection of response to chemotherapy in hepatic metastases[J]. Radiology 2008; 248:894-900.
    [9]Ries M, Jones RA, Basseau F, et al. Diffusion tensor MRI of the human kidney[J]. J Magn Reson Imaging 2001;14:42-49.
    [10]何忠平,庄辉,姚均,等.异源双链泳动分析法快速检测TT病毒基因型[J].中华流行病学杂志,2003;24(9):801-805.
    [11]杨洁,杨亚英.颈部淋巴结病变的影像学诊断进展[J].实用放射学杂志,2008;24(10):1421-1425.
    [12]Guo Y, Cai YQ, Cai ZL, et al. Differentiation of clnically benign and malignant breast lesion using diffusion-weighted imaging[J]. J Magn Reson Imaaging 2002; 16:172-178.
    [13]Sumi M, Sakihama N, Sumi T, et al. Discrimination of Metastatic cervical lymph nodes with diffusion-weighted MR imaging in patients with head and neck cancer[J]. AJNR 2003;24:1627-1634.
    [14]刘妍,夏黎明,邹明丽,等.磁共振扩散加权成像及ADC测量在淋巴结病变鉴别诊断中的价值[J].中国医学影像技术,2006(5):730-733.
    [15]张赞,梁碧玲,高立,等.磁共振弥散加权成像诊断颈部淋巴结的临床价值[J].中华肿瘤杂志,2007(1):70-73.
    [16]Razek AA, Soliman NY, Elkhamary S, et al. Role of diffusion-weighted MR imaging in cervical lymphadenopathy[J]. Euro Radiol 2006; 16:1468-1477.
    [17]King AD, Ahuja AT, Yeung DK, et al. Malignant cervical lymphadenopathy: diagnostic accuracy of diffusion-weighted MR imaging[J]. Radiology 2007,245:806-813.
    [18]李烁,薛华丹,金征宇,等.磁共振扩散成像用于动物模型淋巴结病变的实验研究[J].临床放射学杂志,2008;27(7):952-956.
    [19]吴冰,刘婧,王霄英.扩散加权成像鉴别兔炎性及转移性淋巴结肿大的实验研究[J].中华放射学杂志,2009;43(7):759-761.
    [20]Niendorf T, Dijkhuizen H, Westin CF, et al. Biexponential diffusion attenuation in various states of brain tissue:implications for diffusion-weighted imaging[J]. Magn Reson Med 1996; 36:847-857.
    [21]Garcia Santos JM, Ordonez C, Torres del Rio S. ADC measurements at low and high b values:insight into normal brain structure with clinical DWI[J]. Magn Reson Imaging 2008; 26(1):35-44.
    [22]Lin G, Ho KC, Wang JJ, et al. Detection of lymph node metastasis in cervical and uterine cancers by diffusion-weighted magnetic resonance imaging at 3T[J]. J Magn Reson Imaging 2008; 28:128-135.
    [23]Park SO, Kim JK, Kim KAK, et al. Relative apparent diffusion coefficient: Determination of reference site and validation of benefit for detecting metastatic lymph nodes in uterine cervical cancer[J]. J Magn Reson Imaging 2009; 29:383-390.
    [24]Yanagisawa O, Shimao D, Maruyama K, et al. Diffusion-weighted magnetic resonance imaging of human skeletal muscles:gender-, age-and muscle-related differences in apparent diffusion coefficient[J]. Magn Resonance Imaging 2009; 27:69-78.
    [25]邓德茂,孟悛非,马玲,等.正常人小腿肌肉3.0T磁共振扩散张量成像初步研究[J].临床放射学杂志[J],2008;27(5):663-667.
    [26]Jeong HS, Baek CH, Son YI, et al. Use of intergrated 18F-FDG PET/CT to improve the accuracy fo initial cervical nodal evaluation in patients with head and neck squamous cell carcinoma[J]. Head neck 2007; 29:203-210.
    [27]Takamochi K, Yoshida J, Murakami K, et al. Pitfalls in lymph node staging with positron emission tomography in non-small cell lung cancer patients[J]. Lung Cancer 2005; 47:235-42.
    [1]Timar J, Csuka O, Orosz Z, et al. Molecular pathology of tumor metastasis. Ⅱ. Molecular staging and differential diagnosis[J]. Pathol Oncol Res 2002,8(3):204-219.
    [2]李烁,薛华丹,金征宇,等.磁共振扩散成像用于动物模型淋巴结病变的实验研究[J].临床放射学杂志,2008;27(7):952-956.
    [3]Jeong HS, Baek CH, Son YI, et al. Use of intergrated 18F-FDG PET/CT to improve the accuracy fo initial cervical nodal evaluation in patients with head and neck squamous cell carcinoma[J]. Head neck 2007; 29:203-210.
    [4]Bryant AS, Cerfolio RJ, Klemm KM, et al. Maximum standard uptake value of mediastinal lymph nodes on integrated FDG-PET-CT predicts pathology in patients with non-small cell lung cancer[J]. Ann Thorac Surg 2006; 82:417-423.
    [5]Al-Sarraf N, Gately K, Lucey J, et al. Lymph node staging by means of positron emission tomography is less accurate in non-small cell lung cancer patients with enlarged lymph nodes:Analysis of 1145 lymph nodes[J]. Lung Cancer 2008; 60:62—68.
    [6]Cerfolio RJ, Bryant AS. Ratio of the maximum standardized uptake value on FDG-PET of the mediastinal (N2) lymph node to the primary tumor may be a universal predictor of nodal malignancy in patients with nonsmall-cell lung cancer[J]. Ann Thorac Surg 2007;83:1826-30.
    [7]Lyshchik A, Higashi T, Asato R, et al. Cervical lymph node metastases:Diagnosis at sono-elastography-Initial experience. Radiology 2007; 243:258-266.
    [8]Wu CH, Chang YL, Hsu WC, et al. Usefulness of Doppler spectral analysis and power Doppler sonography in the differentiation of cervical lymphadenopathies. AJR 1998; 171: 503-509.
    [9]Holzapfel K, Duetsch S, Fauser C, et al. Value of diffusion-weighted MR imaging in the differentiation between benign and malignant cervical lymph nodes. Eur J Radiolo 2009;72(3):381-387.
    [10]van den Brekel MW, Stel HV, Castelijins JA, et al. Cervical lymph node metastasisi: assessment of radiologic criteria. Radiology 1990; 177(2):379-384.
    [11]Steinkamp HJ, Hosten N, Richter C, et al. Enlarged cervical lymph nodes at helical CT. Radiology 1994; 191(3):795-798.
    [12]King AD, Tse GM, Ahuja AT, et al. Necrosis in metastatic neck node:diagnostic accuracy of CT, MRI imaging, and US. Radiology 2004; 230(3):720-726.
    [13]Steinkamp HJ, van der Hoeck E, Bock JC, et al. The extracapsular spread of cervical lymph node metastases:the diagnostic value of computed tomography. Rofo 1999; 170(5):457-462.
    [14]Avril NE, Weber WA. Monitoring response to treatment in patients utilizing PET[J]. Radio Clin N Am 2005; 43:189-204.
    [15]Takamochi K, Yoshida J, Murakami K, et al. Pitfalls in lymph node staging with positron emission tomography in non-small cell lung cancer patients[J]. Lung Cancer 2005;47:235-42.
    [16]常平,刘洪臣,田嘉和,等.正电子发射体层显像在头颈部肿大淋巴结定性中的临床价值[J].中华口腔医学杂志,2004,39(6):449—451.
    [17]Zhuang H, Poufdehnadd M, Lambright ES, et al. Dual time point 18F-FDG PET imaging for differentiating malignant from inflammatory processes[J]. J Nucl Med 2001; 42:1412-1417.
    [18]Boerner AR, Weckesser M, Herzog H, et al. Optimal scan time for fluorine-18 fluorodeoxyducose positron emission tomography in breast cancer[J]. Eur J Nucl Med 1999; 26:226-230.
    [19]Vansteenkiste JF, Stroobants SG, De Leyn PR, et al. Lymph node staging in non-small cell lung cancer with FDG-PET scan:a prospective study on 690 lymph node stations from 68 patients[J]. J Clin Oncol 1998; 16(6):2142-2149.
    [20]Bryant AS, Cerfolio RJ, Klemm KM, et al. Maximum standard uptake value of mediastinal lymph nodes on integrated FDG-PET-CT predicts pathology in patients with non-small cell lung cancer[J]. Ann Thorac Surg 2006; 82(2):417-422.
    [21]Nishiyama Y, Yamamoto Y, Kimura N, et al. Dual-time-point FDG-PET for evaluation of lymph node metastasis in patients with non-small-cell lung cancer[J]. Ann Nuel Med 2008;22(4):245-250.
    [22]Abdel Razek AA, Soliman NY, Elkhamary S, et al. Role of diffusion-weighted MR imaging in cervical lymphadenopathy[J]. Eur Radiol 2006; 16:1468-1477.
    [23]de Bondt RBJ, Nelemans HPJ, Peutz-Kootstra DC, et al. Diagnostic accuracy and additional value of diffusion-weighted imaging for discrimination of malignant cervical lymph nodes in head and neck squamous cell carcinoma[J]. Neuro-radiology 2009; 51: 183-192.
    [24]King AD, Ahuja AT, Yeung DK et al. Malignant cervical lymphadenopathy: diagnostic accuracy of diffusion-weighted MR imaging[J]. Radiology 2007; 245:806-813.
    [25]Park SO, Kim JK, Kim KAK, et al. Relative apparent diffusion coefficient: Determination of reference site and validation of benefit for detecting metastatic lymph nodes in uterine cervical cancer[J]. J Magn Reson Imaging 2009; 29:383-390.
    [26]Yanagisawa O, Shimao D, Maruyama K, et al. Diffusion-weighted magnetic resonance imaging of human skeletal muscles:gender-, age-and muscle-related differences in apparent diffusion coefficient[J]. Magn Resonance Imaging 2009; 27:69-78.
    [27]Park SO, Kim JK, Kim KA, et al. Relative apparent diffusion coefficient: Determination of reference site and validation of benefit for detecting metastatic lymph nodes in uterine cervical cancer. J Mag Reson Imag 2009; 29:383-390.
    [28]邓德茂,孟悛非,马玲,等.正常人小腿肌肉3.0T磁共振扩散张量成像初步研究[J].临床放射学杂志,2008;27(5):663-667.
    [1]Bedwinek JM, Perez CA, Keys DJ. Analysis of failures after definifire irradiation for epidermoid carcinoma of the nasopharynx[J]. Cancer; 45:2725-2729.
    [2]Overgaard M, Jensen MB, Overgaard J, et al. Postoperative radiotherapy in high-risk postmenopauzal breast cancer patients given adjuvant tamoxifen:Danish Breast Cancer Cooperative Group DBCG 82c randomised t rial[J]. Lancet 1999; 353(9165):1641-1648.
    [3]Ragaz J, Jackson SM, Le N, et al. Adjuvant radiotherapy and chemotherapy in node-positive premenopausal women with breast cancer[J]. N Engl J Med 1997; 337(14):956-962.
    [4]夏寿萤.放射生物学.北京:军事医学科学出版社,1998,160-173.
    [5]James K, Eisenhauer E, Christian M, et al. Measuring Response in Solid Tumors: Unidimeusional Versus Bidimensional Measurement[J]. J Natl Cancer Inst 1999; 91(3):523-528.
    [6]Low RN. Magnetic resonance imaging in the oncology patient:evaluation of the extrahepatic abdomen[J]. Semin Ultrasound CT MR 2005; 26(4):224-236.
    [7]Suzuki C, Jacobsson H, Hatschek T, Torkzad MR, et al. Radiologic measurements of tumor response to treatment:Practical approaches and limitations[J]. Radiographics 2008; 329-344.
    [8]Li S, Xue HD, Wang XH, et al. MR diffusion weighted imaging for evaluation of radiotherapeutic effects on rabbit VX2 tumor model[J]. Chin Med Sci J 2008; 23(3): 172-177.
    [9]Carr I. Lymphatic metastasis[J]. Cancer Metastasis Rev 1983; 2(3):307-317.
    [10]Ott K, Weber W, Siewert JR. The importance of PET in the diagnosis and response evaluation of esophageal cancer[J]. Dis Esophagus 2006; 19(6):433-442.
    [11]Ferrara KW, Merritt R, Bums PN, et al. Evaluation of tumor angiogenesis with US: imaging, Doppler, and contrast agents[J]. Acad Radiol 2000; 7(10):824-839.
    [12]Donnelly EF,Geng L, Wojcicki WE, et al. Quantified power Doppler US of tumor blood flow correlates with microscopic quantification of tumor blood vessels[J]. Radiology 2001; 219:166-170.
    [13]Delorme S, Haberkom U, Kinscherf K, et al. Changes oftumor vascularity during gene therapy monitored with color Doppler US[J]. Ultrasound Med Biol 2001; 27: 1595-1603.
    [14]Gee MS, Saunders HM, Lee JC, et al. Doppler ultrasound imaging detects changes in tumor perfusion during antivascular therapy associated with vascular anatomic alterations [J]. Caceer Res 2001; 61:2974-2982.
    [15]Biomley MJK, Jayaram V, Cosgrove DO, et al. Doppler intensitometry with BR1 in humans:a linear dose response relationship(abstract) [J]. Radiology 1996; 201 (P):158.
    [16]Derchi LE, Martinoli C, Pretolesi F, et al. Quantitative analysis of contrast enhance-ment[J]. Eur Radiol 1999; 9(Suppl3):S372-376.
    [17]Chen CY, Li CW, Kuo YT, et al. Early response of hepatocellular carcinoma to trans-catheter arterial chemoembolization:choline levels and MR diffusion constants-initial experience[J]. Radiology 2006; 239 (2):448-56.
    [18]Koh DM, Scurr E, Collins D, et al. Predicting response of colorectal hepatic metastasis:value of pretreatment apparent diffusion coefficients[J]. AJR Am J Roentgenol 2007; 188 (4):1001-1008.
    [19]Law M, Yang S, Wang H, et al. Glioma grading:Sensitivity, specificity, and predic-tive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging[J]. AJNR 2003; 24:1989-1998.
    [20]Yeung DK, Cheung HS, Tse GM. Human breast lesions:Characterization with contrast-enhanced in vivo proton MR spectroscopy-initial results[J]. Radiology 2001; 220: 40-46.
    [21]Jagannathan NR, Kumar M, Seenu V, et al. Evaluation of total choline from in-vivo volume localized proton MR spectroscopy and its response to neoadjuvant chemotherapy in locally advanced breast cancer[J]. Br J Cancer 2001; 84:1016-1022.
    [22]Longo R, Ricci C, Masutti F, et al. Fatty infiltration of the liver Quantification by 1H localized magnetic resonance spectroscopy and comparison with computed tomography[J]. Invest Radiol 1993; 28:297-302.
    [23]Chen CY, Li CW, Kuo YT, et al. Early response ofhepatoceUular carcinoma to transcatheter arterial chemoembolization:Choline levels and MR diffusion constants-initial experience[J]. Radiology 2006; 239:448-456.
    [24]Ross BD, Moffat BA, Lawrence TS, et al. Evaluation of cancer therapy using diffusion magnetic resonance imaging[J]. Mol Cancer Ther 2003; 2(6):581-587.
    [25]Chenevert TL, Meyer CR, Moffat BA, et al. Diffusion MRI:a new strategy for assessment of cancer therapeutic efficacy[J]. Mol Imaging 2002;1(4):336-343.
    [26]Kim SH, Lee JM, Hong SH, et al. Locally advanced rectal cancer:Added value of diffusion-weighted MR imaging in the evaluation of tumor response to neoadjuvant chemo-and radiation therapy[J]. Radiology 2009; 253(1):116-125.
    [27]Cui Y, Zhang XP, Sun YS, et al. Apparent diffusion coefficient:Potential imaging biomarker for prediction and early detection of response to chemotherapy in hepatic metastases[J]. Radiology 2008; 248(3):894-900.
    [1]贾福艳.颈部淋巴结转移瘤的影像学评价[J].医学综述,2009;15(4):593-596.
    [2]Bedwinek JM, Perez CA, Keys DJ. Analysis of failures after definifire irradiation for epidermoid carcinoma of the nasopharynx[J]. Cancer; 45:2725-2729.
    [3]Ahuja AT, Ho SS, Leung SF, et al. Metastatic adenopathy from nasopharyngeal carcinoma:successful response to radiation therapy assessed by color duplex sono-graphy[J]. AJNR,1999; 20(1):151-156.
    [4]Goerres GW, Schmid DT, Bandhauer F, et al. Positron emission tomography in the early follow-up of advanced head and neck cancer[J]. Arch Otolaryngol Head Neck Surg 2004; 130(1):105-109.
    [5]谢琦,江新青,夏建东,等.宫颈癌放射治疗疗效的MRI评价[J].中华放射肿瘤学杂志,2004;13(3):215-218.
    [6]Suzuki C, Jacobsson H, Hatschek T, et al. Radiologic measurement of tumor response to treatment:Practical approacher and limitations[J]. Radiographics 2008;28:329-344.
    [7]Som PM. Lymph nodes of the neck[J]. Radiology 1987; 165(3):593-600.
    [8]严洁华,徐国镇.鼻咽癌[M]//殷蔚伯,谷铣之.肿瘤放射治疗学.第3版.北京:中国协和医科大学出版社,2002:537-573.
    [9]Fang F, Tsai WL, Go SF, et al. Implications of quantitative tumor and nodal regression rates for nasopharyngeal carcinomas after 45Gy of radiotherapy[J]. Int J Radiat Oncol Biol Phys 2001; 50:961-969.
    [10]Mardor Y, Pfeffer R, Spiegelmann R, et al. Early Detection of response to radiation therapy in patients with brain malignancies using standard and high b-value diffusion-weighted MRI[J]. J Clin Oncol 2003; 21(6):1094-1100.
    [11]Dzik-Jurasz A, Domenig C,George M, et al. Diffusion MRI for prediction of response of rectal cancer to chemoradiation[J]. Lancet 2002; 360(9329):307-308.
    [12]Kim SHK, Lee JM, Hong SH, et al. Locally advanced rectal cancer:Add value of diffusion-weighted MR imaging in the evaluation of tumor response to neoadjuvant chemo-and radiation therapy[J]. Radiology 2009; 253(1):116-125.
    [13]Kamel IR, Bluemke DA, Ramsey D, et al. Role of diffusion-weighted imaging in estimating tumor necrosis after chemo-embolization of hepatocellular carcinoma [J]. AJR 2003; 181(3):708-710.
    [14]Sumi M, Sakihama N, Sumi T, et al. Discrimination of Metastatic cervical lymph nodes with diffusion-weighted MR imaging in patients with head and neck cancer[J]. AJNR 2003;24:1627-1634.
    [15]刘妍,夏黎明,邹明丽,等.磁共振扩散加权成像及ADC测量在淋巴结病变鉴别诊断中的价值[J].中国医学影像技术,2006(5):730-733.
    [16]张赞,梁碧玲,高立,等.磁共振弥散加权成像诊断颈部淋巴结的临床价值[J].中华肿瘤杂志,2007(1):70-73.
    [17]Razek AA, Soliman NY, Elkhamary S, et al. Role of diffusion-weighted MR imaging in cervical lymphadenopathy[J]. Euro Radiol 2006; 16:1468-1477.
    [18]夏云飞,钱剑扬,张恩罴.实用鼻咽癌放射治疗学[M].北京:北京医科大学出版社,2003:369-377.
    [19]Batanini JP, Rodriguec J, Jaulerry, et al. Treatment of metastatic neck nodes secondary to an occult epidermoid carcinoma of the head and neck[J]. Laryngo-scope 1987; 97:1080-1084.
    [20]Pickles MD, Gibbs P, Lowry M, et al. Diffusion changes precede size reduction in neoadjuvant treatment of breast cancer[J]. Magn Reson Imaging 2006; 24:843-847.
    [21]Cui Y, Zhang XP, Sun YS, et al. Apparent diffusion coefficient:Potential imaging biomarker for prediction and early detection of response to chemotherapy in hepatic metastases[J]. Radiology 2008; 248(3):894-900.
    [22]Guo Y, Cai Y, Cai Z, et al. Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging[J]. J Magn Reson Imaging 2002; 16(2):172-178.
    [1]Lyshchik A, Higashi T, Asato R, et al. Cervical lymph node metastases:Diagnosis at sono-elastography-Initial experience. Radiology,2007; 243:258-266.
    [2]Di Martino E, Krombach GA, Nowak B, et al. Color duplex sonography in posttherapeutic neck evaluation. Am J Otolaryngol,2002; 23:153-9.
    [3]Delorme S, Peschke P, Zuna I, et al. Imaging the smallest tumor vessels using color Doppler ultrasound in an experiment. Radiology,2001;41:168-72
    [4]Wu CH, Chang YL, Hsu WC, et al. Usefulness of Doppler spectral analysis and power Doppler sonography in the differentiation of cervical lymphadenopathies. AJR,1998; 171: 503-509.
    [5]Scholbach T, Scholbach J, Krombach GA, et al. New method of dynamic color doppler signal quantification in metastatic lymph nodes compared to direct polarographic measurements of tissue oxygenation. Int J Cancer,2005; 114:957-962.
    [6]Frey H. Real-time elastography:A new ultrasound procedure for the reconstruction of tissue elasticity. Der Radiology,2003;43:850-5.
    [7]Itoh A, Ueno E, Tohno E, et al. Breast disease:clinical application of US elastography for diagnosis. Radiology,2006; 239:341-50.
    [8]Saftoiu A, Vilmann P, Cinrea T, et al. Dynamic analysis of EUS used for the differentiation of benign and malignant lymph nodes. Eur J Radiology,2004; 52:257-263.
    [9]生晶,田建明,毕永明,等.CT灌注成像对颈部淋巴结病变的鉴别诊断和疗效评价.中国医学影像技术,2005;21(6):856-858.
    [10]杨智云,孟悛非,徐巧兰,等.颈部淋巴结病变CT灌注成像.临床放射性杂志,2007;6(9)865-868
    [11]梁颖,罗德红,吴宁,等.颈部恶性淋巴结的多层螺旋CT灌注研究.中华放射学杂志,2004;38(11):1193-1197.
    [12]Liu Y, Bellomi M, Gatti G, et al. Accuracy of computer tomography perfusion in assessing metastatic involvement of enlarged axillary lymph nodes in patients with breast cancer. Breast Cancer Reasearch 2007,9:R40.
    [13]袁智勇,刘宏伟,卢红.鼻咽癌颈部淋巴结放射敏感性与CT灌注扫描相关性研究.中华现代临床医学杂志,2005;3(16):1613-1615.
    [14]Miles KA, Griffiths MR. Perfusion CT:a worthwhile enhancement? Br J Radiol 2003; 76:20-231.
    [15]Goh V, Halligan S, Bartram CI, et al. Assessment with multidetector CT:Are measurements from two commercial software packages interchangeable? Radiology 2007:242:777-782.
    [16]Razek AA, Soliman NY, Elkhamary S, et al. Role of diffusion-weighted MR imaging in cervical lymphadenopathy. Euro Radiol 2006; 16:1468-1477
    [17]Sumi M, Sakihama N, Sumi T, et al. Discrimination of Metastatic cervical lymph nodes with diffusion-weighted MR imaging in patients with head and neck cancer. AJNR, 2003;24:1627-1634.
    [18]King AD, Ahuja AT, Yeung DK, et al. Malignant cervical lymphadenopathy: Diagnostic accuracy of diffusion-weighted MR imaging. Radiology,2007; 245:806-813.
    [19]Bellin MF, Beigelman C, Precetti-Morel S. Iron oxide-enhanced MR lymphography: initial experience. Eur J Radiol,2000; 34:257-264
    [20]Saksena M, Harisinghani M, Hahn P, et al. Comparison of lymphotropic nanoparticle-enhanced MRI sequences in patients with various primary cancers. AJR,2006; 187:582-588.
    [21]Deserno WM, Harisinghani MG, Taupitz M, et al. Urinary bladder cancer: Preoperative nodal staging with Ferumoxtran-10-enhanced MR Imaging. Radiology,2004; 233:449-456.
    [22]Vassallo P, Matei C, Heston WDW, et al. AMI-227-enhanced MR lymphography: usefulness for differentiating reactive from tumor bearing lymph nodes. Radiology,1994; 193:501-506.
    [23]Guimaraes R, Clement O, Bittoun J, et al. MR lymphography with super paramagnetic nano-particles in rats:pathologic basis for contrast enhancement. AJR,1994; 162:201-207.
    [24]Guimaraes AR, Tabatabei S, Dahl D, et al. Pilot study evaluating use of lymphotrophic nanoparticle-enhanced magnetic resonance imaging for assessing lymph nodes in renal cell cancer. Urology,2008; 71:1-5
    [25]Harisinghani MG, Saksena MA, Hahn PF, et al. Ferumoxtran-10-enhanced MR lymphangio-graphy:Does contrast-enhanced imaging alone suffice for accurate lymph node characterization? AJR,2006; 186:144-148.
    [26]常平,刘洪臣,田嘉和,等。正电子发射体层显像在头颈部肿大淋巴结定性中的临床价值。 中华口腔医学杂志,2004,39(6):449—451.
    [27]Jeong HS, Baek CH, Son YI, et al. Use of intergrated 18F-FDG PET/CT to improve the accuracy fo initial cervical nodal evaluation in patients with head and neck squamous cell carcinoma. Head neck,2007;29:203-210.
    [28]Bryant AS, Cerfolio RJ, Klemm KM, et al. Maximum standard uptake value of mediastinal lymph nodes on integrated FDG-PET-CT predicts pathology in patients with non-small cell lung cancer. Ann Thorac Surg,2006;82:417-23.
    [29]Al-Sarraf N, Gately K, Lucey J, et al. Lymph node staging by means of positron emission tomography is less accurate in non-small cell lung cancer patients with enlarged lymph nodes:Analysis of 1145 lymph nodes. Lung Cancer,2008; 60:62—68.
    [30]Cerfolio RJ, Bryant AS. Ratio of the maximum standardized uptake value on FDG-PET of the mediastinal (N2) lymph node to the primary tumor may be a universal predictor of nodal malignancy in patients with nonsmall-cell lung cancer. Ann Thorac Surg, 2007;83:1826-30.
    [31]Takamochi K, Yoshida J, Murakami K, et al. Pitfalls in lymph node staging with positron emission tomography in non-small cell lung cancer patients. Lung Cancer, 2005;47:235—42.
    [1]Provenzale JM, Mukundan S, Barboriak DP. Diffusion-weighted and perfusion MR imaging for brain tumor characterization and assessment of treatment response. Radiology 2006;239 (3):632-49.
    [2]Takahara T, Imai Y, Yamashita T, et al. Diffusion weighted whole body imaging with background body signal suppression (DWIBS):technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med 2004;22 (4):275-82.
    [3]Koh DM, Collins DJ. Diffusion-weighted MRI in the body:applications and challenges in oncology. AJR Am J Roentgenol 2007;188 (6):1622-35.
    [4]Low RN, Gurney J. Diffusion-weighted MRI (DWI) in the oncology patient:value of breathhold DWI compared to unenhanced and gadolinium-enhanced MRI. J Magn Reson Imaging 2007;25 (4):848-58.
    [5]Sumi M, Sakihama N, Sumi T, et al. Discrimination of metastatic cervical lymph nodes with diffusion-weighted MR imaging in patients with head and neck cancer. AJNR Am J Neuroradiol 2003;24 (8):1627-34.
    [6]Bruegel M, Holzapfel K, Gaa J, et al. Characterization of focal liver lesions by ADC measurements using a respiratory triggered diffusion-weighted single-shot echo-planar MR imaging technique. Eur Radiol 2008; 18 (3):477-85.
    [7]Koh DM, Scurr E, Collins D, et al. Predicting response of colorectal hepatic metastasis:value of pretreatment apparent diffusion coefficients. AJR Am J Roentgenol 2007;188(4):1001-8.
    [8]Liapi E, Geschwind JF, Vossen JA, et al. Functional MRI evaluation of tumor response in patients with neuroendocrine hepatic metastasis treated with transcatheter arterial chemoembolization. AJR Am J Roentgenol 2008;190 (1):67-73.
    [9]Namimoto T, Yamashita Y, Sumi S, et al. Focal liver masses:characterization with diffusion-weighted echo-planar MR imaging. Radiology 1997;204 (3):739-44.
    [10]Nasu K, Kuroki Y, Nawano S, et al. Hepatic metastases:diffusion-weighted sensitivity-encoding versus SPIO-enhanced MR imaging. Radiology 2006;239 (1):122-30.
    [11]Parikh T, Drew SJ, Lee VS, et al. Focal liver lesion detection and characterization with diffusion-weighted MR imaging:comparison with standard breath-hold T2-weighted imaging. Radiology 2008;246 (3):812-22.
    [12]Taouli B, Vilgrain V, Dumont E, et al. Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences:prospective study in 66 patients. Radiology 2003;226 (1):71-8.
    [13]Squillaci E, Manenti G, Di Stefano F, et al. Diffusion-weighted MR imaging in the evaluation of renal tumours. J Exp Clin Cancer Res 2004;23 (1):39-45.
    [14]Issa B. In vivo measurement of the apparent diffusion coefficient in normal and malignant prostatic tissues using echo-planar imaging. J Magn Reson Imaging 2002; 16 (2):196-200.
    [15]Ichikawa T, Erturk SM, Motosugi U, et al. High-B-value diffusion-weighted MRI in colorectal cancer. AJR Am J Roentgenol 2006; 187 (1):181-4.
    [16]Nasu K, Kuroki Y, Kuroki S, et al. Diffusion-weighted single shot echo planar imaging of colorectal cancer using a sensitivity-encoding technique. Jpn J Clin Oncol 2004;34(10):620-6.
    [17]Ichikawa T, Erturk SM, Motosugi U, et al. High-b value diffusion-weighted MRI for detecting pancreatic adenocarcinoma:preliminary results. AJR Am J Roentgenol 2007;188(2):409-14.
    [18]Nakayama T, Yoshimitsu K, Irie H, et al. Diffusion-weighted echo-planar MR imaging and ADC mapping in the differential diagnosis of ovarian cystic masses: usefulness of detecting keratinoid substances in mature cystic teratomas. J Magn Reson Imaging 2005;22 (2):271-8.
    [19]Tamai K, Koyama T, Saga T, et al. Diffusion-weighted MR imaging of uterine endometrial cancer. J Magn Reson Imaging 2007;26 (3):682-7.
    [20]Fujii S, Matsusue E, Kanasaki Y, et al. Detection of peritoneal dissemination in gynecological malignancy:evaluation by diffusion-weighted MR imaging. Eur Radiol 2008;18(1):18-23.
    [21]Matoba M, Tonami H, Kondou T, et al. Lung carcinoma:diffusion-weighted mr imaging--preliminary evaluation with apparent diffusion coefficient. Radiology 2007;243 (2):570-7.
    [22]Low RN. Diffusion-weighted MR imaging for whole body metastatic disease and lymphadenopathy. Magn Reson Imaging Clin N Am 2009;17 (2):245-61.
    [23]Komori T, Narabayashi I, Matsumura K, et al.2-[Fluorine-18]-fluoro-2-deoxy-D-lucose positron emission tomography computed tomography versus whole-body diffusion-weighted MRI for detection of malignant lesions:initial experience. Ann Nucl Med 2007;21(4):209-15.
    [24]Kwee TC, Takahara T, Ochiai R, et al. Diffusion-weighted whole-body imaging with background body signal suppression (DWIBS):features and potential applications in oncology. Eur Radiol 2008;18 (9):1937-52.
    [25]Ohno Y, Koyama H, Onishi Y, et al. Non-small cell lung cancer:whole-body MR examination for M-stage assessment--utility for whole-body diffusion-weighted imaging compared with integrated FDG PET/CT. Radiology 2008;248 (2):643-54.
    [26]Tsushima Y, Takano A, Taketomi-Takahashi A, et al. Body diffusion-weighted MR imaging using high b-value for malignant tumor screening:usefulness and necessity of referring to T2-weighted images and creating fusion images. Acad Radiol 2007; 14 (6):643-50.
    [27]Chen CY, Li CW, Kuo YT, et al. Early response of hepatocellular carcinoma to transcatheter arterial chemoembolization:choline levels and MR diffusion constants--initial experience. Radiology 2006; 239 (2):448-56.
    [28]Cui Y, Zhang XP, Sun YS, et al. Apparent diffusion coefficient:potential imaging biomarker for prediction and early detection of response to chemotherapy in hepatic metastases. Radiology 2008;248 (3):894-900.
    [29]Zhang J, Tehrani YM, Wang L, et al. Renal masses:characterization with diffusion-weighted MR imaging--a preliminary experience. Radiology 2008;247 (2):458-64.
    [30]Kamel IR, Bluemke DA, Ramsey D, et al. Role of diffusion-weighted imaging in estimating tumor necrosis after chemoembolization of hepatocellular carcinoma. AJR Am J Roentgenol 2003;181 (3):708-10.
    [31]Naganawa S, Sato C, Nakamura T, et al. Diffusion-weighted images of the liver: comparison of tumor detection before and after contrast enhancement with superparamagnetic iron oxide. J Magn Reson Imaging 2005;21 (6):836-40.
    [32]Erturk SM, Ichikawa T, Motosugi U, et al. Diffusion-weighted MR imaging in the evaluation of pancreatic exocrine function before and after secretin stimulation. Am J Gastroenterol 2006; 101 (1):133-6.
    [33]Asao C, Korogi Y, Kitajima M, et al.Diffusion-weighted imaging of radiation-induced brain injury for differentiation from tumor recurrence. AJNR Am J Neuroradiol 2005; 26 (6):1455-60.
    [34]Park SO, Kim JK, Kim KA, et al. Relative apparent diffusion coefficient: determination of reference site and validation of benefit for detecting metastatic lymph nodes in uterine cervical cancer. J Magn Reson Imaging 2009;29 (2):383-90.
    [35]Holzapfel K, Duetsch S, Fauser C, et al. Value of diffusion-weighted MR imaging in the differentiation between benign and malignant cervical lymph nodes. Eur J Radiol 2009;72(3):381-7.
    [36]de Bondt RB, Hoeberigs MC, Nelemans PJ, et al. Diagnostic accuracy and additional value of diffusion-weighted imaging for discrimination of malignant cervical lymph nodes in head and neck squamous cell carcinoma. Neuroradiology 2009;51 (3):183-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700