直流输电线路电晕放电的微观物理过程及离子流场分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
特高压直流输电线路由于运行电压极性固定,电晕放电导致的空间电荷使得离子流场问题尤为严峻。开展电晕放电微观物理过程研究对于探求电晕放电的演化规律、指导输电线路离子流场计算具有重要理论价值。电晕放电微观过程中会产生大量激发态粒子、带电粒子、自由基等微观粒子,动理学规律极其复杂。由于缺乏有效的等离子体诊断手段,电晕放电的很多关键微观参数无法通过试验获得,国内外开展了大量电晕微观机理的数值研究,至今未取得突破性进展。可定量分析电晕放电微观物理过程的模型尚缺,对其影响因素的微观分析也未能深入。
     本文在流体动力学电晕放电模型的基础上,提出研究电晕放电微观物理过程的混合数值模型。采用棒-板电极最简模型对电晕放电脉冲电流进行了计算分析,研究电晕放电微观特征量在单次放电脉冲持续过程中的时空发展规律。建立了直流输电线路电晕放电宏观离子流场计算模型,讨论了输电线路结构对离子流场的影响,着重分析相对空气密度对离子流场的影响规律。本文的主要内容为:
     ①首次提出了可量化研究电晕放电微观物理过程的混合数值模型。模型中利用流体动力学控制方程描述电晕放电的宏观物理规律;采用等离子体化学反应过程电晕放电微观过程中粒子的产生和消散过程;Boltzmann方程求解模块给流体动力学模型提供详细的电子输运参数和能量传递系数,同时给等离子体化学模型提供化学反应速率;通过试验得到的正负电晕放电单次脉冲波形和UI特性曲线证明了该模型的有效性。
     ②计算分析了正负电晕的脉冲形成机制,在此基础上研究得到了负电晕放电的电子特性(平均电子能量、电子密度、电子的生成/消散速率等)和负电晕放电的重粒子特性(净空间电荷、等离子体化学反应速率、重粒子的成分及密度)在单次脉冲持续过程中的时空发展规律。
     ③采用上流有限元法建立了直流输电线路电晕放电的宏观离子流场计算模型,利用单/双极试验导线的地面合成场强和离子流密度证明了模型的有效性,讨论了输电线路结构对离子流场的影响,着重分析了相对空气密度对离子流场的影响。对±800kV和±1100kV直流输电线路离子流场的计算结果表明,在跨越高海拔、高温度区域时,需要对输电线结构进行校验,确保其合成场强满足国家标准。
The problem of ionized field caused by the space charge of corona becomes ratherserious for UHVDC transmission lines that due to the fixed voltage polarity. It’s of greattheoretical value to study the microscopic characteristics of corona discharge in order toexplore the and so on which results in the complexity of kinetics rule. A lot of key microparameters related to corona discharge can’t be obtained through experiments as lack ofeffective means for plasma diagnosis. There is no breakthrough on the research ofdevelopment law of corona discharge and to calculate the ionized field of UHVDCtransmission lines. Corona discharge generates a large number of excited particles, ions,free radicals corona mechanism, even a lot of efforts have been devoted. What’ worse,there is no model of corona discharge microscopic physical process which can be usedfor quantitative analysis.
     In this paper, an improved hybrid model based on fluid dynamics model isproposed to study the corona discharge microscopic physical process. A bar-to-platemodel is established for the calculation of corona pulse current, and for the research ofspace-time development law of corona discharge during the single pulse. A ionized fieldcalculation model is established to discuss the influence of transmission line structurethe relative air density on the ionized field. The main research results are as follows:
     ①For the first time, a hybrid model of corona discharge is put forward for thequantifiable study of microscopic physical process. In this model, the fluid dynamicscontrol equation is used to describe the macro regularity of corona discharge; Theplasma chemical reaction process is used to analyze the generation and dissipationprocess of particles;The Boltzmann equation module provides electron transportparameters and the energy transfer coefficient for fluid dynamics control equation, andchemical reaction rate for plasma chemical reaction module. The validity is verifiedthrough the comparison of single pulse corona discharge waveform and U-Icharacteristic curve
     ②The positive and negative corona pulse forming mechanism is analyzed. Baseon this mechanism, characteristics of electrons (such as electron mean energy, electron density, generation and dissipation rate of electrons) and characteristics of heavyparticle (such as net charge density, rate of plasma chemical processes, element andnumber density of heavy particle) during the single pulse is emphatically analyzed.
     ③The ion flow field calculation model of corona discharge is established basedon the up stream FEM. The validity is verified through the experimental data of theground level total electric field and ion current density. The influence of transmissionline structure on ionized field is discussed, the influence of relative air density onionized field is emphatically analyzed. The calculation result of DC transmission lineshows that it’s essential to check transmission line structure via high altitude and hightemperature area in order to meet the national standard. The calculation result of±800kV and±1100kV DC transmission line on ionized field shows that it’s essential tocheck the transmission line structure when crossing high altitude and high temperaturearea in order to meet the national standard of total electric field strength.
引文
[1]我国中长期发电能力和电力需求发展预测[J].资源与人居环境,2013,(3):41-45.
    [2]林伯强.结构变化,效率改进与能源需求预测——以中国电力行业为例[J].经济研究,2003,(5):57-65.
    [3]刘振亚.特高压电网[M].北京:中国经济出版社,2005.
    [4]舒印彪.1000kV交流特高压输电技术的研究与应用[J].电网技术,2005,29(19): T1-T6.
    [5]舒印彪,胡毅.交流特高压输电线路关键技术的研究及应用[J].中国电机工程学报,2007,27(36):1-7.
    [6]舒印彪,张文亮.特高压输电若干关键技术研究[J].中国电机工程学报,2007,27(31):1-6.
    [7]舒印彪.我国特高压输电的发展与实施[J].中国电力,2005,38(11):1-8.
    [8] R. Lings, V. Chartier, P. S. Maruvada. Overview of transmission lines above700kV [M].IEEE Power Engineering Society Inaugural2005Conference and Exposition in Africa.Durban, South Africa.2005:33-43.
    [9] S. A. Annestrand, G. A. Parks. Bonneville power administration's prototype1100/1200kVtransmission line project [J]. IEEE Transactions on Power Apparatus and Systems,1977,96(2):357-366.
    [10]中国电工技术学会特高压输变电技术考察团.俄罗斯、乌克兰超、特高压输变电技术发展近况[J].电力设备,2003,4(2):49-56.
    [11]中村秋夫,冈本浩,曹祥麟.东京电力公司采用特高压输电技术的论证经过[J].电网技术,2005,29(10):5-8.
    [12]中村秋夫,冈本浩,曹祥麟.东京电力公司的特高压输电技术应用现状[J].电网技术,2005,29(6):1-5.
    [13]刘振亚.发展特高压电网破解雾霾困局[N].人民政协报,2014-03-03.
    [14]谷定燮.我国发展特高压输电的前景[J].高电压技术,2002,28(03):28-30.
    [15]万启发.二十一世纪我国的特高压输电[J].高电压技术,2000,26(06):12-13.
    [16]欧阳科文,崔翔,焦重庆,等.一种分裂导线直流电晕起晕电压的计算方法[J].电工技术学报,2013,28(3):177-182.
    [17]郑跃胜,何金良,张波.正极性电晕在空气中的起始判据[J].高电压技术,2011,37(3):752-757.
    [18]刘云鹏,朱雷,律方成,等.特高压电晕笼直流分裂导线正极性电晕起始特性分析[J].电工技术学报,2013,28(1):73-79.
    [19]刘振亚.特高压直流输电工程电磁环境[M].北京:中国电力出版社,2009.
    [20]周恺.特高压直流输电线路电磁环境的计算研究[D].华中科技大学,2007.
    [21]张海峰,庞其昌,陈秀春.高压电晕放电特性及其检测[J].电测与仪表,2006,43(2):6-8.
    [22]杨保初,刘晓波,戴玉松.高电压技术[M].重庆;重庆大学出版社.2002:12-13.
    [23]肖冬萍,何为,谢鹏举,等.高压输电线路电晕放电特性及其电磁辐射场计算[J].电网技术,2007,31(21):52-55.
    [24] O. Naef, R. L. Tremaine, A. R. Jones. Techniques of corona loss measurement andanalysis-500kV test project of the American gas and electric company [J]. IEEE Transactionson Power Apparatus and Systems,1951,70(1):496-506.
    [25] E. R. Taylor, N. Kolcio, W. E. Pakala. The apple grove750kV Project775kV radio influenceand corona loss investigations [J]. IEEE Transactions on Power Apparatus and Systems,1965,84(7):573-579.
    [26] E. R. Taylor, W. E. Pakala, N. Kolcio. The apple grove750kV project515kV radio influenceand corona loss investigations [J]. IEEE Transactions on Power Apparatus and Systems,1965,84(7):561-573.
    [27] Y. Nakano, Y. Sunaga. Availability of corona cage for predicting audible noise generated fromHVDC transmission line [J]. IEEE Transactions on Power Delivery,1989,4(2):1422-1431.
    [28] J. G. Anderson, M. Baretsky, D. D. Maccarth. Corona loss characteristics of EHV transmissionlines based on project EHV research [J]. IEEE Transactions on Power Apparatus and Systems,1966,85(12):1196-1212.
    [29] M. Abdel-Salam. Electrical breakdown in gases, high voltage engineering theory and practice[M]. New York; Marcel Dekker.2000:221-222.
    [30]杨勇,陆家榆,雷银照.同塔双回高压直流线路地面合成电场的计算方法[J].中国电机工程学报,2008,28(25):32-36.
    [31]黄道春,阮江军,文武,等.特高压交流输电线路电磁环境研究[J].电网技术,2007,31(01):6-11.
    [32]王毅,孙成秋,汤涛,等.不同运行方式下特高压直流输电线路的地面电场与离子流分布[J].电网技术,2008,32(2):29-31.
    [33]崔翔,周象贤,卢铁兵.高压直流输电线路离子流场计算方法研究进展[J].中国电机工程学报,2012,32(36):130-141.
    [34]罗兆楠,崔翔,甄永赞,等.直流输电线路三维离子流场的计算方法[J].中国电机工程学报,2010,30(27):102-107.
    [35]余峰.高压直流输电线下合成场强及离子流密度的计算[D].中国电力科学研究院,1998.
    [36]郑正圻,成萝兰,陈维克.海拔高度对直流输电线路电晕电流地面离子流密度及地面场强影响的研究[J].高电压技术,1991,2:26-31.
    [37]1227-1990Guide for the Measurement of DC Electric-Field Strength and Ion RelatedQuantities.[S].1990.
    [38]胡琴,舒立春,蒋兴良,等.不同大气参数及表面状况下导线交流起晕电压的预测[J].高电压技术,2010,36(7):1669-1674.
    [39] R. J. Liao, L. J. Yang, J. Li, et al. Aging condition assessment of transformer oil-paperinsulation model based on partial discharge analysis [J]. IEEE Transactions on Dielectrics andElectrical Insulation,2011,18(1):303-311.
    [40] F. F. Wu, R. J. Liao, K. Wang, et al. Numerical simulation of the characteristics of heavyparticles in bar-plate DC positive corona discharge based on a hybrid model [J]. IEEETransactions on Plasma Science,2014,42(3):868-878.
    [41] K. Wang, R. J. Liao, L. J. Yang, et al. Optimal features selected by NSGA-II for partialdischarge pulses separation based on time-frequency representation and matrix decomposition[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2013,20(3):825-838.
    [42] L. J. Yang, R. J. Liao, C. X. Sun, et al. Influence of vegetable oil on the thermal aging oftransformer paper and its mechanism [J]. IEEE Transactions on Dielectrics and ElectricalInsulation,2011,18(3):692-700.
    [43]董丽芳.气体放电等离子体动力学[M].河北大学出版社.2004.
    [44]杨津基.气体放电[M].北京:科学出版社,1983.
    [45]胡琴.低气压下输电线路导线电晕特性及影响因素的研究[D].重庆大学,2010.
    [46]宫林.低气压下导线表面状况对电晕放电起始特性影响的研究[D].重庆大学,2008.
    [47]梁曦东,陈昌渔,周远翔.高电压工程[M].高电压工程.北京;清华大学出版社.2003.
    [48] L. B. Loeb, J. M. Meek. The mechanism of the electric spark [M]. California: StanfordUniversity Press,1941.
    [49] J. Meek. A theory of spark discharge [J]. Physical Review,1940,57(8):722.
    [50] I. Fofana, A. Beroual. A model for long air gap discharge using an equivalent electricalnetwork [J]. IEEE Transactions on Dielectrics and Electrical Insulation,1996,3(2):273-282.
    [51] A. J. Davies, C. S. Davies, C. J. Evans. Computer simulation of rapidly developing gaseousdischarges [J]. Proceedings of the Institution of Electrical Engineers-London,1971,118(6):816-823.
    [52] S. Nijdam, K. Miermans, E. M. Van Veldhuizen, et al. A Peculiar streamer morphology createdby a complex voltage pulse [J]. IEEE Transactions on Plasma Science,2011,39(11):2216-2217.
    [53] A. Luque, U. Ebert. Electron density fluctuations accelerate the branching of positive streamerdischarges in air [J]. Physical Review E,2011,84(4):046411.
    [54] S. Pancheshnyi, M. Nudnova, A. Starikovskii. Development of a cathode-directed streamerdischarge in air at different pressures: Experiment and comparison with direct numericalsimulation [J]. Physical Review E,2005,71(1):016407.
    [55] G. E. Georghiou, A. P. Papadakis, R. Morrow, et al. Numerical modelling of atmosphericpressure gas discharges leading to plasma production [J]. Journal of Physics D: AppliedPhysics,2005,38(20): R303-R328.
    [56] S. Pancheshnyi, P. Segur, J. Capeillere, et al. Numerical simulation of filamentary dischargeswith parallel adaptive mesh refinement [J]. Journal of Computational Physics,2008,227(13):6574-6590.
    [57] C. K. Birdsall. Particle-in-cell charged-particle simulations, plus Monte Carlo collisions withneutral atoms, PIC-MCC [J]. IEEE Transactions on Plasma Science,,1991,19(2):65-85.
    [58]金晓林.电子回旋共振放电的PIC/MCC模拟[D].电子科技大学,2007.
    [59]卢志琼.直流辉光放电的三维PIC/MCC模拟[D].电子科技大学,2008.
    [60] C. Li, J. Teunissen, M. Nool, et al. A comparison of3D particle, fluid and hybrid simulationsfor negative streamers [J]. Plasma Sources Science&Technology,2012,21(5):055019.
    [61] K. Nanbu. Probability theory of electron-molecule, ion-molecule, molecule-molecule, andCoulomb collisions for particle modeling of materials processing plasmas and gases [J]. IEEETransactions on Plasma Science,2000,28(3):971-990.
    [62] K. H. Schoenbach, H. Chen, G. Schaefer. A model of DC glow discharges with abnormalcathode fall [J]. Journal of Applied Physics,1990,67(1):154-162.
    [63] M. Surendra, D. B. Graves, L. S. Plano. Self-consistent dc glow-discharge simulations appliedto diamond film deposition reactors [J]. Journal of Applied Physics,1992,71(10):5189-5198.
    [64] R. R. Arslanbekov, V. I. Kolobov. Two-dimensional simulations of the transition fromtownsend to glow discharge and subnormal oscillations [J]. Journal of Physics D: AppliedPhysics,2003,36(23):2986.
    [65] V. I. Kolobov, R. R. Arslanbekov. Simulation of electron kinetics in gas discharges [J]. IEEETransactions on Plasma Science,2006,34(3):895-909.
    [66] C. Li, U. Ebert, W. Hundsdorfer. Spatially hybrid computations for streamer discharges withgeneric features of pulled fronts: I. Planar fronts [J]. Journal of Computational Physics,2010,229(1):200-220.
    [67] N. L. Aleksandrov, I. V. Kochetov. Electron rate coefficients in gases under non-uniform fieldand electron density conditions [J]. Journal of Physics D: Applied Physics,1996,29(6):1476.
    [68]彭庆军.空气中流注放电等离子体化学模型研究及其影响因素分析[D].重庆大学,2012.
    [69] T. Farouk, B. Farouk, D. Staack, et al. Simulation of DC atmospheric pressure Argon microglow-discharge [J]. Plasma Sources Science&Technology,2006,15(4):676-688.
    [70] J. Novak, R. Bartnikas. Density profiles, electric field and energy dissipation in a short gapbreakdown: a two-dimensional model [J]. Journal of Physics D: Applied Physics,1988,21(6):896.
    [71] J. P. Novak, R. Bartnikas. Effect of dielectric surfaces on the nature of partial discharges [J].IEEE Transactions on Dielectrics and Electrical Insulation,2000,7(1):146-151.
    [72] V. Nikonov, R. Bartnikas, M. Wertheimer. Surface charge and photoionization effects in shortair gaps undergoing discharges at atmospheric pressure [J]. Journal of Physics D: AppliedPhysics,2001,34(19):2979.
    [73] V. Nikonov, R. Bartnikas, M. R. Wertheimer. The influence of dielectric surface chargedistribution upon the partial discharge behavior in short air gaps [J]. IEEE Transactions onPlasma Science,2001,29(6):866-874.
    [74] P. Paris, M. Aints, F. Valk, et al. Intensity ratio of spectral bands of nitrogen as a measure ofelectric field strength in plasmas [J]. Journal of Physics D: Applied Physics,2005,38(21):3894.
    [75] J. Dutton. A survey of electron swarm data [J]. Journal of Physical and Chemical ReferenceData,1975,4(3):577-856.
    [76] A. J. Davies, C. J. Evans, P. M. Woodison. Simulation of the growth of partially symmetricdischarges between plane-parallel electrodes [J]. Comput Phys Commun,1978,14:287-297.
    [77] R. D'agostino, P. Favia, C. Oehr, et al. Five years of excellence in plasma science [J]. PlasmaProcesses and Polymers,2009,6(1):7-10.
    [78]徐学基,诸定昌.空气放电物理[M].上海;复旦大学出版社.1996.
    [79] F. Tochikubo, H. Arai. Numerical simulation of streamer propagation and radical reactions inpositive corona discharge in N2/NO and N2/O2/NO [J]. Japanese Journal of Applied Physics,2002,41(2A):844-852.
    [80] T. D. Bracken, A. S. Capon, D. V. Montgomery. Ground level electric fields and ion currentson the celilo-sylmar±400kV DC intertie during fair weather [J]. IEEE Transactions on PowerApparatus and Systems,1978,(2):370-378.
    [81] P. S. Maruvada, R. D. Dallaire, O. C. Norris-Elye, et al. Environmental effects of the NelsonRiver HVDC transmission lines-RI, AN, electric field, induced voltage and ion currentdistribution tests [J]. IEEE Transactions on Power Apparatus and Systems,1982,(4):951-959.
    [82] M. Hara, N. Hayashi, K. Shiotsuki, et al. Influence of wind and conductor potential ondistributions of electric field and ion current density at ground level in DC high voltage line toplane geometry [J]. IEEE Transactions on Power Apparatus and Systems,1982,(4):803-814.
    [83] G. B. Johnson. Electric fields and ion currents of a±400kV HVDC test line [J]. IEEETransactions on Power Apparatus and Systems,1983,102(8):2559-2568.
    [84] Y. Amano, Y. Sunaga. Study on reduction in electric field, charged voltage, ion current and iondensity under HVDC transmission lines by parallel shield wires [J]. IEEE Transactions onPower Delivery,1989,4(2):1351-1359.
    [85] G. B. Johnson. Degree of corona saturation for HVDC transmission lines [J]. IEEETransactions on Power Delivery,1990,5(2):695-707.
    [86] W. Deutsch. über die Dichteverteilung unipolarer Ionenstr me [J]. Annalen der Physik,1933,408(5):588-612.
    [87]周坤.超高压直流输电线路的离子流场数值仿真[D].湖南大学,2009.
    [88]赵畹君.高压直流输电工程技术[M].北京:中国电力出版社,2004.
    [89] EPRI Report EL-2257Conductor Development [S]. Palo Alto California USA: EPRI1982.
    [90] M. P. Sarma, W. Janischewskyj. Analysis of corona losses on DC transmission lines:I-unipolar lines [J]. IEEE Transactions on Power Apparatus and Systems,1969,(5):718-731.
    [91] M. P. Sarma, W. Janischewskyj. Analysis of corona losses on DC transmission lines partII-bipolar lines [J]. IEEE Transactions on Power Apparatus and Systems,1969,(10):1476-1491.
    [92] M. P. Sarma, W. Janischewskyj. DC corona on smooth conductors in air. steady-state analysisof the ionisation layer [C]. Proceedings of the Institution of Electrical Engineers,1969.161-166.
    [93]罗兆楠.直流输电线路邻近建筑物时合成电场计算方法及其应用研究[D].华北电力大学,2011.
    [94] Y. Sunaga, Y. Sawada. Method of calculating ionized field of HVDC transmission-lines andanalysis of space-charge effects on RI [J]. IEEE Transactions on Power Apparatus andSystems,1980,99(2):605-615.
    [95] T. Zhao, S. A. Sebo, D. G. Kasten. Calculation of single phase AC and monopolar DC hybridcorona effects [J]. IEEE Transactions on Power Delivery,1996,11(3):1454-1463.
    [96] Y. Yang, J. Y. Lu, Y. Z. Lei. A calculation method for the electric field under double-circuitHVDC transmission lines [J]. IEEE Transactions on Power Delivery,2008,23(4):1736-1742.
    [97] J. G. Leishman. Principles of Helicopter Aerodynamics [M]. Cambridge: CambridgeUniversity Press,2006.
    [98] W. Li, B. Zhang, R. Zeng, et al. Discussion on the deutsch assumption in the calculation ofion-flow field under HVDC bipolar transmission lines [J]. IEEE Transactions on PowerDelivery,2010,25(4):2759-2767.
    [99] P. S. Maruvada. Electric field and ion current environment of HVDC transmission lines:Comparison of calculations and measurements [J]. IEEE Transactions on Power Delivery,2012,27(1):401-410.
    [100] Z. N. Luo, X. Cui, W. D. Zhang, et al. Calculation of the3-D ionized field under HVDCTransmission lines [J]. IEEE Transactions on Magnetics,2011,47(5):1406-1409.
    [101] V. Amoruso, F. Lattarulo. Investigation on the Deutsch assumption: experiment and theory [J].IEE Proceedings-Science, Measurement and Technology,1996,143(5):334-340.
    [102] W. Janischewskyj, G. Cela. Finite element solution for electric fields of coronating DCtransmission lines [J]. IEEE Transactions on Power Apparatus and Systems,1979,(3):1000-1012.
    [103] T. Takuma, T. Ikeda, T. Kawamoto. Calculation of ion flow fields of HVDC transmission linesby the finite element method [J]. IEEE Transactions on Power Apparatus and Systems,1981,(12):4802-4810.
    [104] T. Takuma, T. Kawamoto. A very stable calculation method for ion flow field of HVDCtransmission lines [J]. IEEE Transactions on Power Delivery,1987,2(1):189-198.
    [105] T. B. Lu, H. Feng, Z. B. Zhao, et al. Analysis of the electric field and ion current density underultra high-voltage direct-current transmission lines based on finite element method [J]. IEEETransactions on Magnetics,2007,43(4):1221-1224.
    [106] J. Liu, J. Zou, J. H. Tian, et al. Analysis of Electric Field, Ion flow density, and corona loss ofsame-tower double-circuit HVDC lines using improved FEM [J]. IEEE Transactions on PowerDelivery,2009,24(1):482-483.
    [107] T. B. Lu, H. Feng, X. Cui, et al. Analysis of the Ionized Field Under HVDC TransmissionLines in the Presence of Wind Based on Upstream Finite Element Method [J]. IEEETransactions on Magnetics,2010,46(8):2939-2942.
    [108] Y. Z. Zhen, X. Cui, T. B. Lu, et al. High efficiency FEM calculation of the ionized field underHVDC transmission lines [J]. IEEE Transactions on Magnetics,2012,48(2):743-746.
    [109]甄永赞,崔翔,罗兆楠,等.直流输电线下存在建筑物时合成电场计算的有限元方法[J].中国电机工程学报,201131(9):120-125.
    [110] W. Li, B. Zhang, J. L. He, et al. Boundary condition improvements on ion flow fieldcalculation of HVDC bipolar transmission lines [C]. International Conference on High VoltageEngineering and Application. Chongqing.2008:245-248.
    [111] W. Li, B. Zhang, J. L. He, et al. Ion Flow Field Calculation of Multi-circuit DC TransmissionLines [C]. International Conference on High Voltage Engineering and Application. Chongqing.2008:16-19.
    [112] W. Li, B. Zhang, J. L. He, et al. Research on Calculation method of ion flow field undermulti-circuit HVDC transmission lines [C].20th International Zurich Symposium onElectromagnetic Compatibility. Switzerland.2009:161-164.
    [113] G. D. Huang, J. J. Ruan, Z. Y. Du, et al. Highly stable upwind FEM for solving ionized field ofHVDC transmission line [J]. IEEE Transactions on Magnetics,2012,48(2):719-722.
    [114] B. L. Qin, J. N. Sheng, Z. Yan, et al. Accurate calculation of ion flow field under HVDCbipolar transmission lines [J]. IEEE Transactions on Power Delivery,1988,3(1):368-376.
    [115] X. Li. Numerical analysis of ionized fields associated with HVDC transmission linesincluding effect of wind [D]. The University of Manitoba,1997.
    [116] H. Yin, B. Zhang, J. L. He, et al. Time-domain finite volume method for ion-flow fieldanalysis of bipolar high-voltage direct current transmission lines [J]. IET generation,transmission&distribution,2012,6(8):785-791.
    [117]Y. P. Raizer, V. I. Kisin, J. E. Allen. Gas Discharge Physics [M]. Berlin: Springer-Verlag Berlin,1991.
    [118] T. J. Sommerer, M. J. Kushner. Numerical Investigation of the kinetics and chemistry of rfglow-discharge plasmas sustained in He, N2, O2, He/N2/O2, He/CF4/O2, and SiH4/NH3using amonte-carlo-fluid hybrid model [J]. Journal of Applied Physics,1992,71(4):1654-1673.
    [119] A. Luque, U. Ebert, C. Montijn, et al. Photoionization in negative streamers: Fastcomputations and two propagation modes [J]. Applied Physics Letters,2007,90(8):081501.
    [120] M. B. Zhelezniak, A. K. Mnatsakanian, S. V. Sizykh. Photoionization of nitrogen and oxygenmixtures by radiation from a gas discharge [J]. High Temperature Science,1982,20:357-362.
    [121] P. Segur, A. Bourdon, E. Marode, et al. The use of an improved Eddington approximation tofacilitate the calculation of photoionization in streamer discharges [J]. Plasma Sources Science&Technology,2006,15(4):648-660.
    [122] U. Ebert, D. D. Sentman. Streamers, sprites, leaders, lightning: from micro-to macroscales [J].Journal of Physics D: Applied Physics,2008,41(23):230301.
    [123] S. Rauf, M. J. Kushner. Model for noncollisional heating in inductively coupled plasmaprocessing sources [J]. Journal of Applied Physics,1997,81(9):5966-5974.
    [124] X. M. Zhu, M. G. Kong. Electron kinetic effects in atmospheric dielectric-barrier glowdischarges [J]. Journal of Applied Physics,2005,97(8):083301.
    [125] J. J. Shi, M. G. Kong. Mode characteristics of radio-frequency atmospheric glow discharges[J]. IEEE Transactions on Plasma Science,2005,33(2):624-630.
    [126]刘兴华.基于流体-化学反应混合模型的空气放电机理及特性研究[D].重庆大学,2012.
    [127]廖瑞金,伍飞飞,刘兴华,等.大气压直流正电晕放电暂态空间电荷分布仿真研究[J].物理学报,2012,61(21):245201.
    [128] S. V. Pancheshnyi, A. Y. Starikovskii. Two-dimensional numerical modelling of thecathode-directed streamer development in a long gap at high voltage [J]. Journal of Physics D:Applied Physics,2003,36(21):2683-2691.
    [129] T. Farouk, B. Farouk, A. Gutsol, et al. Atmospheric pressure methane–hydrogen DCmicro-glow discharge for thin film deposition [J]. Journal of Physics D: Applied Physics,2008,41(17):175202.
    [130] R. S. Brokaw. Predicting transport properties of dilute gases [J]. Industrial&EngineeringChemistry Process Design and Development,1969,8(2):240-253.
    [131] R. Krishna, J. A. Wesselingh. The Maxwell-Stefan approach to mass transfer [J]. ChemicalEngineering Science,1997,52(6):861-911.
    [132] P. D. Neufeld, A. R. Janzen, R. A. Aziz. Empirical equations to calculate16of the transportcollision integrals for the Lennard-Jones (12-6) Potential [J]. Journal of Chemical Physics,1972,57(3):1100.
    [133] M. Z. Tokar. Numerical solution of momentum balance equations for plasmas with two ionspecies [J]. Journal of Computational Physics,2011,230(7):2696-2705.
    [134] X. H. Liu, W. He, F. Yang, et al. Numerical simulation and experimental validation of a directcurrent air corona discharge under atmospheric pressure [J]. Chinese Physics B,2012,21(7):075201.
    [135] W. He, X. H. Liu, F. Yang, et al. Numerical simulation of direct current glow discharge in airwith experimental validation [J]. Japanese Journal of Applied Physics,2012,51(2):026001.
    [136] W. He, X. H. Liu, R. C. Xian, et al. Kinetics characteristics and bremsstrahlung of argon DCdischarge under atmospheric pressure [J]. Plasma Science&Technology,2013,15(4):335-342.
    [137]伍飞飞,廖瑞金,杨丽君,等.棒-板电极直流负电晕放电特里切尔脉冲的微观过程分析[J].物理学报,2013,62(11):115201.
    [138] W. X. Sima, Q. J. Peng, Q. Yang, et al. Local electron mean energy profile of positive primarystreamer discharge with pin-plate electrodes in oxygen-nitrogen mixtures [J]. Chinese PhysicsB,2013,22(1):015203.
    [139] W. X. Sima, Q. J. Peng, Q. Yang, et al. Study of the characteristics of a streamer discharge inair based on a plasma chemical model [J]. IEEE Transactions on Dielectrics and ElectricalInsulation,2012,19(2):660-670.
    [140] A. El Saghir, S. Shannon. Reduction of EEDF measurement distortion in regularized solutionsof the Druyvesteyn relation [J]. IEEE Transactions on Plasma Science,2011,39(1):596-602.
    [141] G. J. M. Hagelaar, L. C. Pitchford. Solving the Boltzmann equation to obtain electron transportcoefficients and rate coefficients for fluid models [J]. Plasma Sources Science&Technology,2005,14(4):722-733.
    [142] A. V. Phelps, L. C. Pitchford. Anisotropic scattering of electrons by N2and its effect onelectron transport [J]. Physical Review A,1985,31(5):2932.
    [143] BOLSIG.2005CPAT: http://www.codiciel.fr/plateforme/plasma/bolsig/bolsig.php.
    [144] I. B. Bernstein, T. Holstein. Electron energy distributions in stationary discharges [J]. PhysicalReview,1954,94(6):1475.
    [145] H. Date, Y. Sakai, H. Tagashira. Boltzmann equation analysis of electron collision crosssections and swarm parameters for krypton [J]. Journal of Physics D: Applied Physics,1989,22(10):1478.
    [146] H. Brunet, P. Vincent. Predicted electron-transport coefficients at high E/N values. I.Hydrogen [J]. Journal of Applied Physics,2008,50(7):4700-4707.
    [147] Y. Sakai, H. Tagashira, S. Sakamoto. The development of electron avalanches in argon at highE/N values. I. Monte Carlo simulation [J]. Journal of Physics D: Applied Physics,1977,10(7):1035.
    [148] S. D. Rockwood. Elastic and inelastic cross sections for electron-Hg scattering from Hgtransport data [J]. Physical Review A,1973,8(5):2348.
    [149] J. L. Blank. Collision-dominated positive column of a weakly ionized gas [J]. Physics ofFluids (1958-1988),2003,11(8):1686-1698.
    [150] C. Opal, E. Beaty, W. Peterson. Tables of secondary-electron-production cross sections [J].Atomic Data and Nuclear Data Tables,1972,4:209-253.
    [151] D. Scharfetter, H. K. Gummel. Large-signal analysis of a silicon read diode oscillator [J].IEEE Transactions on Electron Devices,1969,16(1):64-77.
    [152] W. Morgan, B. Penetrante. Elendif: A time-dependent Boltzmann solver for partially ionizedplasmas [J]. Computer Physics Communications,1990,58(1):127-152.
    [153] Q. Wang, D. J. Economou, V. M. Donnelly. Simulation of a direct current microplasmadischarge in helium at atmospheric pressure [J]. Journal of Applied Physics,2006,100(2):023301.
    [154] G. J. M. Hagelaar, F. J. De Hoog, G. M. W. Kroesen. Boundary conditions in fluid models ofgas discharges [J]. Physical Review E,2000,62(1):1452-1454.
    [155] T. N. Tran, I. O. Golosnoy, P. L. Lewin, et al. Numerical modelling of negative discharges inair with experimental validation [J]. Journal of Physics D: Applied Physics,2011,44(1):015203.
    [156] S. Pancheshnyi. Role of electronegative gas admixtures in streamer start, propagation andbranching phenomena [J]. Plasma Sources Science and Technology,2005,14(4):645-653.
    [157]杜宏亮,何立明,兰宇丹,等.约化场强对氮-氧混合气放电等离子体演化特性的影响[J].物理学报,2011,60(11):449-454.
    [158] M. S. Shephard. Approaches to the automatic generation and control of finite element meshes[J]. Applied Mechanics Reviews,1988,41:169-185.
    [159] K. Ho-Le. Finite element mesh generation methods: a review and classification [J].Computer-aided design,1988,20(1):27-38.
    [160] P. G. C. Almeida, M. S. Benilov, M. J. Faria. Multiple solutions in the theory of DC glowdischarges [J]. Plasma Sources Science and Technology,2010,19(2):025019.
    [161] M. S. Benilov, M. J. Faria. Stability of direct current transfer to thermionic cathodes: II.Numerical simulation [J]. Journal of Physics D: Applied Physics,2007,40(17):5083.
    [162] J. Cheng, J. Lin Hong, Z. Yu, et al. Fluid model of inductively coupled plasma etcher based onCOMSOL [J]. Journal of Semiconductors,2010,31(3):032004.
    [163] M. Akel, S. A. Salo, C. S. Wong. Electron Temperature Measurement of Argon FocussedPlasma Based on Non-local Thermodynamic Equilibrium Model [J]. Journal of Fusion Energy,2013,32(3):350-354.
    [164] E. Marode, F. Bastien, M. Bakker. Model of the streamer-induced spark formation based onneutral dynamics [J]. Journal of Applied Physics,1979,50(1):140-146.
    [165]洪布双,苑涛,邹帅,等.电负性气体的掺入对容性耦合Ar等离子体的影响[J].物理学报,2013,62(11):115202.
    [166]张文静.大气压介质阻挡放电物理过程的数值模拟[D].东华大学,2007.
    [167] H. Conrads, M. Schmidt. Plasma generation and plasma sources [J]. Plasma Sources Scienceand Technology,2000,9(4):441-454.
    [168] B. Eliasson, U. Kogelschatz. Nonequilibrium volume plasma chemical processing [J]. IEEETransactions on Plasma Science,1991,19(6):1063-1077.
    [169] J. B. Yang, Y. Izawa, K. Nishijima. Spectroscopic image processing and space charge field forpositive dc glow corona discharge in atmosphere [C]. Proceedings of the6th InternationalConference on Properties and Applications of Dielectric Materials. Xi'an; IEEE.2000:813-816.
    [170] R. Sigmond. The residual streamer channel: Return strokes and secondary streamers [J].Journal of Applied Physics,1984,56(5):1355-1370.
    [171] R. J. Liao, F. F. Wu, X. H. Liu, et al. Numerical simulation of transient space chargedistribution of DC positive corona discharge under atmospheric pressure air [J]. Acta PhysicaSinica,2012,61(24):245201.
    [172] K. Sekimoto, M. Takayama. Dependence of negative ion formation on inhomogeneous electricfield strength in atmospheric pressure negative corona discharge [J]. The European PhysicalJournal D,2008,50(3):297-305.
    [173]陈晓鑫.基于模拟电荷法的高压直流输电线路下合成电场的仿真计算[D].重庆大学,2011.
    [174]冯晗.高压直流输电线路离子流场计算及其工程应用[D].华北电力大学,2006.
    [175] Y. S. Zheng, J. L. He, B. Zhang, et al. Photoemission replenishment criterion for inception ofnegative corona discharges in air [J]. IEEE Transactions on Power Delivery,2011,26(3):1980-1987.
    [176]郑跃胜.高压直流导线的电晕场特性研究[D].清华大学,2012.
    [177]甄永赞.高压直流输电线路离子流场的高效数值方法及其应用的研究[D].华北电力大学,2012.
    [178]倪光正,杨仕友.工程电磁场数值计算[M].北京:机械工业出版社,2004.
    [179]刘有为,李继红,李斌.空气密度和湿度对导线电晕特性的影响[J].电网技术,1990,14(4):46-50.
    [180]安冰.湿度对电晕笼中导线直流电晕特性的影响[D].华北电力大学,2009.
    [181]惠建峰,关志成,王黎明,等.正直流电晕特性随气压和湿度变化的研究[J].中国电机工程学报,2007,27(33):53-58.
    [182]窦植.海拔、气压、气温、相对湿度与空气密度的关系及其影响电工产品之分级问题的探讨[J].环境技术,1986,4:6-10.
    [183]蒋兴良,孙才新,舒立春,等.正棒-板短间隙雷电冲击放电电压的海拔修正[J].重庆大学学报(自然科学版),2003,26(3):77-81.
    [184]胡琴,舒立春,蒋兴良,等.大气参数对导线交流起晕电压的影响及校正[J].电网技术,2010,24(11):70-76.
    [185]林锐.直流正极性下导线电晕放电特性及影响因素的研究[D].重庆大学,2009.
    [186]欧阳科文.直流导线电晕起晕电压的影响因素及计算方法研究[D].华北电力大学,2012.
    [187] F. W. Peek. Dielectric Phenomena in High Voltage Engineering [M]. Newyork: McGraw-HillBook Company, Incorporated,1920.
    [188]胡守松,李健,马凌,等.±1100kV特高压直流输电线路对地及交叉跨越距离[J].电力建设,2012,33(10):25-28.
    [189]李先志,梁明,李澄宇,等.±1100kV特高压直流输电线路按电磁环境条件的导线设计[J].高电压技术,2012,38(12):3284-3291.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700