金属表面等离子电解沉积强化层制备及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
等离子体电解沉积是一类新颖而高效的表面处理技术,可在金属表面形成较厚的冶金结合强化层,因此,在金属表面强化与功能化改性方面具有广阔的应用前景。近些年来该技术得到了国内外材料研究领域的专家以及涉及金属产品表面强化与装饰的企业的广泛关注,发展很快。然而,在理论与工程技术等方面尚存许多问题需要研究解决。本文主要开展了以下几方面研究工作:1)铝表面等离子体电解氧化;2)铝表面等离子体电解氧化及其强化与刷镀;3)Q235钢表面间接等离子体电解氧化;4) Q235钢表面等离子体电解溶渗;5) W_9Mo_5Cr_4V_2高速钢ESD-PED复合表面改性。
     在铝表面等离子体电解氧化方面系统研究了等离子体氧化过程中电学参量、陶瓷层的厚度、表面形貌特征、相组成等随时间的变化规律和微观机理,以及陶瓷层的耐磨耐蚀性能等。研究表明:等离子体电解氧化过程中处理液的组分也参与到反应当中,并成为陶瓷层的一部分;陶瓷层厚度主要与电流密度和处理时间有关,不同电流密度下存在不同的最佳处理时间,电流密度越小,最佳处理时间越短;陶瓷层内残留的放电通道尺寸随时间延长而增大,数目减少,并依此建立物理模型推导出放电通道处温度升高速率与工艺参数及材料常数的关系式。
     在铝表面等离子体电解氧化及其强化与刷镀方面主要研究了几种添加剂,以及添加剂与超声波共同作用对陶瓷层的生长速度与性能的影响,提出并初步研究了刷镀等离子体电解氧化陶瓷层及其电绝缘特性。研究表明:电解液内添加重铬酸钾K_2Cr_2O_7后形成的陶瓷层很致密,有大理石质感,陶瓷层的成膜速率也有显著提高,而钨酸钠,氟化钾,硼砂和纳米氧化铝粉末等其它几种添加剂效果不明显,有的甚至产生负作用,如增大放电通道尺寸;超声波对等离子体电解氧化过程具有明显的促进作用,有效地提高了陶瓷层的生长速率、硬度、耐磨性与耐磨性;刷镀等离子体电解氧化具有不受电解槽的尺寸和电源功率限制,并且可以方便地对工件进行局部陶瓷化处理等优点;陶瓷层的击穿电压随陶瓷层厚度增加而升高,而击穿场强随厚度增加而下降。
     在Q235钢复合等离子体电解氧化研究中分别开展了有关热浸镀铝层和经感应重熔的电弧喷铝层作为中介层进行等离子体电解氧化的模拟、试验与理论研究。研究表明,这两种复合强化技术均可在钢表面获得冶金结合的复合涂层,明显提高了钢表面耐蚀性和耐磨性。
     在Q235钢等离子体电解溶渗研究中,系统研究了电解液、电压、处理时间、极间距等工艺规范的影响情况,研究表明:采用KCl-C_2H_5ONH_2电解液体系对Q255钢进行液相等离子体电解碳氮共渗处理,效果很显著,而采用KCl-HCONH_2 and KCl-CO(NH_2)2电解液体系未能获得明显有效的渗层或电解液发生快速分解失效。对采用KCl-C_2H_5ONH_2电解液体系进行液相等离子体电解碳氮共渗处理开展了系统研究工作,获得了一系列重要研究结果。
     在W_9Mo_5Cr_4V_2高速钢PED-ESD复合表面改性研究中,以W_9Mo_5Cr_4V_2高速钢为基体,YG8硬质合金为电极,开展了工艺与组织性能试验研究工作。研究表明,新方法的成膜速率明显高于ESD技术,形成的金属陶瓷涂层耐磨性也明显优于ESD技术。
     本文的主要创新点如下:在理论上,1)根据等离子体电解氧化陶瓷层表面形貌的进化过程建立物理模型,获得了放电通道温度升高速率公式,并据此计算了铝表面等离子体电解氧化放电通道瞬间温度;2)在现有感应重熔理论基础上,获得了对电弧喷涂层感应重熔过程具有指导意义的断面温度分布公式;3)在分析等离子体电解氧化机理基础上,提出击穿阻抗概念和诱发微缺陷促进等离子体电解氧化陶瓷层均匀化节能生长理论。在技术上,1)将热浸镀铝和热喷铝感应重熔作为预处理手段,成功地将等离子体电解氧化技术用于Q235钢表面陶瓷化处理;2)提出并研究极间相对运动等离子体电解氧化工艺,为大工件强化或局部强化提供条件;3)提出并采用超声波技术显著推动等离子体电解氧化过程;4)电解液中引入适量重铬酸钾显著提高了等离子体电解氧化陶瓷层的致密性和生长速度;5)提出并采用火花放电-等离子体电解复合技术在W_9Mo_5Cr_4V_2高速钢表面快速获得了高硬、耐磨金属陶瓷层。
Plasma electrolytic disposition (PED) is a kind of novel and effective surface engineering technique that can be used to prepare metallurgically bonded ceramic coatings on metals, so it possesses broad application prospects and has been given a wide attention by specialists in metal material researching field and enterprisers in metal product manufacturing field all over the world recent years, developing quickly. However, there are still plenty of projects to research no matter in theory and engineering technology. Main research aspects included in this dissertation are 1) Plasma electrolytic oxidation on aluminum surface; 2) Enhancement and brush plating of plasma electrolytic oxidation on aluminum surface; 3) Hybrid plasma electrolytic oxidation on Q235 steel surface; 4) Plasma electrolytic saturation on Q235 steel surface; 5) ESD-PED hybrid surface modification on W_9Mo_5Cr_4V_2 high speed steel.
     In plasma electrolytic oxidation on aluminum surface, the evolution law and mechanism of electric parameters, coating thickness, surface micro-morphology, coating composition were investigated in order to understand the growth characteristics of PEO ceramic coatings. Wear and corrosion resistances were also evaluated. The results show that, species from the electrolyte also take part in the PEO process and can be one of elements making up the ceramic coatings; The thickness of the ceramic coatings is mainly dependent on PEO current density and treatment time, there are different optimum treatment times at different densities, and the lower the current density, the shorter the optimum time; The size of the remaining discharge channels in the coatings increases and population of the channels decreases with treatment time; A physical model was set up according to the evolution law above, and a formulation was derived from the physical model.
     In the section on enhancement and brush plating of plasma electrolytic oxidation, effects of additives and ultrasonic wave on growth rate and properties of the ceramic coatings were investigated, and brush plating method of plasma electrolytic oxidation was proposed and electric isolation property of the ceramic coatings prepared with the new method was investigated. The results show that, density and growth rate of the ceramic coatings formed in the electrolyte with additive K_2Cr_2O_7 are improved very obviously, but Na_2WO_4, KF, Na_2B_4O_7, Al_2O_3 and some other additives did not play obvious positive roles, even played some negative roles, such as making discharge channels large; Ultrasonic wave has very obvious promotion influence on the plasma electrolytic oxidation process, so that the growth rate, hardness, wear resistance and corrosion resistance of the PEO coatings increase greatly under ultrasonic wave; The brush plating plasma electrolytic oxidation make the plasma electrolytic oxidation of large work-pieces not to be limited by size of the electrolyte tank and volume of the power supply; In addition, work-pieces can be treated partially with plasma electrolytic oxidation process; The breakdown voltage of the ceramic coatings prepared with brush plating plasma electrolytic oxidation increases with the thickness of the coatings, but breakdown strength of the coatings decreases with the thickness.
     In the section on hybrid electrolytic oxidation on Q235 steel, hot-dipped aluminum coatings and arc sprayed aluminum coatings after inductively heated were prepared as medium coatings of the plasma electrolytic oxidation process, and relative simulation, experiment and theory researches were done. The results show that the plasma electrolytic oxidation process can be applied to prepare oxide ceramic coatings metallurgically bonded on Q235 steel substrates by means of hot dipping aluminum or arc spraying aluminum induction-heated before the PEO process; The coatings can increase significantly corrosion and wear resistances of the steel substrate surface.
     In the section of plasma electrolytic saturation on Q235 steel, effects of some process factors such as electrolyte, voltage, treatment time, electrode distance on the process were investigated. The results show that, KCl-C_2H_5ONH_2 electrolyte is very effective to prepare ceramic coatings containing carbides and nitrides on Q235 steel with the plasma electrolytic saturation process, however, KCl-HCONH_2 and KCl-CO(NH_2)_2 electrolytes are not effective to do so. A series of excellent research results were obtained through some systematical investigations with KCl-C_2H_5ONH_2 electrolyte.
     In the section of ESD-PED hybrid surface modification on W_9Mo_5Cr_4V_2 high speed steel, the microstructure and properties of the ceramic coatings prepared on the W_9Mo_5Cr_4V_2 substrate with the YG8 electrode rod and the hybrid surface modification process were investigated. The results show that the new process is much better than the ESD one in growth rate, wear resistance of the coatings.
     Main new points in theory are as follows: 1) A physical model was set up and a formula was derived on temperature rising of discharge channels during plasma electrolytic oxidation process, and the instantaneous temperature of discharge channels in the plasma electrolytic oxidation coatings on aluminum was calculated; 2) Based on the previous induction re-melting theory, a temperature distribution formula was derived along the coating depth during the induction re-melting of the arc spraying aluminum coatings on steels; 3)A breakdown resistance concept and a theory on defect induction to promote energy saving growth and densification of plasma electrolytic oxidation coatings were proposed. Main new points in technology are as follows: 1) Hot dipping aluminum and arc spraying aluminum were used as pretreatment steps respectively and plasma electrolytic oxidation ceramic coatings were successfully formed on Q235 steel; 2)Plasma electrolytic oxidation process by relative movement between electrodes was proposed and some research work was carried out; 3)Ultrasonic wave vibration was adopted in the plasma electrolytic oxidation process, the process was driven notably; 4)K_2Cr_2O_7 added into the electrolyte played a rather great role in densification and growth rate of the plasma electrolytic oxidation coatings; 5)A ESD-PED process was proposed based on the idea for combining the advantages of both plasma electrolytic disposition (PED) and electric spark disposition (ESD), and a hard and wear resistant metal ceramic coating was formed on W_9Mo_5Cr_4V_2 high speed steel.
引文
1 L. Tonks and I. Langmuir, Oscillation in ionized gases. Physics Reviews, 1929, 195: 33-34
    2 N. A. Krall and A. W, Trivelpiece. Principles of plasma physics. New York: McGraw-Hill Book Company, 1973: p67
    3赵化侨.等离子体化学与工艺.中国科学技术大学出版社,合肥. 1993: p78
    4赵化侨.等离子体化学及其应用.大学化学, 1994, 9 (4): 1-5
    5 P. N. Graneau, Electrodynamic explosions in liquids. Applied Physics Letters, 1985, 46(5):468-470
    6 K.R. Stalder, J. Woloszko, I.G. Brown and C.D. Smith, Repetitive plasma discharges in saline solutions. Applied Physics Letters, 2001, 79(27):4503-4505
    7 A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews and S.J. Dowey, Plasma electrolysis for surface engineering. Surface Coatings & Technology,1999, 122 (2-3):73-93
    8 W. McNiell and L.L. Gruss, US Patent 3 293 158, 1966.
    9 W. McNiell and G.F. Nordbloom, US Patent 2 854 390, 1958.
    10 L.L. Gruss and William Mcneil, Anodic spark reaction products in aluminate tungstate and silicate solutions. Electrochemical Technology, 1964, 1 (8-9):73-77
    11 M.William and L.L. Gruss, Anodic film growth by anion deposition in aluminate tungstate and silicate solutions. Journal of Electrochemical Society, 1963, 1 (9-10):283-287
    12 G.A. Markov and G.V. Markova, USSR Patent 526 961, Bul. Inv. 32, 1976.
    13 P. Kurze, W. Krysmann and J. Schreckenback, Colored ANOF Layers on Aluminum. Crystal Research Technology, 1987, 22 (1):53-58
    14 S.D. Brown, K.J. Kuna and T .B. Van, Anodic spark deposition from aqueous solutions of NaAlO2 and Na2SiO3. Journal of American Ceramics Society, 1971, 54(8):384-390
    15 T.B. Van, S.D. Brown and G.P. Wirtz, Mechanism of anodic spark deposition. American Ceramics Society Bullet, 1977, 56(6):563-566
    16 S. Ikonopisov, Theory of electrical breakdown during formation of barrier anodic films. Electrochimica Acta, 1977, 22 (10):1077-1082
    17 S. Ikonopisov, A. Girginov and M. Machkova,. Post-breakdown anodization of aluminum. Electrochimica Acta,1977, 22 (11):1283-1286
    18 X. Nie, H.Q. Kai, A novel modification technique for metal surface. Journal of Wuhan University Technology Materials, Nature Science Edition, 1996, 11 (1):28-35
    19 W. Xue, Z. Deng, Y. Lai and R. Chen, Analysis of phase distribution for ceramic coatings formed by micro-arc oxidation on aluminum alloy. Journal of American Ceramics Society, 1998, 81(5):1365-1368
    20刘凤岭,骆更新,毛立信.微弧氧化与材料表面陶瓷化.材料保护,1998, 31(3):22-24
    21 S.F. Luk, T.P. Leung, W.S. Miu and I. Pashby, A study of the effects of average preset voltage on effective case depth during electrolytic surface-hardening. Materials Characterisation, 1999, 42 (2-3):65-71
    22 B.R. Lazarenko and N.I. Lazarenko, Electric spark treatment of metals, Gosenergoizdat, Moscow, 1950: p56
    23 V.N. Duradzhy and A.S. Parsadanyan, Metal heating in electrolytic plasma, Shtiintsa, Kishinev, 1988: p44
    24 P.A. Dearnley, J. Gummersbach and H. Weiss, The Sliding Wear Resistance and Frictional Characteristics of Surface Modified Aluminum Alloys Under Extreme Pressure. Wears, 1999, 225 (1): 127-134
    25 V.N. Duradzhy and A.S. Parsadanyan, Metal Heating in Electrolytic Plasma, Shtiintsa, Kishinev, 1988: p86.
    26 V.I. Tchernenko, L.A. Snezhko and I.I. Papanova, Coatings by Anodic Spark Electrolysis, Khimiya, Leningrad, 1991: p28
    29 Y.N. Tyurin and A.D. Pogrebnjak, Electric heating using a liquid electrode. Surface Coatings & Technology, 2001, 142:293-299
    30 T. Mizuno,T. Ohmor, T. Akimoto and A. Takahashi, Production of heat plasma electrolysis in liquid. Japanese Journal of Applied Physics, 2000, 39(10):6055-6061
    31 S.F. Luk, T. P. Leung, W. S. Miu and I. Pashby, Heating performance of electrolytic heat-treatment in aqueous solution by pulse current. Journal of Materials Process Technology, 1997, 63:833-838
    32 S. F. Luk, T. P. Leung, W. S. Miu and I. Pashby, Development of electrolytic heat-treatment in aqueous solution. Journal of Materials Process Technology, 1998, 84:189-192
    33 S.F. Luk, T.P. Leung, W.S. Miu and I. Pashby, A study of the effect of average preset voltage onhardness during electrolytic surface-hardening in aqueous solution. Journal of Materials Process Technology, 1999, 91 (1-3):245-249
    34 E.V. Parfenov, R.R. Nevyantseva and S.A. Gorbatkov, Process control for plasma electrolytic removal of TiN coatings. Part 1: Duration control. Surface Coatings Technology, 2005, 199 (2-3):189-197
    35 E.V. Parfenov, R.R. Nevyantseva and S.A. Gorbatkov, Process control for plasma electrolytic removal of TiN coatings. Part 2: Voltage control. Surface Coatings & Technology, 2005, 199 (2-3):198-204
    36 X. Nie, C. Tsotsos, A. Wilson, A. L. Yerokhin, A. Leyland and A. Matthews, Characteristics of a plasma electrolytic nitrocarburising treatment for stainless steels, Surface Coatings & Technology, 2001,139 (2-3): 135-142.
    37 C. Tsotsos, A. L. Yerokhin, A. D. Wilson, A. Leyland and A. Matthews, Tribological evaluation of AISI 304 stainless steel duplex treated by plasma electrolytic nitrocarburising and diamond-like carbon coating. Wear, 2002, 253 (9-10):986-993
    38 M. Tarakci, K. Korkmaz, Y. Gencer and M. Usta, Plasma electrolytic surface carburizing and hardening of pure iron. Surface Coatings & Technology,2005, 199 (2-3):205-212
    39 S.V. Ivanov, N.S. Salmanov and M.N. Salmanov, Borosulfocabonitriding of cutting tools in electrolyte plasma. Metal Science & Heat Treatment, 2002, 44 (9-10):405-406
    40 X.M. Li and Y. Han, Porous nanocrystalline Ti(CxN1 ? x) thick films by plasma electrolytic carbonitriding. Electrochemistry Communications, 2006, 8 (2): 267-272
    41安运铮.热处理工艺学.北京:机械工业出版社, 1982: 290-301
    42聂学渊.快速表面改性技术研究.金属热处理, 1997 (3): 19-22
    43 A.L. Yerokhin, A. Leyland and C. Tsotsos, Duplex surface treatments combining plasma electrolytic nitrocarburising and plasma-immersion ion-assisted deposition. Surface Coatings & Technology, 2001, 142–144: 1129-1136
    44查全性.电极过程动力学导论.第二版.北京:科学出版社, 1987: p76
    45 M.J. Dignam, in J.W. Diggle (ed.), Oxide and oxide films, Vol.1, Marcal Dekker, New York, 1972: p102
    46 M. N. Denise, Characterization of anodic oxide films. PhD Thesis. Texas A&M University, U.S., 1994: p46
    47 L. Rama Krishna, A. Sudha Purnima and G. Sundararajan, A comparative study of tribological behavior of micro-arc oxidation and hard-anodized coatings. Wear, 2006, 261 (10):1095-1101
    48薛文斌,邓志威,来永春,陈如意,张通和.有色金属表面微弧氧化技术评述.金属热处理, 2000, (1):1-3
    49 C.T. Wu and F. Lu, Electrochemical deposition of barium titanate films using a wide electrolytic voltage range. Thin Solid Films, 2001,398-399:621-625
    50 A.L.Yerokhin, A.Leyland and A.Matthews, Kinetic aspects of aluminium titanate layer formation on titanium alloys by plasma electrolytic oxidation. Applied Surface Science, 2002, 200 (1-4):172-184
    51 T. H. Teh, A. Berkani, S. Mato, P. Skeldon, G. E. Thompson, H. Habazaki and K. Shimizu, Initial stages of plasma electrolytic oxidation of titanium. Corrosion Science, 2003, 45 (12):2757-2768
    52 F.H. Lu, C.Y. Wu and C.Y. Hung, Barium titanate films synthesized by an anodic oxidation-based electrochemical method. Surface Coatings & Technology, 2002, 153 (2-3):276-283
    53 S.V. Gnedenkov, P.S. Gordienko, O.A. Khrisanfova, T.M. Scorobogatova and S.L. Sinebrukhov, Formation of BaTiO3 coatings on titanium by microarc oxidation method. Journal of Materials Science, 2002,37 (11): 2263-2265
    54 Y.M. Wang, B.L. Jiang, L.X. Guo and T.Q. Lei, Controlled synthesis of microarc oxidation coating on Ti6Al4Valloy and its antifriction properties. Materials Science Technology, 2004, 20 (12):1590-1594
    55 Z.P. Yao, Z.H. Jiang, S.G. Xin, X.T. Sun and X.H. Wu, Electrochemical impedance spectroscopy of ceramic coatings on Ti-6Al-4V by micro-plasma oxidation. Electrochimica Acta, 2004, 50 (16-17):3273-3279
    56 X.T. Sun, Z.H. Jiang, Z.P. Yao and X.L. Zhang, The effects of anodic and cathodic processes on the characteristics of ceramic coatings formed on titanium alloy through the MAO coating technology. Applied Surface Science, 2005, 252 (2): 441-447
    57 X. Nie, A. Leyland and A. Matthews, Deposition of layered bioceramic hydroxyapatite/TiO2 coatings on titanium alloys using a hybrid technique of micro arc oxidation and electrophoresis. Surface Coatings & Technology, 2000, 125 (1-3):407-414
    58 Y.T. Sul, C. Johansson, E. Byon and T Albrektsson, The bone response of oxidized bioactive andnon-bioactive titanium implants. Biomaterials, 2005,26 (33):6720-6730
    59 P.Huang, K.W. Xu and Y. Han, Preparation and apatite layer formation of plasma electrolytic oxidation film on titanium for biomedical application. Materials Letters, 2005, 59 (2-3):185-189
    60 J.F. Li, L. Wan and J.Y. Feng, Study on the preparation of titania films for photocatalytic application by micro-arc oxidation. Solar Energy Materials C, 2006, 90 (15):2449-2455
    61 Y.K. Shin, W.S. Chae, Y.W. Song and Y.M. Sung, Formation of titania photocatalyst films by microarc oxidation of Ti and Ti–6Al–4V alloys. Electrochemistry Communications, 2006, 8(3):465-470
    62 Y.J. Wang, K.H. Nan, X.F. Chen, C.Y Ning, L.Y. Wang and N.R. Zhao, Characterization of bioactive ceramic coatings prepared on titanium implants by micro-arc oxidation. Rare Metals., 2006, 25 (1):84-89
    63 O.Khaselev, D.Weiss and J.Yahalom, Anodizing of pure magnesium in KOH Aluminate solutions under sparking. Journal of Electrochemtry Society, 1999, 146 (5):1757-1761
    64 H.F. Guo, M.Z. An, S. Xu and H.B Huo, Formation of oxygen bubbles and its influence on current efficiency in micro-arc oxidation process of AZ91D magnesium alloy. Thin Solid Films, 2005, 485 (1-2):53-58
    65 M. Boinet, S. Verdier, S. Maximovitch and F. Dalard, Plasma electrolytic oxidation of AM60 magnesium alloy: Monitoring by acoustic emission technique. Surface Coatings & Technology, 2005, 199 (2-3):141-149
    66 J. Liang, B.G. Guo, J. Tian, H.W. Liu, J.F. Zhou and T. Xu, Effect of potassium fluoride in electrolytic solution on the structure and properties of microarc oxidation coatings on magnesium alloy. Applied Surface Science, 2005, 252 (2): 345-351
    67 H.P. Duan, K.Q. Du, C.W. Yan and F.H. Wang, Electrochemical corrosion behavior of composite coatings of sealed MAO film on magnesium alloy AZ91D. Electrochimica Acta, 51 (2006) 2898–2908
    68 Y.H. Wang, J. Wang, J.B Zhang and Z. Zhang, Effects of spark discharge on the anodic coatings on magnesium alloy. Materials Letters, 2006, 60 (4):474-478
    69辛世刚. LY12铝合金微等离子体氧化陶瓷膜的制备工艺与性能研究.博士论文.哈尔滨工业大学, 2003: p50
    70 T. Pauporté, J. Finne, A. Harari and D. Lincot, Growth by plasma electrolysis of zirconium oxidefilms in the micrometer range. Surface Coatings & Technology, 2005, 199 (2-3):213-219
    71 Y.Y. Yan and Y. Han, Structure and bioactivity of micro-arc oxidized zirconia films. Surface Coatings & Technology, 2007, 201(9-11):5692-5695
    72 A.V. Apelfeld, O.V. Bespalova, A.M. Borisov, O.N. Dunkin, N.G. Goryaga, V.S. Kulikauskas, E.A. Romanovsky, S.V. Semenov and I.V. Souminov, Application of the particle backscattering methods for the study of new oxide protective coatings at the surface of Al and Mg alloys. Nuclear Instruments and Methods B, 2000, 161:553-557
    73 A.L. Yerokhin, L.O. Snizhko, N.L. Gurevina, A. Leyland, A. Pilkington and A. Matthews, Discharge characterization in plasma electrolytic oxidation of aluminium. Journal of Physics D: Applied Physics, 2003, 36 (17):2110-2120
    74 G.L.Yang,X.Y. Lü, Y.H. Bai, H.F. Cui and Z.S. Jin, The effects of current density on the phase composition and microstructure properties of micro-arc oxidation coating. Journal of Alloys and Compounds, 2002, 345 (1-2):196-200
    75 B.H. Long, H.H. Wu, B.Y. Long, J.B. Wang, N.D. Wang, X.Y. Lü, Z.S. Jin and Y.Z. Bai, Characteristics of electric parameters in aluminium alloy MAO coating process. Journal of Physics D: Applied Physics, 2005, 38 (18):3491-3496
    76 A.L. Yerokhin, A. Shatrov, V. Samsonov, P. Shashkov, A. Pilkington, A. Leyland and A. Matthews, Oxide ceramic coatings on aluminium alloys produced by a pulsed bipolar plasma electrolytic oxidation process. Surface Coatings & Technology, 2005, 199 (2-3):150-157
    77 X.T. Sun, Z.H. Jiang, Z.G. Yao and X.L. Zhang. The effects of anodic and cathodic processes on the characteristics of ceramic coatings formed on titanium alloy through the MAO coating technology. Appl. Surf. Sci., 2005, 252(2): 441-447
    78 S.G. Xin, L.X. Song, R.G. Zhao and X.F. Hu, Influence of cathodic current on composition, structure and properties of Al2O3 coatings on aluminum alloy prepared by micro-arc oxidation process. Thin Solid Films, 2006, 515 (1):326-332
    79 Y.J. Guan and Y. Xia, Correlation between discharging property and coatings microstructure during plasma electrolytic oxidation. Transactions of Nonferrous Metals Society of China, 2006, 16 (5):1097-1102
    80 I. Han, H.Jai, B.H. Zhao, K.B. Hong and I.S. Lee, Changes in anodized titanium surface morphology by virtue of different unipolar DC pulse waveform. Surface Coatings & Technology,2007, 201 (9-11):5535-5536
    81 Y.K. Wang, L. Sheng, R.Z. Xiong and B.S. Li, Effects of additives in electrolyte on characteristics of ceramic coatings formed by microarc oxidation. Surface Engineering, 1999, 15 (2):109-111
    82 M.A. Smit, J.A. Hunter, J.D. Sharman, G.M. Scamans and J.M. Sykes, Effect of organic additives on the performance of titanium-based conversion coatings. Corrosion Science, 2003, 45: 1903-1920
    83 H.P Duan, C.W Yan and F.H. Wang, Effect of electrolyte additives on performance of plasma electrolytic oxidation films formed on magnesium alloy AZ91D. Electrochimica Acta, 2007, 52 (11):3785-3793
    84 P. Kuze, W. Krysman and H.G. Shneider, Application Fields of ANOF layers and composites. Crystal Research Technology, 1986, 21(12):1603-1609
    85薛文彬,邓志威,来永春,陈如意.铝合金微弧氧化过程中能量转换的实验研究.表面技术, 1997, 26 (3):21-23
    86 W.B. Xue, C. Wang, Z.W. Deng, R.Y. Chen, Y.C Lai and T.H. Zhang, Evaluation of the mechanical properties of microarc oxidation coatings and 2024 aluminium alloys subatrate. Journal of Physics: Condensation Matters, 2002, 14 (44):1947-1952
    87 W.B. Xue, C. Wang, Y.L. Li, Z.W. Deng, R.Y. Chen, Y.C Lai and T.H. Zhang, Effect of microarc discharge surface treatment on the tensile properties of Al-Cu-Mg alloy. Materials Letters, 2002, 56 (5):737-743
    88 L. Wang and X. Nie, Silicon effects on formation of EPO oxide coatings on aluminum alloys. Thin Solid Films, 2006, 494 (1-2):211-218
    89 W.B. Xue, X.L. Wu, X.J. Li and H.Tian, Anti-corrosion film on 2024/SiC aluminum matrix composite fabricated by microarc oxidation in silicate electrolyte. Journal of Alloys and Compounds, 2006, 425 (1-2):302-306
    90 X.J. Li, X.L. Wu, W.B. Xue, G.A. Cheng, R.T. Zheng and Y.J. Cheng, Structures and properties of ceramic films on TiAl intermetallic compound fabricated by microarc oxidation. Surface Coatings & Technology, 2007, 201 (9-11):5556-5559
    91张欣宇,方明,石玉龙.处理液参数对铝合金微弧氧化的影响.材料保护,2002,35 (8):39-41
    92刘文亮.铝合金在不同溶液中的微弧氧化膜层性能研究.电镀与精饰,1999,21 (4):9-11
    93姜兆华,亲世刚,吴晓宏. (NaPO3)6-NaAlO2体系铝合金微等离子体氧化研究.材料工程,2000 (7):40-42
    94姜兆华,亲世刚,王福平.铝合金在水玻璃-KOH-NaAlO2体系中的微等离子体氧化研究.中国有色金属学报, 2000,10 (4):519-524
    95蒋永峰.铝合金微弧氧化陶瓷层的制备工艺及陶瓷层生长过程的研究.硕士论文.西安理工大学, 2000: p46
    96王宗仁,孔庆山,巩桂芬.铝合金表面陶瓷化对前处理的依赖性.电镀与精饰,2002, 24 (3):15-18
    97 T.B. Wei, F.Y. Yan and J. Tian, Characterization and wear- and corrosion-resistance of microarc oxidation ceramic coatings on aluminum alloy. J. Alloys Compounds., 2005, 389 (1-2):169-176
    98 G. Sundararajan and L. R. Krishna, Mechanisms underlying the formation of thick alumina coatings through the MAO coating technology. Surface Coatings & Technology,2003, 167 (2-3):269-277
    99 A. L. Yerokhin, V. V. Lyubimov and V. Ashitkov, Phase formation in ceramic coatings during plasma electrolytic oxidation of aluminium alloys. Ceramics International, 1998, 24 (1):1-6
    100 X. Nie, A. Leyland, H. W. Song, A. L. Yerokhin, S. J. Dowey and A. Matthews, Thickness effects on the mechanical properties of micro-arc discharge oxide coatings on aluminium alloys. Surface Coatings & Technology,1999, 116-119:1055-1060
    101 W.B. Xue, Z.W. Deng, R.Y. Chen and T.H. Zhang, Growth regularity of ceramic coatings formed by microarc oxidation on Al–Cu–Mg alloy. Thin Solid Films.2000, 372 (1-2): 114-117
    102 X. Nie, E. I. Meletis, J. C. Jiang, A. Leyland, A. L. Yerokhin and A. Matthews, Abrasive wear/corrosion properties and TEM analysis of Al2O3 coatings fabricated using plasma electrolysis. Surface Coatings & Technology,2002, 149 (2-3):245-251
    103高殿魁,姜桂荣,沈德久,王玉林.微弧氧化减摩陶瓷层的生成及其影响因素.中国有色金属学报,2001,11(2):199-202
    104袁洋,罗状子.铝合金表面微弧氧化耐磨润滑涂层.材料保护,2002,35 (5):4-6
    105熊仁章,盛磊,郭允光.铝合金微弧氧化陶瓷层的性能研究.材料保护,2000,33 (7):13-14
    106王玉林,沈德久,杨万和.铝材微弧氧化陶瓷膜的电绝缘性.轻合金加工技术,2001, 29 (10):34-35
    107沈德久,廖波,王玉林.影响铝微弧氧化陶瓷层电绝缘性的工艺因素探讨.材料开发与应用,2002,12 (4):22-24
    108 T.B. Wei, F.Y. Yan and J. Tian, Characterization and wear- and corrosion-resistance of microarc oxidation ceramic coatings on aluminum alloy. J. Alloys Compounds, 2005, 389 (1-2):169-176
    109 S.G. Xin, L.X. Song, R.G. Zhao and X.F. Hu. Composition and thermal properties of the coating containing mullite and alumina. Materials Chemistry and Physics, 2006, 9 (1):132-136
    110 H.H Wu, J.B Wang, B.Y Long, B.H Long, Z.S. Jin, N.D. Wang, F.R. Yu and D.M. Bi, Ultra-hard ceramic coatings fabricated through microarc oxidation on aluminium alloy. Applied Surface Science, 2005, 252 (5):1545-1552
    111 R.C. Barik, J.A. Wharton, R.J. Wood, K.R. Stokes and R.L. Jones, Corrosion, erosion and erosion-corrosion performance of plasma electrolytic oxidation (PEO) deposited Al2O3 coatings. Surface Coatings & Technology, 2005, 199 (2-3):158-167
    112 J.C. Tan, S.A. Tsipas, I.O. Golosnoy, J.A. Curran, S. Paul and T.W. Clyne, A steady-state Bi-substrate technique for measurement of the thermal conductivity of ceramic coatings. Surface Coatings & Technology, 2006, 201 (3-4):1414-1420
    113 J. A. Curran and T.W. Clyne, Thermo-physical properties of plasma electrolytic oxide coatings on aluminium. Surface Coatings & Technology, 2005, 199 (2-3):168-176
    114 P. Kurze, W. Krysmann, J. Schreckenback, T.Sohwarz and K. Rabending, Coloured ANOF Layers on Aluminum. Crystal Research Technology, 1987, 22 (1):53-58
    115 W.C. Gu, G.H. Lv, H. Chen, G.L. Chen, W.R Feng and S.Z. Yang, Characterization of ceramic coatings produced by plasma electrolytic oxidation of aluminum alloy. Materials Science Engineering A, 2007, 447 (1):158-162
    116 Y.K. Wang, L. Sheng, R.Z. Xiong and B.S.Li, Effects of additives in electrolyte on characteristics of ceramic coatings formed by microarc oxidation. Surface Engineering, 1999, 15 (2):109-111
    117 P.I. Butyagin, Y.V. Khokhryakov and A.I. Mamaev, Influence of electrolyte composition on a wear-resistance of MAO-coatings. 8th Korea/Russia International Symposium on Science and Technology, 2004. 3: 101-104
    118 J. Liang, B.G. Guo, J. Tian, H.W Liu, J.F. Zhou and T. Xu, Effect of potassium fluoride in electrolytic solution on the structure and properties of microarc oxidation coatings on magnesium alloy. Applied Surface Science, 2005, 252 (2): 345-351
    119 C.Z. Wang, D.Z. Zhang and Y.F. Jiang, Growth process and wear resistance for ceramic coatings formed on Al–Cu–Mg alloy by micro-arc oxidation. Applied Surface Science, 2006, 253 (2):674-678
    120 G.L. Yang, X.Y. Lü, Y.Z. Bai, H.F. Cui and Z.S. Jin, The effects of current density on the phase composition and microstructure properties of micro-arc oxidation coating. J. Alloys Compounds., 2002, 345 (1-2):196-200
    121 A.I. Mamaev, Yu. Chekanova and Z. M. Ramazanova, Parameters of pulsating micro plasma processes on aluminum and its alloys. Protective Metals, 2000, 36 (6):605-608
    122 D.L. Boguta, V.S. Rudnev and P.S. G.ordienko, Current mode effect on the composition and characteristics of anodic-spark coatings. Protective Metals, 2004, 40 (3):275-279
    123 B.H. Long, H.H. Wu, B.Y. Long, J.B. Wang, N.D. Wang, X.Y. Lü, Z.S. Jin and Y.Z. Bai, Characteristics of electric parameters in aluminium alloy MAO coating process. J. Physics D: Applied Physics, 2005, 38 (18):3491-3496
    124 X.T. Sun, Z.H. Jiang, Z.G. Yao and X.L. Zhang, The effects of anodic and cathodic processes on the characteristics of ceramic coatings formed on titanium alloy through the MAO coating technology. Applied Surface Science, 2005, 252 (2): 441-447
    125 S.G. Xin, L.X. Song, R.G. Zhao and X.F Hu, Influence of cathodic current on composition, structure and properties of Al2O3 coatings on aluminum alloy prepared by micro-arc oxidation process. Thin Solid Films., 2006, 515 (1):326-332
    126 Y.J Guan and Y. Xia, Correlation between discharging property and coatings microstructure during plasma electrolytic oxidation. Transactions of Nonferrous Metals Society of China, 2006, 16 (5):1097-1102
    127 L. Kouisni, M. Azzi, F. Dalard and S. Maximovitch, Phosphate coatings on magnesium alloy AM60: Part 2: Electrochemical behaviour in borate buffer solution.surface. Coatings & Technology, 2005, 192 (2-3) :239-246
    128 Q.Z. Cai, L.S.Wang, B.K.Wei and Q.X. Liu, Electrochemical performance of microarc oxidation films formed on AZ91D magnesium alloy in silicate and phosphate electrolytes .Surface Coatings & Technology, 2006, 200 (12-13) : 3727-3733
    129 E. Gulbrandsen, J. Taft and A. Olse, The passive behaviour of Mg in alkaline fluoride solutions. Electrochemical and electron microscopical investigations.Corrosion Science,1993,34:1423-1428
    130 L. Schmeling, B. Roschenbleck and M.H.Weidemann, US patent 4978432, 1990.
    131于芝兰.金属防护工艺原理,北京航空航天大学,北京. 1997: p65
    132杰姆丘克著,意毅译,范国良校.工艺过程的超声强化,国防工业出版社,北京.1964: p87
    133 H.Nishiyama, Y.Inoue. IRAS study of surface acoustic wave effects on CO adsorbed on Cu surfaces. Surface Science, 2005,594 (1-3):156-162
    134 A.Y.Barantchikov, A.N.Baranov,V.K.Ivanov, N.N.Oleynikov and Y.D.Tretyakov, Processes in oxide systems under ultrasonic treatment at high temperatures. Solid State Ionics, 2001,141-142:689-694
    135 I.Tetsu, K.Satoshi, O.Hirotsugu, H.Masahiko and T.Katsushi, Elastic and anelastic behavior of Zr55Al10Ni5Cu30 bulk metallic glass around the glass transition temperature under ultrasonic excitation. Scripta Materialia, 2003,49 (4):267-271
    136 I.Tetsu,M.Eiichiro,K.Satoshi and H.Masahiko, Ultrasound-induced crystallization around the glass transition temperature for Pd40Ni40P20 metallic glass. Acta Materialia.2004,52 (2):423-429
    137 S.Ostapenko, N.E.Korsunskaya and M.K.Sheinkman, in:S.Pizzini(Ed.),Ultrasound stimulated defect reactions in semiconductors, Scite Publications Ltd,Switzerland,2002,p317
    138 L.V.Borkovska, M.P.Baran, N.O.Korsunska,I.V.Markevich and O.F.Singaevsky, Redistribution of mobile point defects in CdS crystals under ultrasound treatment. Physica B: Condensed Matter, 2003, 340-342:258-262
    139 D.Kropman,V.Poll,L.Tambek,T.Karner and U.Abru, Effect of ultrasonic treatment on the defect structure of the Si–SiO2 system. Ultrasonics, 1998,36 (10):1021-1025
    140 A.Y.Barantchikov,A.N.Baranov,V.K.Ivanov,N.N.Oleynikov,Y.D.Tretyakov,Solid State Ionics 2001, 141:689
    141 Z.P. Yao, L.L. Li and Z.H. Jiang, Adjustment of the ratio of Ca/P in the ceramic coating on Mg alloy by plasma electrolytic oxidation. Applied Surface Science, 2009, 255 (13-14): 6724-6728
    142王立世,潘春旭,蔡启舟,魏伯康.等离子体电解氧化过程中单个稳态微放电的热效应研究.物理学报, 2007,56 :5341-5345
    143薛文彬,邓志威,来永春,陈如意.铝合金微弧氧化过程中能量转换的实验研究.表面技术, 1997,26(3):21-23
    144雷清泉.工程电介质.科学出版社,北京. 1999, p9
    145殷之文.电介质物理学.科学出版社,北京. 2003, p183
    146 M. Estili, A. Kawasaki, H. Sakamoto, Y. Mekuchi, M. Kuno and T. Tsukada, The homogeneous dispersion of surfactantless, slightly disordered, crystalline, multiwalled carbon nanotubes in a-alumina ceramics for structural reinforcement . Acta Materialia,2008, 56 : 4070-4079
    147 X.H. Zhang, C.X. Liu, M.S. Li, J.H. Zhang and J.L. Sun, Toughening mechanism of alumina-matrix ceramic composites with the addition of AlTiC master alloys and ZrO2. Ceramics International, 2009,35: 93–97
    148 T.B. Van, S.D. Brown and G.P. Wirtz, Mechanism of anodic spark deposition. American Ceramics Society Bullet, 1977, 56 (6):563-566
    149 P. Kuze, W. Krysman and H.G. Shneider, Application Fields of ANOF layers and composites. Crystal Research Technology, 1986,21(12):1603-1609
    150旷亚非,候朝辉,刘建平.阳极氧化过程中电击穿理论的进展.电镀与涂饰, 2000,19 (3):38-41
    151 E.M. Drobyshevskii, B.G. Zhuovit. Radiation and Equilibrium Composition of the Plasma in a Pulsed Discharge in an Elecrolyte. Zh. Tckh. Fiz.,1997, (47):255-262
    152吴杏芳,韦鲲,单晓鸥,杨思泽.脉冲高能量密度等离子体表面改性AlN膜的形成和结构.金属学报, 2002,38 (6):652-656
    153刘兆晶,左洪波,束术军,李凤珍.铝合金表面陶瓷层形成机理.中国有色金属学报,2000,10 (6):859-863
    154 R.McPherson, Formation of metastable phases in flame- and plasma-prepared alumina. Journal of Materials Science, 1973,8 (6):851-858
    155 X.H. Zhang, C.X. Liu, M.S. Li, J.H. Zhang and J.L. Sun. Toughening mechanism of alumina-matrix ceramic composites with the addition of AlTiC master alloys and ZrO2. Ceramics International, 2009, 35: 93–97.
    156 M.G. Li, H.J Ji, C.Q. Wang, H.S Bang and H.S Bang, Interdiffusion of Al–Ni system enhanced by ultrasonic vibration at ambient temperature. Ultrasonics, 2006, 45: 61–65.
    157 L.V. Borkovska, M.P. Baran, N.O. Korsunska, I.V. Markevich and O.F. Singaevsky, Redistribution of mobile point defects in CdS crystals under ultrasound treatment. Physica B: Condensed Matter, 2003, 340-342: 258-262
    158蔚晓嘉,赫虎在,薛锦.涂层感应重熔的电磁场与温度分布.西安交通大学学报, 1996,30 (7):111-122
    159 K.F. Wang, S. Chandrasekar and H.T. Yang, Finite-element Simulation of Induction Heat-treatment. Journal of Materials Engineering and Performance,1992,1 (1):97-112
    160 J. Davies, P. Simpson. Induction Heating Handbook. New York:Mc Graw-Hill,1979:55- 56
    161赵凯华,陈熙谋.电磁学.高等教育出版社,北京.1985:10-25
    162关永军,夏原.离子体电解沉积的研究现状.力学进展,2004,34 (2):237-250
    163韩立民.等离子热处理.天津大学出版社,天津.1994:10
    164 L.Yerokhin, X.Nie and A.Leyland, Characterisation of oxide films produced by plasma electrolytic oxidation of Ti-6Al-4V. Surface Coatings & Technology, 2000,130:195-206
    165 Han, S-H.Hong and K.W.Xu, Porous nanocrystalline titania films by plasma electrolytic oxidation. Surface Coatings & Technology,2002,154:314-318
    166 J. Tian, Luo Zhuangzi, Qi Shangkui, Structure and Antiwear behavior of micro-arc oxidized coatings on aluminum alloy. Surface Coatings & Technology, 2002,154(1): 1-7
    167 A.A.Voevodin, A.L.Yerokhin, V.V.Lyubinov, Characterization of Wear Protective Al-Si-O Coatings Formed on Al Based Alloys by Microarc Treatment. Surface Coatings & Technology,1996,(86-87):516-621
    168于维平,何业东,张立娜,高能脉冲电沉积ZrO2和ZrO2-Y2O3涂层.电化学, 1999,5 (2):166-168
    169于维平,王小平,高能脉冲电沉积陶瓷层.科学通报, 1999, 44 (14):1488-1491
    170 A.V. Puastovskii, V.I.Novikova and N.P.Korzhova, Morphology and hardness of a steel surface layer after electric-spark alloying with TiN-Ni alloys. Powder Metallurgy and Metal Ceramics. 2002, 41: 23-28
    171 A.V. Puastovskii, V.I. Novikova, A.I.Yuga and A.A. Mamonova, Evaluation of tribological characteristics of electric-spark coatings prepared on steel with electrode materials of the system TiN-Ni. Powder Metallurgy and Metal Ceramics. 2005, 44:240-244
    172 A. Philip and X.L. Cao, Process simulation of micro electro-discharge machining on molybdenum. Journal of Materials Processing Technology. 2007,186: 346-355

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700