高盐渗滤液COD降解优势菌的筛选及相关基因消减文库的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滨海地区垃圾填埋场产生的渗滤液,不仅具有一般渗滤液的COD浓度高且生物难降解的特性,而且还含有较高的盐量,常常使得生物处理工艺很难稳定运行。本文从渗滤液中分离出多株优势菌,构建优势菌群,通过生物强化技术,提高渗滤液生化处理效能。利用分子生物技术,鉴别优势菌株。利用抑制消减杂交技术,构建优势菌株的消减文库,为构建垃圾渗滤液工程菌奠定基础。
     本研究根据高盐垃圾渗滤液的组成及特点,通过梯度增加培养基中垃圾渗滤液比例的方法,分离、筛选出垃圾渗滤液中的10株耐盐菌株。再经实验室摇瓶降解试验,从中筛选出6株降解COD的优势菌株,并研究了温度、接种量、pH对6株优势菌生长的影响。
     将不同优势菌株混合配比进行COD降解试验,发现了以TJ06和TJ09菌株为混合配比的优势菌群具有较高的有机物去除效率。当COD浓度小于7375mg/L时,该优势菌群对渗滤液的COD去除效率随着COD初始浓度的增加而增加。当COD浓度大于7375mg/L时,优势菌群对渗滤液的COD去除效率随着COD初始浓度的增加而减少。
     菌株TJ06和TJ09具有良好的耐盐特性。当培养基中Cl-浓度小于30000mg/L时,菌株TJ06和TJ09的相对生长率分别大于75%和60%。随着培养基中Cl-浓度的增加,两株菌的相对生长率均呈下降趋势。当Cl-浓度为70000mg/L时,菌株TJ06培养24h,其相对生长率只有1.11%,48h时菌株TJ06和TJ09的相对生长率为40%左右;当Cl-浓度为90000mg/L时,两株菌的相对生长率均小于1%,几乎不再生长。
     重金属离子Zn2+、Cd2+对菌株TJ06和TJ09的生长具有明显的抑制作用,这种抑制作用大小与培养基中Zn2+、Cd2+浓度呈正比。当培养基中Zn2+浓度为100mg/L时,菌株TJ06的相对生长率为40%左右;当Zn2+浓度大于100mg/L时,TJ06几乎不再生长。菌株TJ09对Zn2+更敏感,当Zn2+浓度大于50mg/L时,TJ09的相对生长率低于10%。培养基中Cd2+浓度为50mg/L时,菌株TJ06和TJ09的生长就明显受到抑制,其相对生长率分别为40.59%和34.89%;当Cd2+浓度大于150mg/L时,TJ06和TJ09的相对生长率均小于10%。
     利用16S rDNA分析技术,对优势菌株进行序列分析。发现菌株TJ06与Bacillus cereus (EU931563)和Bacillus thuringiensis(AY138288)的同源性最高,达到99%。菌株TJ09与Bacillus marisflavi (FJ554665)、Bacillus aquimaris(EU835730)和Bacillus baekryungensis (EU835731)的同源性达99%。并根据序列同源性分析建立相关菌种的系统进化树,确认TJ06和TJ09均属于Bacillus属。
     为筛选优势菌株中COD降解相关基因,利用抑制消减杂交技术(SSH)对菌株TJ06和Bacillus cereus SA1.196基因组进行比较,构建一个库容量为230个阳性克隆的消减杂交文库。通过菌液PCR进行鉴定,扩增出差异片段205条。对12个差异片段进行核苷酸序列相似性比对和功能分析。结果显示其中2个差异片段未检索到同源序列,可能为新基因片段,其功能有待进一步研究;7个差异表达片段,虽然找到了与其相似性很高的序列,但功能未知;其他3个差异表达片段分别与肽甲硫氨酸亚砜还原酶的编码基因同源性达90%、与编码莽草酸转运蛋白的基因同源性达93%、与辅酶Q细胞色素C还原酶Fe-S亚单位编码基因的同源性达98%。
The leachate generated from landfill site in the coastal area not only has higher COD concentration and is difficult to be treated by biodegradation as the general leachate but also contains higher salt, which can lead to biological treatment system running unstable. Several dominant strains were isolated from leachate and dominant bacteria consortium was built in this paper. The biochemical treatment efficiency of leachate was improved by bioaugmentation technology. The dominant strains were identified using molecular biology techniques. The subtractive library was constructed with suppression subtractive hybridization (SSH), which laid a good foundation for building engineered bacteria of landfill leachate.
     According to the composition and characteristics of high-salinity landfill leachate, ten strains were isolated using selective medium and were screened with the method of gradient increasing percentage of landfill leachate in this study. In laboratory degradation experiments, six dominant strains (TJ02, TJ03, TJ05, TJ06, TJ07, TJ09) were screened and effects of temperature, inoculum size, pH on growth of the 6 strains were studied.
     The COD degradation tests were carried out to build dominant bacteria consortium. The result showed the COD removal efficiency of the bacteria consortium composed of TJ06 and TJ09 was the highest. The COD removal efficiency of the dominant bacteria consortium increased with the COD concentration increasing when COD concentration was less than 7375mg /L, while the COD removal efficiency decreased with the COD concentration increasing when COD concentration was more than 7375mg /L.
     Strains TJ06 and TJ09 had good salt-tolerant features. When Cl- concentration was less than 30000mg/L in the medium, the relative growth rates of strain TJ06 and TJ09 were more than 75% and 60% respectively. With the Cl- concentration increased, the relative growth rates of the two strains decreased. The relative growth rate of strain TJ06 was only 1.11% after cultured 24h when the Cl- concentration was 70000mg/L, and the relative growth rates of the strain TJ06 and TJ09 after cultured 48h were about 40%. When the Cl- concentration was 90000mg /L, the relative growth rates of the two strains were less than 1%, which suggested the dominant strains almost stopped growing.
     The growth of strains TJ06 and TJ09 was inhibited by Zn2+ and Cd2+. As the Zn2+ and Cd2+ concentration increased, the inhibition on strains became greater. The relative growth rate of strain TJ06 was about 40% when the Zn2+ concentration was 100mg /L, while the strain TJ06 almost stopped growing when Zn2+ concentration was more than 100mg /L. Strain TJ09 was sensitive to Zn2+, the relative growth rates of strain TJ09 were less than 10% when the Zn2+ concentrations were more than 50mg /L. The growth of TJ06 and TJ09 significantly inhibited when the concentration of Cd2+ was 50mg /L, their relative growth rates were 40.59% and 34.89% respectively. When the Cd2+ concentrations were higher than 150mg / L, the relative growth rates of TJ06 and TJ09 were less than 10%.
     According to the sequence analysis of 16S rDNA, compared the gene sequence of TJ06 and TJ09with the published Genbank sequence strain, the result showed that TJ06 shared homology of 99% with Bacillus cereus (EU931563)and Bacillus thuringiensis(AY138288), 98% with Bacillus mycoides(EU162011). TJ09 shared homology of 99% with Bacillus marisflavi (FJ554665), Bacillus aquimaris(EU835730) and Bacillus baekryungensis (EU835731), 97% with Bacillus ferrariarum(EF451043). The result suggested that the TJ06 and TJ09 belonged to the genus Bacillus.
     To identify unique DNA fragments associated with strain TJ06, suppression subtractive hybridization (SSH) was used. The genome of Bacillus cereus AS 1.196 was subtracted from the genome of strain TJ06. Subtractive hybridization library containing 230 positive clones was built, and 205 different fragments were amplified by bacterial suspension PCR. Amplified DNA fragments were analyzed using the software of GelComparⅡ. Sequence homology analysis of 12 specific fragments was done through BLAST at the NCBI web. The result showed that two fragments had no similar sequences, which may be new gene fragments, and their functions should be study further; seven fragments had high similarity with the nucleotide sequence which functions were unknown; other three fragments were similar to the encoding genes of peptide methionine sulfoxide reductase, shikimate transport protein and ubiquinol-cytochrome C reductase iron-sulfur subunit or cytochrome c oxidase subunitⅠ, and the similarities were 90%, 93% and 98% respectively. The study laid a good foundation for researching the functions of specific genes and for building the related engineering bacteria.
引文
[1]闫志明,普红平,黄小凤.垃圾渗滤液的特性及其处理工艺评述[J].昆明理工大学学报(理工版),2003,28(3):128-132.
    [2]喻晓,张甲耀,刘楚良.垃圾渗滤液污染特性及其处理技术研究和应用趋势[J].环境科学与技术,2002,25(5):43-45.
    [3]刘军,鲍林发,汪苹.运用GC-MS联用技术对垃圾渗滤液中有机污染物成分的分析[J].环境污染治理技术与设备,2003,4(8):31-33.
    [4]杨军,黄涛.垃圾填埋场渗滤液处理方法及其分析[J].四川环境,2005,24(1):87-90,94.
    [5]杨霞,杨朝晖,陈军,等.城市生活垃圾填埋场渗滤液处理工艺的研究[J].环境工程,2000,18(5):12-14.
    [6]Wasay S A. Efficiency of GAC for treatment of leachate from soil washing process[J]. Water Air Soil Pollut., 1999, 7(4):449-460.
    [7]王祥丹,王家民.城市生活垃圾渗滤液处理工艺介绍[J].给水排水,2000,26(10):9-14.
    [8]Pouliot J M, Yanful E K, Bassi A S. Effect of additives on biological treatment of landfill leachate[J]. Water Quality Research Journal of Canada, 2000, 35(2):201-217.
    [9]陶涛.废水稳定塘在垃圾填埋场渗滤液[J].环境卫生工程,1998,6(3):115-117,122.
    [10]许振良.膜法水处理技术[M].北京:化学工业出版社,2001.
    [11]申欢,金奇庭,李明波,等.膜生物法处理城市垃圾渗滤液[J].中国给水排水,2004,20(3):56-59.
    [12]任鹤云,李月中. MBR法处理垃圾渗滤液工程实例[J].给水排水,2004,30(10):36-38.
    [13]Chen Shaohua, Liu Junxin. Landfill leachate treatment by MBR: performance and molecular weight distribution of organic contaminant[J]. Chinese Science Bulletin, 2006, 51(23):2831-2838.
    [14]邹长伟,徐美生,黄虹,等.垃圾填埋场渗滤液的处理技术[J].环境与开发,2001,16(3):23-25.
    [15]徐竺,李正山,杨玖贤.上流式厌氧过滤器处理垃圾渗滤液的研究[J].中国沼气,2002,20(2):12-15,33.
    [16]沈耀良,王宝贞,杨铨大,等.厌氧折流板反应器处理垃圾渗滤混合废水[J].中国给水排水,1999,15(5):10-12.
    [17]蒋乐平.城市垃圾渗滤液厌氧处理的工艺分析[J].污染防治技术,2006,19(3):9-10,23.
    [18]李军,王宝贞,王淑莹,等.生活垃圾渗滤液处理中试研究[J].中国给水排水,2002,18(3):1-6.
    [19]张海伦.垃圾渗滤液的处理[J].能源研究与利用,2001(1):44-45.
    [20]Lopez A, Pagano M, Volpe A, et al. Fenton’s pretreatment of mature landfill leachate[J]. Chemosphere, 2004, 54(7):1005-1010.
    [21]熊忠,林衍.混凝-Fenton-SBR处理垃圾渗滤液的影响因素研究[J].城市环境,2002,16(4):19-20,48.
    [22]Wang Z P, Zhang Z, Lin Y J, et al. Langfill leachate treatment by a coagulation-photooxidation process[J]. Journal of Hazardous Materials, 2002, 95(1-2):153-159.
    [23]Wu J J, Wu C C, Ma H M, et al. Treatment of landfill leachate by ozone-based advanced oxidation processes[J]. Chemosphere, 2004, 54(7):997-1003.
    [24]李小明,王敏,矫志奎,等.电解氧化处理垃圾渗滤液研究[J].中国给水排水,2001,17(8):14-17.
    [25]Robert K Ham, Todd J Bookter. Decomposition of solid waste in test lysimeters[J]. Journal of the Environmental Engineering Division, 1982, 108(6): 1147-1170.
    [26]唐家富.土壤净化垃圾填埋场渗滤液的研究(D).上海:同济大学环境科学与工程学院,1996.
    [27]James O Leckie, Constantine Hahadakis, John G Pacey. Landfill management with moisture control[J]. Journal of the Environmental Engineering Division, 1979, 105(2):337-355.
    [28]徐迪民,李国建,于晓华,等.垃圾填埋场渗滤水回灌技术的研究-Ⅰ.垃圾渗滤水填埋场回灌的影响因素[J].同济大学学报,1995,23(4):371-375.
    [29]San I, Onay T T. Impact of various leachate recirculation regimes on municipal solid waste degradation[J]. Journal of Hazardous Materials, 2001, 87(1-3): 259-271.
    [30]康群,马文臣,许建民,等.高盐浓度对工业废水生化处理的影响研究[J].环境污染治理技术与设备,2005,6(8):42-45.
    [31]王志霞,王志岩,武周虎.高盐度废水生物处理现状与前景展望[J].工业水处理,2002,22(11):1-4.
    [32]Lawton G W. Effect of high sodium chloride concentration on trickling filter slimes [J]. Sewage and Industrial Wastes, 1957, 29(11):1228-1236.
    [33]吕志堂,张利平,李艳华,等.沧州高盐环境嗜盐放线菌多样性研究[J].河北大学学报(自然科学版),2006,26(1):1-6.
    [34]叶文飞,周恭明.活性污泥法处理高盐废水的可行性研究[J].江苏环境科技,2008,21(3):33-35.
    [35]何健,陈立伟,李顺鹏.高盐度难降解工业废水生化处理的研究[J].中国沼气,2000,18(2):12-16.
    
    [36]Thong Chai Panswad, Chadarut Anan. Impact of high chloride wastewater on an naerobic/anoxic/aerobic process with and without inoculation of chloride acclimated seeds[J]. Water Research, 1999, 33(5):1165-1172.
    [37]文守成,马文臣,许建民,等.油田高盐浓度废水对其生化处理的影响[J].油气田环境保护,2005,15(2):17-19.
    [38]赵天亮,秦芳玲.活性污泥法处理高含盐采油废水研究[J].西安石油大学学报(自然科学版),2008,23(2):63-66.
    [39]Dinc-er A R, Kargi F. Performance of rotating biological disc system treating saline wastewater[J]. Process Biochemistry, 2001, 36(8/9):901-906.
    [40]Kargi F, Dinc-er A R. Saline wastewater treatment by halophile supplemented activated sludge culture in an aerated rotating biodisc contactor[J]. Enzyme and Microbial Technology, 1998, 22(6):427-433.
    [41]Kargi Fikret. Empirical models for biological treatment of saline wastewater in rotating biodisc contactor[J]. Process Biochemistry, 2002, 38(3): 399-403.
    [42]Kim Windey, Inge De Bo, Willy Verstraete. Oxygen-limited autotrophic nitrification-denitrification (OLAND) in a rotating biological contactor treating high- salinity wastewater[J].Water Research, 2005, 39(18):4512-4520.
    [43]信欣,王焰新,叶芝祥,等.生物强化技术处理高盐有机废水[J].水处理技术,2008,34(8):66-70.
    [44]崔有为,王淑莹,甘湘庆,等.生物处理含盐污水的盐抑制动力学[J].环境污染治理技术与设备,2005,6(5):38-41.
    [45]Kargi F, Dincer A R. Effect of salt concentration on biological treatment of saline wastewater by fed-batch operation[J]. Enzyme and Microbial Technology, 1996, 19(7):529-537.
    [46]季民,王苗苗,姜少红. AF-MBBR技术处理高盐垃圾渗滤液的试验研究[J].中国给水排水,2006,22(21):93-95,98.
    [47]付守琪,陈萍,罗溪.渗透法处理高盐废水的原理及工艺[J].电力环境保护,2007,23(2):49-51.
    [48]王车礼,钟璟,王军.膜蒸馏淡化处理油田高含盐废水的实验研究[J].膜科学与技术,2004,24(1):46-49.
    [49]Gryta M, Tomaszeweka M, Karakulski K. Wastewater treatment by membrane distillation[J]. Desalination, 2006, 198(1-3):67-73.
    [50]郭春梅,陈进富.分步沉淀法处理高含盐废水的实验研究[J].工业水处理,2008,28(3):43-44,86.
    [51]张婷婷,张爱丽,周集体.活性炭吸附分离-生物再生法处理高盐苯胺废水[J].化工环保,2006,26(2):107-110.
    [52]王宏,周旭.一体式膜-生物活性炭法处理高盐度有机废水[J].环境污染与防治,2001,23(5):232-234.
    
    [53]Piya-areetham P, Shenchunthichai K, HunsomM. Application of electrooxidation process for treating concentrated wastewater from distillery industry with a voluminous electrode[J]. Water Research, 2006, 40(15):2857-2864.
    [54]时文中,华杰,朱国才,等.电化学法处理高盐苯酚废水的研究[J].化工环保,2003,23(3):129-133.
    [55]Vlyssides A G, Karlis P K, Zorpas A A. Electrochemical oxidation of noncyanide strippers wastes [J]. Environment International, 1999, 25(5):663-670.
    [56]Barrera Diaza C, Urena Nunez F, Campos E, et al. A combined electrochemical-diation treatment of highly colored and polluted industrial wairra stewater[J]. Radiation Physics and hemistry, 2003, 67(5):657-663.
    [57]褚衍洋,白卯娟,付融冰,等.铁离子循环电解法处理垃圾填埋场晚期渗滤液[J].环境科学学报,2008,28(1):114-119.
    [58]包勇.高浓度含盐染料废水电混凝处理研究[J].工业水处理,2006,26(7):33-35.
    [59]农少梅,李捍东,张树增,等.高盐废水处理技术研究新进展[J].江苏环境科技,2008,21(3):72-76.
    [60]Raghu S, Ahmed Basha C. Chemical or electrochemical techniques followed by ion exchange for recycle of textile dye wastewater[J]. Journal of Hazardous Materials, 2007,149(2):324-330.
    [61]王卓,纪逸之.物化-生化组合工艺在含高盐量、高氨氮量有机废水处理中的应用[J].江苏环境科技,2000,13(2):10-13.
    [62]王晓霞,吴生,乌锡康.铁炭-生化法处理高含盐染料废水的研究[J].环境化学,2002,21(6):594-598.
    [63]禹耀萍,周大军.高含盐量、高氨氮量有机废水处理工艺探讨[J].怀化学院学报,2005,24(2):60-63.
    [64]安立超,陆路德,汪信,等.活性炭强化生物处理高含盐有机废水研究[J].南京理工大学学报,2003,27(6):715-719.
    [65]全向春,刘佐才,范广裕,等.生物强化技术及其在废水治理中的应用[J].环境科学研究,1999,12(3):22-27.
    [66]Exander A L M. Biodegradation and bionemediation[M].San Diego Califonria: Academic Press., 1999.
    [67]刘琴,李捍东,张敬东,等.用高效优势菌强化升流式厌氧污泥床的废水处理性能[J].化工环保,2006,26(2):95-98.
    [68]Hung Y T , Lo H H, Javaid A M, et al. Effect of bioaugmentation on activated sludge treatment of potato wastewater[J]. International Journal of Environmental Studies, 1994, 45(2):89-100.
    
    [69]Kennedy M S, Grammas J, Arbackle W B, et al. Parachlorophenol degradation uses bioaugmentation research[J]. Research Journal of the Water Pollution Control Federation, 1990, 62(3):227-233.
    [70]Chin K K, Ong S L, Poh L H, et al. Wastewater treatment with bacterial augmentation[J]. Wat. Sci. Tech., 1996, 33(8):17-22.
    [71]邱忠平,杨立中,刘丹,等.优势菌株对垃圾渗滤液COD的降解特性[J].西南交通大学学报,2006,41(2):264-268.
    [72]Hung Y T, Shah D B, Horsfall F L. Effect of bioaugmentation on the performance of activated sludge reactors[J]. Process Biochemistry, 1987, 22(3):68-73.
    [73]Hung Y T, Cokers D R, Wong J M. Bio-conversion of accumulated sludge with bacterial augentation process in aerated lagoons for municipal wastewater treatment[J]. International Journal of Environmental Studies, 1986, 27(3/4):41-56.
    [74]Edgehill R U, Finn R K. Activated sludge treatment of synthetic wastewater containing pentachlorophenol[J]. Biotechnol. Bioeng., 1983, 25(9):2165-2169.
    [75]Watanabe K, Hino S, Takahashi N, et al. Effects of exogenous phenol-degrading bacteria on performance and ecosystem of activated-sludge[J]. J Fermentation and Bioengineering, 1996, 82(3):291-302.
    [76]须藤隆一(日).水环境净化及废水处理微生物[M].北京:中国建筑工业出版社,1998.
    [77]张倩茹,周启星,陈锡时,等.微生物分子生态学技术在污水处理系统中的应用[J].生态学杂志,2003,22(3):49-53.
    [78]Woese C W R, Gutell R, Gupta R, et al. Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids[J]. Microbiology Reviews, 1983, 47(3):621-669.
    [79]翟中和,王喜忠,丁明孝.细胞生物学[M].北京:高等教育出版社,2000.
    [80]张惠展.基因工程[M].上海:华东理工大学出版社,2005.
    [81]Greselbrecht A D, Herwig R P, Deming J W, et al. Enumeration and phylogenetic analysis of polycyclic aromatic hydrocarbon-degraing marine bacteria from Puget Sound Sediments [J] Applied Environmental Microbiology, 1996, 62(9): 3344-3349.
    [82]陈亚丽,张先恩,刘虹,等.甲基对硫磷降解菌假单胞菌WBC-3的筛选及其降解性能的研究[J].微生物学报,2002,42(4):490-497.
    [83]刘涛,刘正学,张长铠,等.苯酚高效降解菌L68菌株的分离及分类鉴定[J].山东大学学报(理学版),2002,37(4):369-372.
    [84]杨虹,杭晓敏,李道棠.垃圾填埋场中降解纤维素细菌的16S rDNA分析[J].上海交通大学学报,2002,36(10):1500-1502, 1515.
    [85]王建龙,赵璇,Wener Hegemann.氯酚的生物降解特性及其微生物的16S rRNA基因序列分析[J].环境科学学报,2003,23(6):813-817.
    
    [86]杨永华,姚健.分子生物学方法在微生物多样性研究中的应用[J].生物多样性,2000,8(3):337-342.
    [87]R Araya, K Tani, T Takagi, et al. Bacterial activity and community composition in stream water and biofilm from an urban river determined by fluorescent in situ hybridization and DGGE analysis[J]. FEMA Microbiology Ecology, 2003, 43(1):111-119.
    [88]明镇寰,岳春梅.用PCR技术检测生物硝化池污水中硝化细菌的研究[J].浙江大学学报(理学版),1999,26(2):83-86.
    [89]谢冰,姜京顺.铜离子冲击下活性污泥微生物多样性的分子生态学分析[J].环境科学学报,2002,22(6):721-725.
    [90]Carola B, Stefan W. Evaluation of the use of PCR and reverse transcriptase PCR for detection of pathogenic bacteria in biosolids from anaerobic digestors and aerobic composters[J]. Applied Environmental Microbiology, 2003, 69(8):4618-4627.
    [91]Juck D, Charls T, Whyte L G, et al. Polyphasic microbial communities analysis of petroleum hydrocarbon-contaminated soils from two northern Canadian communities[J]. FEMS Microbiology Ecology, 2000, 33(3):241-249.
    [92]Andrew J M, Robert G B, Carl E C, et al. Microbial characterization of biofilms in domestic drains and the establishment of stable biofilm microcosms[J]. Applied Environmental Microbiology, 2003, 69(1):177-185.
    [93]黄立南,周惠,陈月琴,等.垃圾填埋场渗滤液中古细菌16SrRNA基因的ARDRA分析[J].生态学报,2002,22(7):1085-1090.
    [94]Diatchenko L, Lau Y, Campbell A, et al. Suppression subtractive hybridization: a method for generating differentially regulated or tissue specific cDNA probes and libraries[J]. Proceedings of the National Academy of Sciences of USA, 1996, 93(12):6025-6030.
    [95]Natalia S Akopya nts, Arkady Fradkov, Luda Diatchenko, et al. PCR-based subtractive hybridization and differences in gene content among strains of Helicobacter pylori[J]. Proceedings of the National Academy of Sciences of USA, 1998, 95(22):13018-13113.
    [96]Britta Janke, Ulrich Dobrindt, Jorg Hacker, et al. A subtractive hybridisation analysis of genomic differences between the uropathogenic E. coli strain 536 and the E. coli K-12 strain MG1655[J]. FEMS Microbiology Letters, 2001, 199(1):61-66.
    [97]Peter G Agron, Madison Macht, Lyndsay Radnedge, et al. Use of subtractive hybridization for comprehensive surveys of prokaryotic genome differences[J]. FEMS Microbiology Letters, 2002, 211(2):175-182.
    [98]Andrey Golubov, Jurgen Heesemann, Alexander Rakin. Uncovering genomic differences in human pathogenic Yersinia enterocolitica[J]. FEMS Immunology and Medical Microbiology, 2003, 38(2):107-111.
    
    [99]黄英.影响微生物生长繁殖的因素[J].中国科技信息,2006 (2):82.
    [100]杜连祥,路福平.微生物学实验技术[M].北京:中国轻工业出版社,2005.
    [101]《水与废水监测分析方法》编委会.水与废水监测分析方法[M].北京:中国环境科学出版社,2003.
    [102]Atlas R M. Microbiology: Fundamentals and Applcations[M]. New York: Macmillan Publishing Company , 1988.
    [103]中国科学院微生物研究所. 1980年菌种保藏手册[M].北京:科学出版社,1980.
    [104]王立超,连岩.温度,光照和pH之间的相互关系对光合细菌生长的影响[J].海洋湖沼通报,1997(4):28-31.
    [105]Britt M W, Jeppe L N, Kristian K, et al. Influence of microbial activity on the stability of activated sludge flocs[J]. Colloids and Surfaces B: Biointerfaces, 2000, 18(2):145-156.
    [106]王建芳,赵庆良,张雁秋.投加有效微生物强化SBR和SBBR除污效果的研究[J].中国给水排水,2005,23(9):56-60.
    [107]李宗义,李培睿,王鸿磊,等.应用生物强化技术处理啤酒废水实验研究[J].工业水处理,2003,23(7):41-43.
    [108]Wenderoth D F, Rosenbrock P, Abraham W R, et al. Bacterial community dynamics during biostimulation and bioaugmentation experiments aiming at chlorobenzene degradation in grou ndwater[J]. Microbial Ecology, 2003, 46(2):161-176.
    [109]林静,谢冰.复合微生物制剂在环境保护中的应用[J].上海化工,2004,29(12):7-11.
    [110]高云超,田兴山,潘木水,等.复合微生物制剂(CMP)对猪场污水的处理效果[J].广东农业科学,2004 (6):82-84.
    [111]邱忠平,杨立中,刘丹.垃圾渗滤液COD降解菌株的筛选及其降解特性初探[J].四川环境,2007,26(1):5-8,13.
    [112]李艳红,解庆林,雷云,等.高盐度工业废水优势降解菌的生长特性及应用[J].城市环境与城市生态,2008,21(5):5-8.
    [113]金敏,李君文,王新为,等.微生物制剂强化膜生物反应器处理生活污水[J].水处理技术,2005,31(12):52-54.
    [114]罗国维,杨丹菁,林世光.投菌生物接触氧化法处理洁霉素废水的机理研究[J].环境科学,1994,15(6):20-32.
    [115]熊宗贵.发酵工艺原理[M].北京:中国医药科技出版社,1995.
    [116]吴旭辉,李铁民,马溪平,等.复合微生物菌群处理垃圾渗滤液影响因素分析[J].中国公共卫生,2006,22(12):1477-1478.
    
    [117]王平,吴晓芙,胡曰利.啤酒糟EM生物转化的初步研究[J].中南林学院学报,1999,19(1):35-38.
    [118]李尔炀,程洁红,史乐文.耐盐菌的研究[J].江苏石油化工学院学报,2001,13(4):4-6.
    [119]冯克亮.含盐废水的生物处理[J].环境科学动态,1998(3):22-23.
    [120]刘正.高浓度含盐废水生物处理技术[J].化工环保,2004,24(增刊):209-211.
    [121]陈素华,孙铁衍,周启星.微生物与重金属间的相互作用及其应用研究[J].应用生态学报,2002,13(2):239-242.
    [122]Cudic M, Condie B A, Weiner D J, et al. Development of novel antibacterial peptides that kill resistant isolates[J]. Peptides, 2002, 23(12):2071-2083.
    [123]Selitrennikoff C P. Antifungal proteins[J]. Applied and Environmental Microbiology, 2001, 67(7):2883-2894.
    [124]王振雄,徐毅,周培瑾.嗜盐古生菌新种的系统分类学研究[J].微生物学报2000,40(2):115-120.
    [125]Biesebeke R T, Levin A, Sagt C, et al. Identification of growth phenotype related genes in Aspergillus oryzae by heterologous macroarray and suppression subtractive hybridization[J]. Molecular Genetics and Genomics, 2005, 273(1):33-42.
    [126]Marques E R, Ferreira M E S, Drummond R D. Identification of genes preferentially expressed in the pathogenic yeast phase of Paracoccidioides brasi liensis, using suppression subtraction hybridization and differential macroarray analysis[J]. Molecular Genetics and Genomics, 2004, 271(6):667-677.
    [127]Delgado N, Hung C Y, Tarcha E, et al. Profiling gene expression in Coccidioi desposadasii[J]. Med. Mycol., 2004, 42(1):59-71.
    [128]Duguid J R, Dinauer M C. Library subtraction of in vitro cDNA libraries to identify differentially expressed genes in scrapie infection[J]. Nucleic Acids Research, 1990, 18(9):2789-2792.
    [129]Sargent T D, Dawid I B. Differential gene expression in the gastrula of Xenopus laevis[J]. Science, 1983, 222(4620):135-139.
    [130]Hedrick S M, Cohen D I, Neilson E A, et al. Isolation of cDNA clones encoding T cel l-specific membrane-associated proteins[J]. Nature, 1984, 308(5955):149- 153.
    [131]Davis M M, Cohen D I, Nielsen E A, et al. Cell-type-specific cDNA probes and the murine I region: the localization and orientation of Ad alpha[J]. Proceedings of the National Academy of Sciences of USA, 1984, 81(7):2194-2198.
    [132]Brot N, Weissbach H. Biochemistry of methionine sulfoxide: residues in protein[J]. Biofactors, 1991, 3(2):90-96.
    [133]Rahman M A, Nelson H, Weissbach H, et al. Cloning, sequencing, and expression of the Escherichia coli peptide methionine sulfoxide reductase gene[J]. The Journal of Biological Chemistry, 1992, 267(22):15549-15551.
    
    [134]Moskovitz J, Weissbach H, Brot N. Cloning and expression of a mammalian gene involved in the reduction of methionine sulfoxide residues in proteins[J]. Proceedings of the National Academy of Sciences of USA, 1996, 93(5):2095-2099.
    [135]Moskovitz J, Berlett B S, Poston J M, et al. The yeast peptide-methionine sulfoxide reductase functions as an antioxidant in vivo[J]. Proceedings of the National Academy of Sciences of USA, 1997, 94(18):9585-9589.
    [136]胡培蓉,余龙,张民,等.人类肽-甲硫氨酸亚砜还原酶的cDNA克隆、组织表达谱特征及染色体定位[J].科学通报,2000,45(12):1289-1296.
    [137]Moskovitz J, Rahman M A, Strassman J, et al. Escherichia coli peptide methionine sulfoxide reductase gene: regulation of expression and role in protecting against oxidative damage[J]. Journal of Bacteriology, 1995, 177(3):502-507.
    [138]Moskovitz J, Flescher E, Berlett B S, et al. Over expression of peptide-methionine sulfoxide reductase in Saccharomyces cerevisiae and human Tcells provides them with high resistance to oxidative stress[J]. Proceedings of the National Academy of Sciences of USA, 1998, 95(24):14071-14075.
    [139]张亦昕,尚贺勇,徐建兴.脂对泛醌细胞色素c还原酶的影响[J].生物化学与生物物理进展,1996,23(4):334-337.
    [140]李绮,叶雪玲.鸡心线粒体辅酶Q-细胞色素c还原酶的分离及性质研究[J].生物化学与生物物理学报,1984,16(5):486-491.
    [141]高杰,许修宏,宛煜嵩,等.莽草酸的应用及其微生物代谢合成[J].中国农业科技导报,2008,10(1):46-51.
    [142]Knop D R, Draths K M, Chandran S S, et al. Hydroaromatic equilibrium during biosynthesis of shikimic acid[J]. Journal of the American Chemical Society, 2001, 123(42): 10173-10182.
    [143]Whipp M J, Camakaris H, Pittard A J. Cloning and analysis of the shiA gene, which encodes the shikimate transport system of Escherichia coli K-12 [J]. Gene, 1998, 209(1-2):185-192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700