农业有机固体废弃物堆肥过程中微生物多样性与物质转化关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以奶牛粪便为主要堆肥材料,辅以添加稻壳粉、锯木屑作为堆肥水分调节剂和膨松剂,采用高温好氧堆肥方式研究了堆肥过程中微生物多样性及物质转化关系。
     利用微生物可培养方法对堆肥过程中微生物群落演替规律进行了定量分析。研究发现农业有机固体废弃物堆肥过程是一个由细菌、放线菌、真菌等微生物共同作用并且在不同堆肥阶段由不同优势微生物群落互相演替的过程。在堆肥起始阶段细菌首先快速增长,迅速成为堆肥起始阶段的优势微生物群落;堆肥进入高温期后,细菌数量下降,放线菌、真菌数量上升,特别是放线菌数量增加比较明显;在堆肥的降温期真菌为堆肥优势微生物群落;在堆肥过程中细菌的数量在8.1×10~8~1.2×10~9 CFU g~(-1)之间,比放线菌1.0×10~6~1.1×10~7 CFU g~(-1)、真菌1.0×10~5~5.6×10~7 CFU g~(-1)高出近两个数量级。
     利用分子生物学方法——变性凝胶梯度电泳(Denaturing Gradient Gel Eletrophoresis,DGGE)法从分子微生态学角度对堆肥过程的微生物的多样性进行了定性分析。分子微生态学方法定性分析研究表明在堆肥过程中细菌群落的相似性和堆肥过程密切相关,即堆肥取样时间间隔越短的堆肥样品细菌群落相似性越高,如堆肥第一天和堆肥第四天的细菌群落的相似性最高达92%以上;而成熟堆肥阶段的细菌群落和堆肥起始阶段的细菌群落的相似性相差最大,相似性只有30%,说明堆肥过程中的微生物群落的演替是一个逐步变化的过程。就堆肥中放线菌多样性而言,其在堆肥初期就已经有一些放线菌存在,但它们的数量和种类相对较少。随着堆肥进行,特别是在进入堆肥的高温期后放线菌的种类和数量明显增多,放线菌多样性丰富。放线菌群落变化与堆肥时间正相关,即堆肥时间间隔短的放线菌菌落相似性程度高。
     堆肥过程中真菌群落变化和细菌群落及放线菌群落演替所不同的是堆肥过程中的细菌、放线菌群落的相似性和堆肥过程密切相关,而真菌则与堆肥过程中随时间的变化规律不明显,真菌群落在堆肥后期多样性丰富。
     利用红外光谱(Infrared Spectrum,IRS)分析技术对堆肥过程中的物质转化进行了分析研究,发现:①随着堆肥过程的进行,堆肥中所含的羟基、甲基和亚甲基的量逐渐降低,而甲氧基的含量增加;且羧基最终大多以羧酸盐的形式存在。甲基和亚甲基含量的降低,表明堆肥原材料的脂肪族化合物特征下降。与此同时,伴随着堆肥原材料脂肪族类化合物性质的降低,堆肥中芳香族类化合物性质则趋于相对升高。这说明堆肥过程中碳水化合物及脂肪族化合物分解较快,而木质素分解相对较慢。②对不同堆肥原材料组分分解形成的物质来说,碳水化合物和脂肪族化合物分解后大部分生成CO_2而放出;蛋白质和氨基酸等含N化合物一部分生成CO_2、NH_4~+和NO_3~-,另一部分则以酰胺态-N存在;而木质素的分解则主要生成氢醌类物质。堆肥过程中含碳素物质和含氮素物质的变化,致使堆肥过程中堆肥的碳氮比(carbon/nitrogen,C/N)发生了变化,堆肥C/N的变化可能是堆肥微生物群落变化的重要原因之一。
     利用固相微萃取-气相-质谱联用(solid phase microextraction-gas chromatogram-mass spectrum,SPME-GC-MS)技术对堆肥中的低分子量有机物质进行了定量和定性分析研究。研究表明堆肥中的低分子量有机物质中包含多种低分子有机酸,如乙酸、丁酸、蜡酸、辛酸、苯甲酸等,另还包括乙醛、壬醛、苧烯等。其中乙醛、乙酸、壬醛在堆肥中稳定且含量较高,可作为判断堆肥腐熟度的参考指标。对植物有促生和抗生作用的生物活性物质——苯甲酸(benzoic acid)和苧烯(limonene)首次在堆肥产品中被发现,其中苯甲酸具有化感作用,苧烯对松树虫害——刺胫小蠹具有防治作用。
     利用SPME-GC-MS技术研究堆肥中低分子量有机物质,开辟了对堆肥中低分子量有机物质进行定量分析和详细分类研究的新领域,对为筛选可在农业有机固体废弃物堆肥过程中积累有益低分子量有机物质的微生物腐熟菌剂作了有意义的探索。堆肥中低分子量有机物质的分析为有机堆肥产品施入土壤后的生物学和化学行为的研究提供了较为详细的资料。
     利用近红外光谱(near-infrared spectroscopy,NIRS)分析技术分析测定了有机堆肥过程中钾含量的变化,根据所测得的结果对近红外光谱数据进行小波变换,利用处理后的小波系数,采用偏最小二乘法预测了有机肥料中植物营养元素钾的含量,建立了小波变换与近红外光谱技术相结合用于测定以奶牛粪便为主的有机堆肥产品中钾元素的测定模型。结果表明:小波变换充分提取了近红外光谱的信息,数据压缩为原始大小的3.6%,计算量大大减少;本文利用C~4小波系数对48个有机肥料样本进行建模,对42个预示集样本进行预测,预示集的误差均方根和相关系数r~2分别为0.1138%和0.927,优于原始光谱直接建模的0.1672%和0.835。该方法和目前常用的测定有机肥料中植物营养元素钾含量的方法——原子吸收光谱法(Atomic Absorption Spectrometry,AAS)和四苯硼酸钾重量法(Gravimetric method as potassium tetraphenylborate,GPT)测定结果相符,但近红外光谱法分析测定结果的重现性要优于后两者。
Cow dung added with a small amount saw dust, and rice hull, after full mixed, wascomposted in the equipment which was designed by us. The relationship of microbialbiodiversity and the transformation of composting materials in the composting process ofagricultural organic solids matters were determined.
     The microbial biodiversity and the development pattern of microbial group in thecomposting process were studied by culture microbial method and un-culture microbialmethod, molecular biology method (denaturing gradient gel electrophoresis, DGGE),respectively.
     The culture microbial method had shown that the bacterium was dominant position todecompose the materials at the beginning composting stage and theirs number was therange of 8.1×10~8~1.2×10~9 CFU g~(-1) during the composting process. When the compostingbody reached the thermophilic phase, the number of bacterium decreased, then theactinomycetes was superiority to brake down the composting materials and the number ofactinomycetes was the scope of 1.0×10~6~1.1×10~7 CFU g~(-1). When the compostingprocess got to cooling phase and maturation phase, the fungi was preponderance todecompose the composting materials and the number of fungi was the scope of 1.0×10~5~5.6×10~7 CFU g~(-1).
     The culture method had made known that composting was given impetus to forwardunder the common action of bacteria, actinomycetes, fungi, but their dominant positionwere different under the different composting stage.
     The un-culture microbial method, denaturing gradient gel electrophoresis, had madeclear that the similarity of bacteria, actinomycetes biodiversity communities was connectedwith the composting process; however, the similarity of fungi biodiversity communities wasdifferent with bacteria, actinomycetes. Such as, the biggest percent of the similarity ofbacteria biodiversity communities was 92% between the first day and the fourth daycomposting samples and the smallest percent of the similarity of bacteria biodiversitycommunities was 30% between the second day and the sixtieth day composting samples.
     At the beginning composting stage, there had been little actinomycetes, however,theirs number and kinds were smaller than that of the latter composting stage. With thecomposting, theirs number and kinds had become more and more. There was a positiveconnection between the percent of the similarity of actinomycetes with composting process.
     The changes of fungi biodiversity communities were different with the changes ofbacteria, actinomycetes biodiversity communities in the composting process of agriculturalorganic solids matter. On the contrary with the changes of bacteria, actinomycetesbiodiversity communities, the changes of fungi biodiversity communities was no relatedwith the composting process. The fungi biodiversity communities at the end of compostingprocess were more abundant than that of other composting stages.
     The Infrared Spectrum (IRS) annalistic technology was directly applied to study thedecomposition process of cow dung added with a small amount saw dust and rice hull. Theresult showed that infrared spectroscopy could indicate the dynamic changes of organiccomponents in the composting process. With the progress of composted materialsdecomposition, hydroxyl, ketonic carbonyl, methyl, methylene, methine and aliphaticcompounds decreased, but aromatic compounds increased, which meant that thecarbohydrates and aliphatic compounds decomposed quickly and lignin decomposed slowly.In the composting process, carboxyl existed as carboxylic ions, most carbohydrates andaliphatic compounds were oxidized to CO_2 and H_2O, the proteins and amino acids weredecomposed to CO_2, NH_4~+, NO_3~- and amides, and the lignin were decomposed tohydroquinones. The change of materials contained with carbon and nitrogen resulted invariance of ratio of carbon and nitrogen (C/N). The change of C/N might be one of themain reasons of microorganism evolution in the composting process of agricultural organicsolids matters.
     An experiment was conducted to analyze on the low molecular weight organic matters(LMWOM) in composted production with/without NMF inoculants by Solid PhaseMicroextraction - Gas Chromatogram - Mass Spectrum (SPME - GC - MS). The results hadshown that there were a large number of low molecular weight organic matters incomposted productions. As far as these organic matters were concerned, there were as muchsixteen kinds of low molecular weight organic acids and Aldehyde, Alcohol, Ketone,Carboxylic acid, Carboxylic acid, Furan, Pyrazine, Fat hydrocarbon, sulphide, benzoic acid,limonene and so on. This study had also shown that kinds and content of. LMWOM incomposting samples with inoculants were much more than that in composted samples without NMF inoculants.
     The amounts of acetaldehyde, acetic acid, and nonaldehyde acide in compostedproduction was stable and high, which meant they might be one of the judgments ofcompost maturity. This study had extracted the two new bio-active material, limonene andbenzoic acid from composted production. Benzoic acid could promote the growth of plantor control development. Limonene could prevent and cure of plant diseases and insect pestof pine tree.
     The analysis of the low molecular weight organic matters in composted production bySPME - GC - MS technology supplied the detail data for the function of biology andchemistry when the composted production was applied into soil. At the time, such studymight be regarded as a significant explore for selected the composting micro-organisminoculants which could produce and accumulate such low molecular weight organic mattersin this field.
     A method for the determination of crop nutrition element - Potassium iron (K~+) inorganic fertilizer samples was established based on the combination of discrete wavelettransform (DWT) and near-infrared spectroscopy (NIRS) technique. Potassium in organicfertilizer can be determined by NIRS technique, because they were combined with organicgroups with NIRS absorption. In the proposed method, the raw NIRS data and their waveletcoefficients are used for modeling and prediction of the contents of potassium in organicfertilizer by partial least square (PLS) method. It was shown that there was almost no lossof spectral information with the NIRS data compressed to 3.6% of its original size. Themodel based on wavelet coefficients was better than that based on the full NIRS spectralrange. With the improved method, accurate prediction could be achieved.
     The results had shown that the method of NIRS was as the same as the method ofGravimetric potassium tetraphenylborate (GPT) and Atomic Absorption Spectrometry(AAS) in determination of potassium of composted product, but the reappearance of NIRSmethod was much more than that of AAS and GPT method in the detection of Potassiumiron (K~+) in composed production.
引文
[1] 黄士忠.1993.农林牧废弃物资源饲料化的新途径.农业环境保护,2(5):233~235.
    [2] www.china-farm.com/article/11280428161.
    [3] 李国学,李玉春,李彦富.2003.固体废物堆肥化及堆肥添加剂研究进展.农业环境科学学报,22(2):252~256.
    [4] http://env.people.com.cn/GB/1073/3641973.html.
    [5] 张维理.2004.中国农业面源污染形势估计及控制对策Ⅰ.21世纪初期中国农业面源污染的形势估计.中国农业科学,37(7):1008~1017.
    [6] 国家环境保护局.2002.2002年中国环境状况报告.(http//www.zhb.gov.cn/649368273124589586/index.shtml.).
    [7] 张维理.2005.科学时报——国内特别关注版,2005-2-21.
    [8] 方创琳.1996.中国垃圾资源的综合开发利用.自然资源学报,11(4):333~339.
    [9] 张无敌.1997.我国农村有机废弃物资源及沼气潜力.自然资源,(1):67~71.
    [10] www.nxncny.com www.nxncny.com
    [11] http://hnnh.haagd.gov.cn/asp/showdetail.asp?id=47213.
    [12] 胡代泽.1992.综合利用农业副产物资源建立饲-能-环生态工程.资源开发与保护,8(4):243~246.
    [13] 陈秀为.1993.生物技术与蛋白质饲料资源的开发.国外农业环境保护,(2):16~18.
    [14] http://www.zhue.com.cn/news/filemanage/Article_Print.asp?ArticleID=3585.
    [15] 马学良.1995.我国鸡粪处理技术设备现状.环境保护,(11):38~40.
    [16] 赵国志.1993.棉籽饼粕脱毒作饲料蛋白质资源的现状与对策.资源开发与保护,9(1):63~64.
    [17] 尹宝华.1993.动物蛋白资源的开发应用.生物学通报,28(8):45~47.
    [18] Liebig J. 1841. The organic chemistry and its application on agriculture and Physiology [M]. Braunsehwig: Vedag viehveg.
    [19] 张维理,田哲旭,张宁,等.1995.我国北方农田氮肥造成地下水硝酸盐污染的调查.植物营养和肥料学报,1(2):80~87.
    [20] 金相灿.1992.中国湖泊富营养化[M].北京:中国环境科学出版社.
    [21] 鲁如坤,时正元,顾益初.1995.土壤累积态磷的研究:磷肥的表观积累利用率.土壤,27(6):286~289.
    [22] 鲁如坤,时正元,熊礼明.1992.我国磷矿磷肥中镉的含量及其对生态环境影响的评价.土壤学报,29(2):150~156.
    [23] Byrnes B.H. 1990. Environmental effects of fertilizer use: an overview. Fertilizer Research, 26: 209~215.
    [24] Praveen K.B.R. 1995. Alkylated nreas: materializations and evaluation as N sources. Fertilizer Research, 41: 117~124.
    [25] Kurihara K. 1978. Present status of coated fertilizer in Japan [M]. Tokyo, Japan: National Institute of Agricultural Sciences.
    [26] 张宝林.1994.新型缓释性复合肥料:包裹型复合肥.化肥工业,22(6):329~339.
    [27] www.hnzzz.com/com/znhn/down/1103171052.doc
    [28] 廖宗文,王卫红,江东荣.1995.有机无机复肥系统与肥效关系初探.华南农业大学学报,16(2):25~30.
    [29] 廖宗文.1996.工农业废物农用资源化:理论、技术和实践[M].北京:中国环境出版社.
    [30] KERR A. 1972. Biological control crown gall: seed inoculation. J Appl Bacterial,35: 493~497.
    [31] 陈廷伟,葛诚.1995.我国微生物肥料的发展趋向.土壤肥料,(6):27~29.
    [32] 黄为一.2003.微生物在化肥缓释和土壤养分活化中的作用[C].农业微生物研究及产业化进展,27~28.
    [33] http://www.stee.agri.gov.cn/stee/sfxycyh/cyhjz/t20040221_168545.htm
    [34] 何平安.1999.中国有机肥料养分志..北京:中国农业出版社[M].
    [35] 周旭英.2004.中国奶牛业与日本奶牛业之比较分析.中国农业资源与区划.25(6):21~25.
    [36] 文启孝.1984.土壤有机质研究法[M].北京:农业出版社.
    [37] Piccolo A. 2002. The supramolecular of humic substances. A novel understanding of hums chemistry and implications in soil science. Advance in Agronomy, 75:57~134
    [38] 李国学,张福锁 编著.2000.固体废弃物堆肥化与有机复混肥生产[M].北京:化工出版社.
    [39] 杨乃彦,杨盛行编.2005.微生物在废弃物资源化上之应用.中华科技学院学报,265~280.
    [40] Claudio M., Maria T. D., Liviana L. 2003. An Integrated Chemical, Thermal, and Microbiological Approach to Compost Stability Evaluation. J. Environ. Qual., 32:2379~2386.
    [41] 黄国锋,钟流举,张振钿等.2003.有机固体废弃物堆肥的物质变化及腐熟度评价.应用生态学报,14(5):813~818.
    [42] Svend T. J. 1995. Aero biocdecompostion of organic wastes. Value of compost as a fertilizer. Resources. Conservation and Recycling, 13: 57~71.
    [43] Miikki V., Senesi N., Hanninen K. 1997. Chatterization of humic mater formed by composting of domestic and industrial biowastes. Chemosphere, 34(8):1639~1621.
    [44] Iglesias E. J., Alvarez C.E. 1993. Apparent availability of nitrogen in composting municipal refusse. Biol Fertil Soils. 16:313~318.
    [45] Bernal M.P., Navarro A.F., Sanchez M.A. 1998. Infueuce of sewage sludge compost stability and Maturity on carbon and nitrogen mineralization in soil. Soil Bio. Biochem., 30(3):305~313.
    [46] Miguel A., Jose A P., Carlos G.A., Teresa H. 1996. Evaluation of Urban Wastes for Agriculture Use. Soil Sci. Plant Nutr., 42:105~111.
    [47] Kyoung S.R., Fu J.T. 1997. Solid wastes Research. J. Environ. Sci. Health. 32(2):367~390.
    [48] Isabelle D., Jean L.B.G. 1995. Hazadto man and the environment posed on the use of urban waste compost: a review. The Science of the Total Environment, 172:197~222.
    [49] Garcia C., Moreno J.L., Hern T., Costs. F. 1995. Effect of composting on sewage sludge contanimated with heavy metals. Bioresource Technology, 53:13~19.
    [50] Zucconi F., Pera A., Forte M., De Bertoldi M. 1981a. Evaluating to city organic solid waste of immature compost. Biocycle. 22:54~57.
    [51] Zucconi, F., Pera A., Forte M., De Bertoldi M. 1981b. Evaluating to city organic solid waste of immature compost. Bioloy. Biocycle. 22: 27~29.
    [52] Pereia J. T., Stentiford E. I., Mara D.D. 1987. Low cost controlled composting of refuse and sewage sludge. Wat. Sci. Tech. 19: 839~845.
    [53] Kiyohiko N., Makoto S., Hiroshi K. 1985. Effect of Temperature on Composting of Sewage Sludge. Applied and Environmental Microbiology, Dec. 1526~1530.
    [54] Stentiford E.I., Pereira J.T., Mara D.D. 1996. Low cost composting: Research Monographs In Tropical Public Health Engineering. Department of Civil Engineering, University of Leeds. March
    [55] Brinton W. F., Evans Jr E., Droffner L., 1999. A Standardized Dewar Test for Evaluation of Compost Self-Heating[M]. USA: Woods End Research Laboratory.
    [56] Nora G. 1993. Odor control progress. Bioeyle. March, 56~58.
    [57] John C.K., Charles L.H., Robert B.H. 1992. Potential emssion of volatile and odordous organic compounds from mmtmicipal soloid wase composting facilities. Biomass and Bioenergy 3(3~4):181~194.
    [58] Chanyasak V., Hiri M. and Kubota H. 1982. Changes of chemation in water extracted during composting of garbage. J. Ferment. Technol., 60: 439~4446.
    [59] Baziramakenga R., and Simard R.R.1998. Low molecular weight aliphatic acid contents of composted manures. Journal of Environmental Quality., 27(3): 557~562.
    [60] Sugahara K., Harada Y. Inoko A. 1979. Color change of city refused during composting process. Soil Sci. Plant Nutri., 25:197~208.
    [61] Woods And Research, 2002. Guide to Sovita testing for compost maturity index. Compost New Manual, 11:1~8.
    [62] Roy S., Tal G., Avinimelech Y. 1998. Determining Optimal Maturity of Compost Used for Land Application. Ccmpost Science & Utilization. Winer, 83~88.
    [63] Rajbanshi S.S., and Inubushi K. 1998. Chemical and biochemical changes during laboratory scale composting of allelopathic and Ryegrass leaves (Eupatorium adenophorum and Lantanacamara). Biol Fertil Soils. 26: 66~71.
    [64] Mathur S.P., Owen G.., Dinel H., Schnitzer M. 1993. Determination of Compost Biomaturity I. Literature Review. Biological Agriculture and Horticulture, 10: 65~85.
    [65] Schnitzer M., Dinel H., Mathur S.P., Schlten H.R., Owen. G. 1993. Determination of Compost Biomaturity. Ⅲ. Evaluation of Colorimetric Test by ~(13)C NMR Spectroscopy and Pyrolysis Field Ionozation culture and Horticulture. 10:109~123.
    [66] 张所明,陈世和.1988.城市生活垃圾堆肥发酵的腐熟度研究.上海环境科学,7(10):9~12.
    [67] Lossin R.D. 1989. Compost studies: Ⅲ Disoposing of animal waste Measurement of the chemical Oxygen Demand of Compost. Compost Sci. In Enterio Iglesia Jim enez & Victor Perez Garcia.
    [68] Ishii H., Tanaka K., Aoki M., Murakai T., and Yamada M. 1991. Sewage sludge composting process by static pile method. Wat. Sci. Tech. 23: 1979~1991.
    [69] Mathur S.P., Dinel H., Owen G.;, Schnitzer M., J. Dugan. 1993. Determination of Compost Biomaturity Ⅱ. Opticl Density of water Extracts of Composts a Reflection of their Maturity. Biological Agriculture and Horticulture. 10:87~108.
    [70] Sesay A.A., Lasaridi K.E., Stentiford E.I. 1998. Aerated static pile composting of Municipal Solid Waste (MSW): acomparsion of positive and negative aeration. Waste Manage Res., 16(3):264~272.
    [71] Bengtsson, A. MikaelQ., and Haskaetal G. 1998. Composting of oily sludge degradation, stabilized residues, Volatiles and microbial activity. Waste Manage Res., 16(3):273~284.
    [72] Nararro A. F., Cegarra J., Roig A., and Garcia D. 1993. Relationships between organic matter and Carbon Contents of organic wastes. Bioresource Technology, 44: 203~207.
    [73] 李国鼎,金子奇编.1990.固体废物处理与资源化[M],清华大学出版社.
    [74] 李艳霞.1998.污泥堆肥机理及堆肥过程研究[D],中国科学院生态环境研究中心.
    [75] 陈世和,张所明.1998.城市生活垃圾堆肥处理的微生物特性研究.上海环境科学,78(8):17~21.
    [76] Keller P. 1961. Methods to Evaluate Maturity of Compost. Compost Science, 20~26.
    [77] Yona C., Yoseph I. 1993. Chemical and Spectroscopical Analyses of Organic Matter Transformation During Composting in Relation to ineering of Composting edited by H.A. J.Hoitink and H.M. Keener, Renaissance Publ., Worthington, O.H. 551~600.
    [78] Dinel H., Schnitzer M., Dumontet S. 1996a. Compost Maturity: Extractable Lpids as Indicators of Organic Matter Stability. Compost Science & Utiliztion. 4(2): 6~12.
    [79] Dinel H., Schnitzer M., Dumontet S. 1996b. Compost Maturity: Chemical Characteristcs of Extractable Lipids. Compost Science & Utilization: 4(2):16~25.
    [80] Bahman E., James F., Power, J., Gilley E., and John W. D. 1997. Nutrient, Carbon, and Mass Loss during Composting of Beff Cattle Feedlot Manure. J. Environ. Qual. 26: 189~193.
    [81] Inbar Y., Chen Y., Hadar Y. 1991. Carbon-~(13) CPMAS NMR and FTIR spectroscopic analysis of organic matter transformations during decomposition of solid wastes from wineries. Soil Sci., (4):272~281.
    [82] Riffaldi R., Levi M.R., Pera A. 1986. Extractable Lpids as Indicators of Organic Matter Stability. Waste Management & Resarch. 4: 387~396.
    [83] Hirai M.F., Chanyasak V., Kubota, H. 1983. A Standard measurement for Maturity. Biocycle, Nov/Dec. 54~56.
    [84] 山西农业大学 主编.1981.土壤学,北京:农业出版社.
    [85] Inbar Y., Chen Y., Harada Y. 1990. Humic substances formed during the composting of organic matter. Soil Sci. Am. J. 54:1316~1323.
    [86] Harada Y., Inoko A., Todati M., Izawa, T. 1981. Maturing process of city refuse compost during piling. Soil Sci. Plant. Nutr. 7: 357~364.
    [87] Igesias E.J. and Vicor Perez. G. 1991. Composting of domestic refuse and sewage sludge. I. Evolution of temperature, pH, C/N ratio and cation exchange capacity. Agriculture, Ecosystems and Environment, 6: 45~60.
    [88] Igesias E.J. and Vicor P.G 1992a. Composting of domestic refuse and sewage sludge. Ⅱ. Evolution of carbon and some "humification" indexes. Resource, Conservation and Recycling. 6:243~257.
    [89] Igesias E.J., Vicor P.G. 1992b. Determination of maturity refuse composts. Agriculture, Ecosystems and Environment, 38:331~343.
    [90] Garia C., Hernaandez T. F., Ayuso M. 1992a. Evaluation of the maturity of municipal waste composting simple chemical paraters. Commun. Soil. Plant Anal., 23:1501~1512.
    [91] Garia C., Hernaandez T. F., Costa F. C., Calcinai M. 1992b. A chemical structural of organic wastes and their humic acids during composting by means of pyrolysis gas chomatography. The Science of the Total Environmrnt. 119:157~168.
    [92] Saharinen M.H. 1998. Evaluation of changes in CEC during composting. Compost Science& Utilization. 6(4).
    [93] Inbar Y, Chen Y., Hadar Y.,. Hoitink H.A.J. 1990. New approachesto compost Maturity. Biocycle. Dec. 64-69.
    [94] Roletto E., Renzo B., Michele C. 1985. Chemical Parameters for Evaluating Compost Maturity. Biocycle. 26(2):46-47.
    [95] Govi M., Ciavatta C, Gessa C. 1993. Evolution of organic matter in sewage sludge: A study based on the use of humification parameters and analytical electrofocusing in sewage sludge: Bioresource Technology. 44:175-180.
    [96] Adani E, Genevin P.L., Tambone F. 1995. A New Index of Organic Matter Stability. Compost Science & Utilization. 3(2): 25-37.
    [97] Adani E, Genevini P.L., Crasperi E, Zorzi G. 1997. Organic Evolution Index (OMEI) as a Measure of Composting Efficiency. Compost Science & Utilization.5(2):53-62.
    
    [98] Bertoldi M., Vallini G., and Pera A. 1983. The Biology of composting : a review. Waste Management & Research. 1:157-176.
    [99] Pare T., Dinel H., Schnitzer M., Dumontet S. 1998. Transformations of carbon and nitrogen during composting of carbon and nitrogen during composting of animal nure and shredded paper. Biol Fertil Soils. 26:173-178.
    [100] Bernal M., Sanchez M.A., Paredes A.R. 1998. Carbon mineralization from organic wastes at different composting stages during their incubation with soil. Agriculture, Ecosystem and Environment. 69:175-189.
    [101] Golueke C.G 1981. Principle of biological resource recovery. Biocycle,22:36-40.
    
    [102] Morel T.L., Colin E, Germon J.C., Godin E.T. 1985. Methods for the evaluation of the maturity of municipal refuse compost. In composting of Agricultural and other Wastesed. Esevier Applied Science publishers, London & New York, 56-72.
    [103] Itavaara M., Vikma M., and Venelampi O. 1997. Windrow Composting of Biodegradable Packaging Materials. Compost Science & Utilization. (2):84-92.
    [104] Arja H.V., Maritta H.S. 1997. Evolution of microbiolgical and chemical parameters during manure and straw co-composting in a drum composting system. Agriculture, Ecosystem and Environment. 66:19-29.
    [105] Veerapan C, Hiroshi K. 1981. Carbon/Organic Nitrogen Ratio in Water Extractas Measure of Composting Dedradation. J. Ferment. Technol., 59(3):215-219.
    
    [106] Hue N.V. Liu J. 1983. Predicting Compost Stability. Compost Biocycle, Jan/Feb. 25-27.
    [106] Carlos G, Teresa H.H., Francisco C. 1991. Study on Water Extract of Sewage Sludge Composts. Soil Sci. Plant. Nutr., 37 :399-408.
    [108] William F.B. 1998. Volatile Organic Acids In Compost: Production and Odorant Aspects. Compost Science & Utilization. Winter, 75-82.
    [109] Aziz S., McConnell D.B., Wayne H. S. 1997. Phototoxic Effects of ahort Chain Fatty Acid On Seed Germination and Root Length of Cucumis Sativuscv "Poinset". Compost Science & Utilization. 5(2):47~52.
    [110] Vleeschauwer D., Assche V.P. 1981. Phytotoxicty of refuse compost. BioCycle.22:44~46.
    [111] Liao P.H., Chen A., Vizcarra A.T., Lo K.V. 1994. Evaluation of the Maturity of Compost Made from Salmon Farm Mortalities. J. agricuc. Engng Res.58:217~222.
    [112] Usui T.A. 1997. Ripeness Index of Waste water Sludge. Compost Science & Utilization.5(1):98~102.
    [113] Donna I.E, Barbar L.T., Harry A.J. 1992. Compost stability. Biocycle. Nov. 62~66.
    [114] William T. P., James C. Y. 1995. Staility Measurement of Biosolid Compost by Aerobic Respirometry Post. Compost Science & Utilization.3(2):16~24.
    [115] Lasaridi K.E., Stentiford E.I. 1995. Respirometric technique context of compost stabilty assesmnet: principles and pratice. In: (eds) The sciences of composting.
    [116] Abdul A.S., Katia L., Stentiford E., Tim B. 1997. Controled Composting of Parper Pulp Sludge Using the Aerated Static Pile Method. Compost Science & Utilization.5(1):82~96.
    [117] Fang M., Wong J.W.C., Li G..X., Wong M.H. 1998. Changes in biological parameters during co-composting of sewage sludge and coal ash residues. Bioresource Technology. 64:55~61.
    [118] Insam H., Amor K., Renner M., Crepaz C. 1996. Change in Functional Abilities of the Microbial Community Composting of Manure. Microb. Ecol..31:77~87.
    [119] Tiquia S.M., Tam N.F.Y. 1998. Elimination of phytotoxicty during composting of spent pig manure sawdust litter and pig sludge. Bioresource Technology 65:43~49.
    [120] Serenlla N., Diego P., Adele M. 2002. Physiological effects of humic substances on higher plants. Soil Biology & Biolochemistry, 34:1527~1536.
    [121] MacCarthy P., Rice J.A. 1985. Spectroscopic methods for determining functionability in humic substances. In: Aiken G.R(ed.) Humic Substances in Soil, Sediment and Water. New York: John Wiley and Sons, 527~543.
    [122] Prpvenzano M.R., Senes N., Picane G.. 1998. Thermal and Spectroscopica Charaterization of Composts from Municipal Solid Wastes. Compost Science & Utilization, 6(3):67~73.
    [123] Mathur S.P., Daigle Y.Y., Levesque M., Dinel H. 1986. The feasibility of preparing high quality compost from fish scrap and peat with seaweeds or crabscrap. Biological Agriculture and Horticulture..4:27~38.
    [124] 顾希贤,许月容.1995.垃圾堆肥微生物接种实验.应用与环境微生物学报,1(3):274~278.
    [125] 崔宗均,李美丹.2002.一组高效稳定纤维素分解菌复合系MC的筛选及功能.环境科学, 23(3):36~39.
    [126] 黄得扬,陆文静,王洪涛,等.2004.高效纤维素分解菌在蔬菜-花卉秸秆联合好氧堆肥中的应用.环境科学,25(2):145~150.
    [127] 刘克锋,刘悦秋,雷增普,等.2001.几种微生物应用于猪粪堆肥中的研究.北京农学院学报,16(2):36~41.
    [128] 冯明谦,汪立飞,刘德明.2000.高温好氧垃圾堆肥中人工接种初步研究.四川环境,19(3):27~30.
    [129] 席北斗,孟伟,刘鸿亮,等.2003.三阶段控温堆肥过程中接种符合微生物菌群的变化规律研究.环境科学,24(3):152~155.
    [130] Claudio M., HEribert I. 2003. Community level physiological profiling as a tool to valuate compost maturity: a kinetic approach. European Journal of Soil Biology, 39:141~149.
    [131] Hassen A, Belguith K, Jedidi N, et al. 2001. Mcrobial Characterization During composting of Municipal Solid Waste. Bioresource Technolog;80(5): 217~225
    [132] Mandels M,Reese E T, et al. 1999. Fungal Cellulases and the Mcrobial Decomposition of Cellulosic Fabric. J Andustrial Mcrobiologi& Biotechnology, 22(4:225~240.
    [133] 冯树,周樱桥.2001.微生物混合培养及其应用.微生物学通报,28(3):92~95.
    [134] 许修宏,肖玉珍.1998.高效纤维素分解菌分离筛选的研究.东北农业大学学报,29(4):33~33..
    [135] 平文祥,孙剑秋.1997.纤维素酶产生菌的分离及其不同生境纤维素分解菌数量的对比研究.齐齐哈尔师范学院学报(自然科学版),14(4):59~61.
    [136] 幕永红.1999.生物菌剂在寒地水稻秸秆还田上的应用.垦殖与稻作,1(3):31~32.
    [137] 宋颖琦,刘睿倩.2002.纤维素降解菌的筛选及其降解特性的研究.哈尔滨工业大学学报,34(2):197~200.
    [138] 蒲一涛,钟毅沪.1999.固氮菌和纤维素分解菌的混合培养及其对生活垃圾降解的影响.环境科学与技术,(1):15~17.
    [139] 娄隆后.1958.高温堆肥中微生物学过程变化规律研究.土壤通报,56~57.
    [140] Ishii K., Takii S. 2003. Comparison of microbial communities in four different composting processes as evaluated by denaturing gradient gel electrophoresis analysis, Journal of Applied Microbiology.95:109~119.
    [141] Haruta S., Kondo M., Nakamura H. 2002. Microbial community changes during organic solid waste treatment analyzed by double gradient-denaturing gradient gel electrophoresis and fluorescence in situ hybridization. Appl. Microbiol Biotechnol. 60:224~231.
    [142] Morten K., Erland B. 1998. Microbial community dynamics during composting of straw material studied using phospholipid fatty acid analysis. FEMS Microbiology Ecology, 27(1):9-20.
    [143] Ibekwe AM, Kennedy AC. 1998. Phospholipids fatty acid profiles and carbon utilization patterns for analysis of microbial community structure under field and greenhouse conditions. FEMS, Microbiology Ecology, 26:151-163.
    [144] Ronald M., Richard B. 1997. Microbial Ecology. Fourth edition, new symbiosis genes in Rhizobium. Microbial Ecology, 41:325-332.
    [145] Michael T. M., John M., Marrinko J.P. 2000. Brock Biology of Microorganisms, Ninth Edition, Prentite Hall International.
    [146] Torsvik V., goksoyr J., and Daae F.L. 1990. High diversity in DNA of soil bacteria. Appl. Environ. Microbiol., 56: 782-787.
    [147] Istock A., Bell J.A., and Ferguson N. 1996. Bacterial diversity and evolution: the cortical and practical perspectives. J Ind. Microbial, 17(3-4): 13-150.
    [148] Wate M.G., and Garagal R.M. 1996. Problem in measuring bacterial diversity and a possible solution. Applied and Environmental Microbiology, 62(11):4299-4301.
    [149] Delong E.F. 1996. Diversity of naturally occurring prokaryotes In: Colwell RR, Simidu U, Ohwada K eds., Microbial diversity in Time and Space. New York: Plenum Press,125-133.
    [150] Naimuddin M., Kurazono T., Zhang Y.H. 2000. Specices-inditification dots: a potent tool for developing genome microbiology. Gene, 261:243-250.
    [151] Lowder M., Oliver J.D. 2001. The use of modified GFP as a reporter for metabiosis acting in detecting dormant (VBNC) cells and the role of DNA elements in this response. In: Jansson Jk, Van Elsas JP, Bailey MT eds., Tracking Genetically-Engineered Microorganisms, Landes Biosiciences, Georegetown, TX..
    [152] Xi C, Dirix G., Hofkens J., Schryver EC, Vanderleyden J., Michiels J. 2001. Use of Dual Marker Transposons to Identify New Symbiosis Genes in Rhizobium. Microbial Ecology, 41(4): 325.
    [153] Wilson KJ. 1995. Molecular techniques for the study of rhizoidal ecology in the field, Soil Biology & Biochemistry; 27:501-514.
    [154] Manning J.E., Hershet N.D., Brooker T.R. 1975. A new method of in situ hybridization. Chromosome, 53:107-117.
    [155] Gall J.G, Pardue M.L. 1969. Formation of RNA-DNA hybrid molecules in cytogentical preparation, Proc. Natl. Acad. Sci. USA, 63:378-383.
    [146] Amann R.I., Krumholz L., Stahl D.A. 1995. Fluorescent-oligonucleotide probing of whole cells for determinative. Mylogentic, and environmental studies in microbiology, J. Bacterial, 172:762-770.
    [157] Delong E.F., Wickhm GS., Pace N.R. 1989. Phylogewteic stains: ribosomal RNA-based probs for the identification of single microbial cells, Science, 243:1360-1363.
    [158] Sebastin B., Caroline R. 2003. In situ Acessibiloity of Small-Subunit rRNA of the Domains Bacteria, Archaet, and Eucarya to cy3-labled Oligonucleotide Probes. Applied and Environmental Microbiology, Mar. 69:1748-1758.
    [159] White D.C., Davis W., Nickels J.S. 1979. Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecdogia, 40:51- 62.
    [160] Tunlid A., Baird B.H., Trexler M.B. 1985. Determination of phospholipids ester inked fatty acid and poly 6—hydroxybutyrate for the stimulation of bacterial biomass and activity in the rhizosphere of the rape plant Brassica napus (L). Can. J. Microbial, 31:1113-1119.
    [161] Tunlid A., White D.C. 1992. Biochemical analysis of biomass, community structure, nutritional status, and metabolic activity of microbial communities in soil. New: Marcel Dekker, 7 :229-262.
    [162] Kennedy A.C., Busacca A.J. 1995. Microbial analysis to identify source of PM-10 material. In: Weiskircher RJ, Zwikl JR, (Eds), Particulate Matter: Health and regulatory Issues, Air and Waste Management Association, Pittsburgh, 670-675.
    [163] Baath E., Frostegard A., and Fritze H. 1992. Soil bacterial biomass, activity, phospholipids fatty acid pattern and pH tolerance in an area polluted with alkaline dust deposition, Applied Environment Microorganism, 58:4026-4031.
    [164] Fritze H., Pictikainen J., Pennanen T. 2000. Distribution of microbial biomass and phospholipids acid in podzol profiles under coniferous forest. Euro. J. Soil Sci., 51:565-573.
    [165] Wilkinson S.G 1988. Gram-negative bacteria, In: Ratledge C, Wilkinson SG, Eds., Microbial lipids, London:Academic Press,l:229-408.
    [166] Knight B.P., Mcgarath S.P., Chandr A.M. 1997. Biomass carbon measurements and substrate utilization patterns of microbial populations from soils amended with cadmium, capper, or zinc, Applied and Environmental Microbiology, 63(1):39-43.
    [167] Garland J.L., Mills A.L. 1991. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-course utilization. Applied and Environmental Microbiology, 57(5):2351-2359.
    [168] Zak C.J. 1994. Functional diversity of microbial communities: a quantitative approach . Soil bio. Biochem., 26:1101-1108.
    [169] Haack S.K. 1995. Analysis of factors affecting the accuracy, reproducibity and interpretation of microbial community carbon source utilization patterns. Applied and Environmental Microbiology, 61(4):1458-1468.
    [170] Gary D.B., Mary K.T., and Tulie E.J. 2002. Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbial communities. Soil Biology & Biochemistry, 34:1073-1082.
    [171] Smalla K., Wachtendorf U., Hewer H., Liu W. 1996. Analysis of Biolog GN substrate utilization patterns by microbial communities. Applied and Environmental Microbiology, 64:1220~1225.
    [172] Sayler G.S., Nikbakht K. 1998. Application of molecular techniques to soil biochemistry. In: Soil Biochemistry, (Stotzky G & Bollag J., Eds), Marcal Dekker, New York, V(7): 131~172.
    [173] Tarsvik V., and Goksoyr J. 1990. High diversity in DNA of soil bacteria. Applied and Environmental Microbiology, 56:782~787.
    [174] Akkermans A.D.L., Mirza M., and Harmsen H.J. 1994. Molecular ecology of microbes-a review of promises,pitfalls and true progress. FEMS, Microbiology Review, 15:185~194.
    [175] 罗海峰,齐鸿雁,薛凯.2003.PCR-DGGE技术在农田土壤微生物多样性研究中的应用.生态学报,23(8):1570~1575.
    [176] Zhu W.Y., Yao W., Mao S.Y. 2003. Development of bacterial community in faeces of weaning piglets as revealed by Denaturing Gradient Gel Electrophoresis. Acta Microbiologica Sinaca, 43(4),503~508.
    [178] Muyzer G., Waal E.C., Uitterlinden A.G., 1993. Profiling of Complex microbial population by DGGE analysis of PCR genes encoding for 16SrRNA. Applied and Environmental Microbiology, 59(2): 695~700.
    [179] Muyzer G., Smalla K. 1998. Application of Denaturing Gradinent Gel Electrophoresis and Temperature Gradient Gel Electrophoresis in microbial ecology. Antoni, Var. Lereuwenhook, 73:127~141.
    [180] Luca C., Marisa M., Carlo C. 2001. DGGE analysis of the 16SrRNA gene V1 region to monitor dynamic change in the bacterial population during formation of Italian sausage. Applied and Environmental Microbiology, 5113~5121.
    [181] Koizumi Y., Kelly J.J., Nakagawa J. 2002. Parallel characterization of anaerobic toluene-and ethybenzene-degrading microbial consortia by PCR-Denaturing Gradient Gel Electrophoresis, RNA-DNA membrane hybridization, and DNA microarray technology. Applied and Environmental Microbiology, 68:3215~3225.
    [182] Iwamoto T., Tani K., Nakamura K. 2002. Monitoring impact of in situ biostimulation treatment on groundwater bacterial community by DGGE. FEMS, Microbial Ecol., 32(2):129~141.
    [183] Oved T., Shaviv A., Godrath T. 2001. Inflence of effluent irrigation on community composition and function of ammonia-oxidizing bacterial in soil. Applied and Environmental Microbiology, 67(8):3426~3433.
    [184] Frank S., Christoph C.T. 1998. A new approach to utilize PCR-SSCP for 16SrRNA gene-based microbial community analysis. Applied and Environmental Microbiology, 64(12):4870~4876.
    [185] Marilley L., Vogt G., Blanc M. 1998. Bacterial diversity in the bulk soil and rhizosphere fractions of Lolium Perenne and Trifolium repens as revealed by PCR restriction analysis. Plant Soil, 198:219-224.
    [186] Frank S., Christoph C.T. 2000. Effect of Field Inoculation with Sinorhizatium melilotil. FEMS Microbial Ecol., 36:139-151.
    [187] Sabine P., Stefanie K., Frank S. 2000. Succession of microbial communities during hot composting as detected by PCR-SSCP genetic profile of small-subunit rRNA genes. Applied and Environmental Microbiology, 66(3):930-936.
    [188] Osborn A.M., Moore E.R.B., Tlmmis K.N. 2000. An evaluation of Terminal Restriction Fragment Length Polymorphism (T-RFLP) for the study of microbial community structure and dynamics. Environ. Microbiol, 2:39-50.
    
    [189] Nassar A., Darrase A., Lematlre M. 1996. Interference of Humic Acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Applied and Environmental Microbiology, 62: 2228-2235.
    [190] Buckley D.H., Schmidt T.M. 2001. The structure of microbial communities in soil and the lasting impact of cultivation. Microbial Ecology, 42:11-21.
    [191] Vanwinzingerode F., Gobel U.B., Stackebrant E. 1997. Determination of microbial diversity in environmental samples: Ditfalls of PCR-based rRNA analysis. FEMS Microbiol, Rev., 21:213-229.
    [192] Tsai Y.L., Olson B.H. 1991. Rapid method for direct extraction of DNA from soil and sediments. Applied and Environmental Microbiology, 57:1070-1074.
    [193] Walsh P.S., Metzger D.A., Higuchi R. 1991. Chelex-100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques, 10:506-513.
    [194] Zhang D., Alm E.W., Stahl D.A. 1996 Characterization of universal small-subunit rRNA hybridization probes for quantitative molecular microbial ecology studies. Applied and Environmental Microbiology, 62:4504-4513.
    [195] Suzuki M.T., Giovannoni S.T. 1996. Bais caused by template annealing in the amplification mixtures of 16SrRNA genes by PCR. Applied and Environmental Microbiology, 62:625-630.
    [196] Tebbe C.C., Vahjen W. 1993. Interference of Humic Acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Applied and Environmental Microbiology, 53: 2657-2665.
    [197] Wilson K.H., Wilson W.J., Radosevich J.L. 2002. DNA amplification to enhance detection of genetically engineered bacteria in environmental samples. Applied and Environmental Microbiology, 68:2535-2541.
    [198] Small J., Call D.R., and Brockman F.T. 2001. Direct detection of 16SrRNA in soil extracts by using oligonucleotide microarrys. Applied and Environmental Microbiology, 67:4708-4716.
    [199] Guschin D.Y., Mobarry B.K., Proudnikow D. 1997. Succession of microbial communities during hot composting as detected by PCR-SSCP genetic profile of small-subunit rRNA genes. Applied and Environmental Microbiology, 63:2397~2402.
    [200] Loy A., Lehner A., Lee N. 2002. Oligonuclcotidc microarray for 16SrRNA gene-based detection of all recognized lineages of sulfte-reducing prokaryotes in the environment. Applied and Environmental Microbiology, 68:5064~5081.
    [201] Dong Y.J., Glasner D., Blattner F.R. 2001. Genomic interspecies microarray hybridization: Rapid discovery of there thousand genes in the Maize Endophyte, Klesiella pneumoiate 342, by microarray hybridization with E. coli k_(12) open reading frames. Applied and Environmental Microbiology, 67:1911~1921.
    [202] Schen M., Chalon D., Davis R. 1995. Quantitative microarray. Science, 270:467~470.
    [203] Fantroussis E.I., Urakawa H., Berhard A.E. 2003. Direct profiling of environmental microbial populations by thermal dissociation analysis of native ribosomal RNAs hybridized to oligoncleotide microarrays. Applied and Environmental Microbiology, 69:2377~2382.
    [204] Taroncher O.G.; Griner E.M., Francis C.A. 2003. Oligoncleotide microarray for the study of functional gene diversity in the nitrogen cyde in the environment, Applied and Environmental Microbiology, 69:1159~1171.
    [205] John J. K. 2003. Molecular techniques for the analysis of soil microbial process: Functional gene analysis and the utility of DNA microarray. Soil Science, 168(9): 597~605.
    [206] Dou Z., Zhang G.Y., Stout W.L. 2003. Efficacy of Alum and Coal Combustion By-Products in Stabilizing Manure Phosphorus. Journal of Environmental Quality. 32:1409~1479.
    [207] 李季伦,张伟心,杨启瑞等编.1993.微生物生理学[M].北京:北京农业大学出版社.
    [208] 李季伦译.2005.微生物生理学[M].A.G.Moat,J.W.Foster,M.P.Speetor编著.北京:高等教育出版社.
    [209] 周德庆.2002.微生物学教程[M].北京:高等教育出版社.
    [210] 曾光明,黄国和,袁兴中等编著.2006.堆肥环境生物与控制[M],北京:科学出版社.
    [211] MacGregor S.T., Miller EC., Psarianos K.M., Fintein M.S. 1981. Composting process control based on interaction between microbial heat output and temperature. Applied and Enviromental Microbiology, 41(6):1321~1330.
    [212] Balabane M. 1995. Medium term transformations of organic N in a cultivated soil. European Journal of Soil Science, 46:497~505.
    [213] 夏容基译.(美)F.J.斯蒂文森(F.J.Stevenson)著.1994.腐殖质化学(Humus Chemistry)[M].北京:北京农业大学出版社。
    [214] 赵斌,何绍江主编.2002.微生物学实验,北京:科学出版社.
    [215] 大岛太郎,1983.好热性细菌[M].北京:科学出版社.
    [216] 刘志恒,姜成林主编,2003.放线菌现代生物学与生物技术[M].科学出版社.
    [217] Cross T. 1968. Thermophilic actinomycetes. Journal of Applied Bacteriol, 31:36-53.
    
    [218] Michael H. Willian C. G., Larry P.W. 2003. A quantitative analysis of DNA extraction and purification from compost. Journal of Moicrobiological Methods, 54:37-45.
    [219] Beffa T., Blanc M., Lyon P.F., Vogt G, Marchiani M., Fischer J.L., Aragano M. 1996. Isolation of thermos strains from hot composts 60-80'C. Appl. Environ. Microbiol., 62: 1723 -1727.
    
    [220] Peter F.S. 1985. Identification of Thermophilic Bacteriain Solid-Waste Composting. Applied and Environmental Microbiology. Oct. 906-913.
    [221] Wilson K.H., Wilson W.J., Radosevich J.L. 2002. DNA amplification to enhance detection of genetically engineered bacteria in environmental samples. Applied and Environmental Microbiology, 68:2535-2541.
    [222] Steffan R.J., Atlas R.M. 1988. DNA amplification to enhance detection of genetically engineered bacteria in environmental samples. Appl. Environ. Microbiol. 54:2185-2191.
    [223] Holben W.E., Jansson JK, Chelm B. 1988. DNA probe method for the detection of microorganism in the soil bacterial community. Appl. Environ. Microbiol. 54:703-711.
    [224] Ward D.M., Wellr R., Bateson M.M. 1990. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature (London), 345:63-65.
    [225] Liesack W., Stackebtandt E. 1992. Occurrence of novel groups of the domain bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment. J. Bacteriol, 17(4): 5072-5078.
    [226] Heuer H., Krsek M., Baker P., Smalla K, and EM Wellington. 1997. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Applied and Environmental Microbiology, 63(8): 3233-3241.
    [227] Embley T. M., Stackebr E. 1994. The molecular phylogeny and systematics of the actinomycetes. Annu. Rev. Microbiol. 48:257-289.
    [228] Dong Y.J., Glasner D., Blattner F.R. 2001. Genomic interspecies microarray hybridization: Rapid discovery of there thousand genes in the Maize Endophyte, Klesiella pneumoiate by microarray hybridization with E. coli k_(-12) open reading frames. Applied and Environmental Microbiology, 67:1911-1921.
    [229] Fantroussis E.I., Urakawa H., Berhard A.E. 2003. Direct profiling of environmental microbial populations by thermal dissociation analysis of native ribosomal RNAs hybridized to oligoncleotide microarrays, Applied and Environmental Microbiology, 69:2377-2382.
    [230] Kawai M., Matsutera E., Kanda H., Yamaguchi N. et al. 2002. 16S ribosomal DNA-based analysis of bacterial diversity in purified water used in pharmaceutical manufacturing processes by PCR and denaturing gradient gel electrophoresis. Applied and Environmental Microbiology, 68(2): 699-704.
    [231] Duineveld B.M., Kowalchuk G.A., Keijzer A., Van Elsas J. D., Van Veen J. A. 2001. Analysis of bacterial communities in the rhizosphere of chrysanthemum via denaturing gradient gel electrophoresis of PCR amplified 16SrRNA as well as DNA fragments coding for 16SrRNA. Applied and Environmental Microbiology, 67(1):172~178.
    [232] Arlorio M., Coisson J.D., Cereti E., Travaglia F. et al. 2003. Polymerase chain reaction (PCR) of puroindoline band ribosomal/puroindoline b multiplex PCR for the detection of common wheat (Triticum aestivum) in Italian pasta. European Food Research Technology, 216:253~258.
    [233] Chen C.A., Chen C.P., Fan T.Y., Yu J.K., Hsieh H.L 2002. Nucleotide sequences of ribosomal internal transcribed spacers and their utility in distinguishing closely related perinereis polychaets. (Aunelida; Polychaeta; Nereididae). Marine Biotechnology, 4, 17~29.
    [234] Claridge M.F., and Boddy L. 1994. Species recognition systems in insects and fungi, In: The identification and characterization of pest organisms. (DL Hawk sowrth, Ed.), Cab International, Wallinford, 261~274.
    [235] Michel B., Laurent M., Treno B. 1999. Therlnophilic bacterial communities in hot composts as rexealed by most probable number counts and molecular (16SrDNA) methods. FEMS Microbiology Ecology, 28: 141~149.
    [236] Peter M.D., William C. 2001. Microbial diversity in hot synthetic compost as revealed by PCR-ampliced rRNA sequences from cultivated isolates and extracted DNA. FEMS Microbiology Ecology, 35: 207~216.
    [237] Sabine P., Stefanie K., Frank S. 2000. Succession of microbial communities during hot composting as detected by PCR Single Strand Conforma tionpolymorphism based genetic profiles of small-subunit rRNA Genes. Applied and Environmental Microbiology, 66: 930~936.
    [238] McCarthy A. J. 1987. Lignocellulose-degrading actinomycetes. FEMS Microbiol. Rev. 46:145~163.
    [239] 朴哲.2002.高温堆肥体系的物质降解机理及微生物学特性研究[D].北京:中国农业大学.
    [240] Tuomela M., Vikman M., Hatakka A., et al. 2000. Biodegradation of lignin in compost environment:a revew. Bioresource Technology, 72 (2):169~183.
    [241] Godden B., Ball A.S., Helvenstein P., McCarthy AJ., Penninckx M.J. 1992. Towards elucidation of the lignin degradation pathway in actinomycetes. J. Gen. Microbial., 138: 2441~2448.
    [242] Griffith I.M., Lloyd P.J.1985. Mobile Oxygenation in the Thames Estuary. Effluent and Treatment Journal, (5): 165~170.
    [243] Cross T. 1968. Thermophilic actionmycetes. J. Appl. Bact., 31:36~53.
    [244] Khalil A.I., Beheary M.S., Salem E.M. 2001. Monitoring of microbial population and their cellulolytic activities during the composting of municipal solid waste. World Journal of Microbiology and Biotechnology, 17:155~161.
    [245] Tiquia S.M., Wan J.H.C., Tam N.F.Y. 2002. Microbial population dynamics and enzyme activities during composting. Compost Science & Utilization, 10(2):150~161.
    [246] 冯明谦,刘德明.1999.滚筒式高温堆肥中微生物种类数量的研究.中国环境科学,19(6):490~492.
    [247] Sabine P., Stefanie K., Frank S. 2000. Succession of microbial communities during hot composting as detected by PCR Single Strand Conforma tionpolymorphism based genetic profiles of small-subunit rRNA Genes. Applied and Environmental Microbiology, 66: 930~936.
    [248] Crawford, J.H. 1983. Composting of agricultural wastes: a review. Process Biochem., 18: 14~18.
    [249] 于天仁等主编,1988.土壤化学分析[M].北京:科学出版社.
    [250] 于天仁,陈志诚主编.1990.土壤发生中的化学过程[M].北京:科学出版社.
    [251] Kuchuk R., Hill W., Buxba P. 1994. Infrared spectroscopy application in soil organic matter, J. Anal. Chem, 360(7~9):528.
    [252] 吴景贵,席时权,姜岩,1998.红外光谱在土壤有机质研究中的应用,光谱学与光谱分析,18(1):52~57.
    [253] 鲍士旦主编,2000.土壤农化分析[M].北京:中国农业出版社.
    [254] Durig D.T, Estede J.S., Dickson T.J., Dudg J.R. 1988. An investigation of the chemical variability of woody peat by FTIR spectroscopy. Appl. Spectrosc., 42: 1239~1244.
    [255] Koji N,Solomon P.H.1984.红外光谱分析100例[M].北京:科学出版社.
    [256] 陈允魁 编著.1995.红外吸收光谱法及其应用[M].上海:上海交通大学出版社.
    [257] 宁永成 编著.2003.有机化合物结构鉴定与有机波谱学[M].北京:科学出版社.
    [258] 王加启,于建国主编.2004.饲料分析与检验[M].北京:中国计量出版社.
    [259] Inbar Y., Chen Y., Hadar Y. 1989. Solid-state carbon-13 nuclear magnetic resonance and infrared spectroscopy of composted organic matter. Soil Sci. Soc. Am. J., 53:1695~1701.
    [260] Kuhad R.C., Singh, A., Eriksson, K.E.L. 1997. Microorganisms and enzymes involved in the degradation of plant fiber cell walls. In: Eriksson, K.E.L. (ED), Advances in Biochemical Engineering/Biotechnology, 57: 46~125.
    [261] Morisaki N., Phae C.G., Nakasaki K. 1989. Nitrogen transformation during thermophilic composting. Journal of fermentation & Bioengeineering, 67(1): 57~61.
    [262] Bitzer C.C., Sims J.T. 1988. Estimating the availability of nitrogen in poultry manure through laboratory and field studies. Journal of Environmental Quality, 17(1): 47~54.
    [263] Stentiford M.S., Holden C., Soares H. 1994. Effect of amendments on nitrogen conservation in wastewater biosolids composting. Compost Science & Utilization. 2(1): 23~28.
    [264] Mahimairaja S., Bolan N.S., Hedley M.J. 1994. Loss and transformation of nitrogen during composting of poultry manure with different amendments: an incubation experiment. Bioresource Technology, 47:265~273.
    [265] Witter E., Lopez-real J. 1987. The pote tial of sewage sludge and composting in a nitrogen recycling strategy for agriculture, Bio. Agric. Hort., 5(2): 123~131.
    [266] Witter E., Lopez-real J. 1988. Nitrogen loos during the composting of sewage sludge, and the effdctiveness of clay soil, zaolite, and compost in adsorbing the volatilized ammonia. Biological Wastes, 23(4): 279~294.
    [267] Witter E., Kirchmann H. 1989. Peat zeolite and basalt as zdsorbents of ammoniacal nitrogen during manure decomposition. Plant and soil, 115(1): 43~52.
    [268] Miner J.R. 1984. Use of natural zeolites in the treatment of animal waste. In: Zeo-Agriculturre: Use of Natural Zeolite in Agriculture and Aquaculture (w.G. Pond and Mumpton F.A., Eds). Westivew Press, Boulder. 93~110.
    [269] Smars S., Gustafsson L., Back-Friis B. 2002. Improvement of the composting time for household waste during an initial low pH phase by mesophilic temperature control. Bioresource Technology, 84 (3): 237~241.
    [270] Dewes T. 1996. Effect of pH, temperature, amount of litter and storge density on ammonia emissions from stable manure. J. Agricultural Engineers, 40(4): 1179~1189.
    [271] 李季伦,张伟心,杨启瑞等编.1993.微生物生理学[M].北京:北京农业大学出版社.
    [272] 李季伦译.2005.微生物生理学[M].A.G.Moat,J.W.Foster,M.P.Spector编著.北京:高等教育出版社.
    [273] 郁红艳,曾光明,胡天觉等.2003.真菌降解木质素研究进展及其在好氧堆肥中的研究进展.中国生物工程杂志,23(10):57~61.
    [274] 郁红艳,曾光明,牛承岗等.2005.放线菌降解木质素研究进展.环境科学技术,28(2)104~106.
    [275] Regalado V., Rodriguez A., Perestele F. 1997. Ligin degradation and modification by the soil-inhabiting fungus Fusarium prolfferatum. Appl. Environ. Microbiol., 63(9):3716~3718.
    [276] Regalado V., Perestele F., Roddguez A. 1999. Activated oxygen species and extracellular enzymes: laccase and aryl-alcohol oxidase, novel for the ligin-degrading fungus Fusarium proliferatum. Applied Microbiol Biotechnology. 51(2):388~390.
    [277] Yavmetdinov I.S., Stepanova E.V., Gavrilova V.P. 2003. Isolation and Characterization of humin-like sub-stances produced by wood-degrading white Rot fungi. Applied Biochemistry and Microbiology, 39(3): 257~264.
    [278] 黄丹莲,曾光明,黄国和等.2004.白腐真菌的研究现状及其在堆肥中的应用展望.微生物学通报,31(2):112~116.
    [279] 黄红丽,曾光明,黄国和等.2004.堆肥中木质素降解微生物对腐殖质形成的作用.中国生物 工程杂志,24(8):29~31.
    [280] 凌婉婷,徐建民,高彦征,汪海珍.2004.溶解性有机质对土壤有机污染物环境行为的影响.应用生态学报,15(2):326~330.
    [281] 倪进治,徐建民,谢正苗.2003.土壤水溶性有机碳的研究进展,生态环境,2003,12(1):71~75.
    [282] 倪进治,徐建民,谢正苗,唐才贤.2001.不同有机肥料对土壤生物活性有机质组分的动态影响.植物营养与肥料学报,7(4):374~378.
    [283] 谷勋刚,王果,方菱.2001.有机肥非水性分解产物对铜、镉吸附及解析的影响,植物营养与肥料学报,7(1):93~102.
    [284] 占新华,崔春红,卢燕宇,周立祥.2004.水溶性有机物在水旱轮作土壤剖面的分馏现象.应用生态学报,15(6):1025~1029.
    [285] Henry V.M. 2002. Association of hydrophobic organic contaminants with soluble organic matter: Evaluation of the database of Kdoe value. Adv Environ. Res, 6:577~593.
    [286] SERMiN GuL, GUDRUN ABBT-BRAUN, FRITZ H.FRIMMEL. 2003. Use of gelpereation chromatography to characterize the changes in natural organic matters through oxidative treatments. Inter. J. Environ. Anal. Chem. 83(9):761~768.
    [287] Arthur C., and Pawliszyn J.1990. Solid-phase microextration with thermal-desorption using fused-silica optical fibers. Chem, 62: 2145~2153.
    [288] Hill P.G., Smith R.M. 2000. Determination of sulphur compounds in beer using headspace solid-phase microextraction and gas chromatographic analysis with pulsed flame photometric detection. J Chromatogr A, 872: 203~213.
    [289] Deng C.H., Song G.X., Zheng X.H. 2003. Analysis of the volatile constituents of Apium graveolens L. and Oenanthe L. by gas chromatography-mass spectrometry using headspace solid-phase microextraction. Chromatographia, 57(11~12): 805~809.
    [290] XU R.K., and Zhu Y.G, 2004. Phosphorous release from phosphate rock and iron phosphate by low-molecular weight organic acids. Journal of Environmental Sciences, 16(1):5~8.
    [291] 陆文龙,王敬国,曹一平,张福锁.1998.低分子量有机酸对土壤磷释放动力学的影响.土壤学报,35(4):493~500.
    [292] 章永松,林咸永,罗安成,苏玲.1998.有机肥(物)对土壤中磷的活化作用及机理研究Ⅰ·有机肥(物)对土壤不同形态无机磷的活化作.植物营养与肥料学报,4(2):145~150.
    [293] 龙新宪,倪吾钟,叶正钱,杨肖娥.2002.外源有机酸对两种生态型东南景天吸收和积累锌的影响.植物营养与肥料学报,8(4):467~472.
    [294] Huang Z.Q., Liao L.P., Wang S.L., Cao G.Q. 2000. Allelopathy of phenolics from decomposting stump-roots in replant Chiese fir woodland. Journal of Chemistry Ecology, 26(9): 2211~2219.
    [295] 潘瑞炽 主编,1979.植物生理学[M].北京:高等教育出版社.
    [296] 李自刚,黄为一.2005.有机堆肥PCR-DGGE的微生物分子多态性分析.土壤学报.42:1047~1049.
    [297] 徐广通,袁洪福,陆婉珍.2000.现代近红外光谱技术及应用进展,光谱学与光谱分析,20(2):134~142.
    [298] 张洪艳,丁东,宋立强,谷琳娜,杨鹏,唐玉国.2005.血糖无创监测中近红外漫反射光谱技术的研究.光谱学与光谱分析,25(6):882~885.
    [299] 芮玉奎,罗云波,黄昆仑,王为民,张录达.2005.近红外光谱在转基因玉米检测识别中的应用.光谱学与光谱分析,25(10),1581~1583.
    [300] 王国庆,王芳,陈达,苏庆德,邵学广.2004.近红外光谱技术用于复杂植物样品中无机离子测定的新方法.光谱学与光谱分析,24(12):1540~1542.
    [301] Sauvage S, Elkurdi M, Bouc P. 2002. Near-infrared waveguide photodetector with Ge/Si self-assembled quantum dots. Appl.Phys.Lett., 80(3): 509~511.
    [302] 张杨珠,蒋有利,黄运湘,胡瑞芝,肖永兰.1998.稻作制,有机肥和地下水位对红壤性水稻土磷的吸持作用的影响.土壤学报.35(3):328~337.
    [303] 姜岩,窦森.1987.土壤施用有机物料后重组有机质变化规律探讨.Ⅰ对有机无机复合及腐殖质结合形态的影响.土壤学报.24(2):97~104.
    [304] 张树清,张夫道,刘秀梅,王玉军,邹绍文,何绪生.2005.规模化养殖畜禽粪主要有害成分测定分析研究.植物营养与肥料学报,11(6):822~829.
    [305] 林咸永,章永松,蔡妙珍,张英鹏,李刚,杨肖娥.2006.磷、钾营养对柑桔果实产量品质和贮藏性的影响.植物营养与肥料学报,12(1):82~88.
    [306] 樊治成,郭洪芸,张曙东,王秀峰.2005.大蒜不同品种干物质生产与氮、磷、钾和硫的吸收特性.植物营养与肥料学报,11(2):248~253.
    [307] GB/T8574-1988.复混肥料中钾含量的测定-四苯基合硼酸钾重量法[S].
    [308] GB/T17767.3-1999.无机-有机复混肥料中总钾含量的测定[S].
    [309] 齐小明,张录达,杜晓林等.2003.PLS-BP法近红外光谱定量分析研究.光谱学与光谱分析研究,23(5):870~873.
    [310] 刘平年.2004.PLS法和PCA法在近红外光谱定量分析中的应用研究.广州食品工业科技,20(4):106~137.
    [311] 邵学广,庞春艳,孙莉.2000.小波变换与分析化学信号处理.化学进展,12(3):233~244.
    [312] 潘忠孝,邵学广,仲红波.1996.小波变化用于高效液相色谱的基线校正.分析化学,24(2):149~153.
    [313] 张丽珂,江娜.2006.VDR图像压缩方法研究.船舶工程,28(3):66~69.
    [314] 邵学广,虞正亮.2002.小波变换-免疫算法用于重叠分析化学信号的解析.计算机与应用化 学,19(3):242~244.
    [315] 熊智新,徐广通,胡上序.2006.小波系数压缩用于柴油十六烷值近红外光谱分析建模.光谱实验室,23(2):177~182.
    [316] 杜建卫,程乾生,刘乃强.2006.中药色谱指纹图谱的小波变换与分形.数学的实践与认识,37(7):275~280.
    [317] 姜玉梅,曹永忠,封国林.2002.应用小波多尺度分解算法实现简化气候模式的减噪.扬州大学学报(自然科学版),5(3):22~26.
    [318] 王国庆,邵学广.2005.离散小波变换-遗传算法-交互检验法用于近红外光谱数据的高倍压缩与变量筛选.分析化学,33(2):191~194.
    [319] 王献忠.近红外光谱法快速测定复混肥总氮量.萍乡高等专科学校学报.2001,4:73~75.
    [320] 彭玉奎,张建新,何绪生,卢双恩.土壤水分,有机质和总氮量的近红外光谱分析的研究.土壤学报,1998,35(4):554~559.
    [321] 于飞健,闵顺耕,巨孝棠,张福锁.近红外光谱法分析土壤中的有机质和氮素.分析试验室,2002,21(3):49~51.
    [322] Malley D.F., Yesmin L., Wray D., Edwards S. 1999. Application of near-infrared spectroscopy in analysis of soil mineral nutrients. Communications in Soil Science and Plant Analysis, 30 (7/8): 999~1012.
    [323] Malley D.F., Yesmin L., Eilers R.G.. 2002. Rapid analysis of hog manure and manures-amended soil using near-infrared spectroscopy. Soil Science Society of America Journal, 66(5): 1677~1686.
    [324] 王洪涛,李雨送.2001.高温耗氧堆肥模拟模型研究与应用.中国环境科学,21(3):40~244.
    [325] Finstein M.S., Miller F.C., Strom P.F., et al. 1985. Waste treatment composting as a controlled system. Biotechnology: A Comprehensive Treatise, 8(3):363~398.
    [326] Ndegwa P.M., Thompson S.A., Merka W.C. 2000. A dynamic simulation model of in situ composting of caged layer manure. Compost Science & Utilization, 8(3): 190~192.
    [327] Guerra-Rodriguez E., Vazquez M., Diaz-Ravina M. 2001. Dynamics of physico chemical and biological parameters during the co-composting chestnut burr/leaf litter with solid poultry manure. Journal of the Science of Food and Agriculture, 81(7): 648~659.
    [328] 何绪生.2004.近红外反射光谱分析在土壤肥料学的应用及发展方向.土壤通报,35(4):487~492.
    [329] 孙毓庆主编.仪器分析选论[M].北京:科学出版社.
    [330] 陈培荣,李景虹,邓勃主编.现代仪器分析实验与技术[M].北京:清华大学出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700