基于多源信息融合的模糊决策故障选线判据及装置研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小电流接地系统发生单相接地故障时,形成的过电压会加速电气设备绝缘老化,容易造成绝缘闪烙及事故扩大,因此,要求故障选线装置快速、准确地选择并切除故障线路。由于小电流接地系统的接地故障复杂多变,单个选线方法普遍存在选线盲区,工况适应性差,故障选线准确率低。本文结合小电流接地系统中性点接地方式特点,提出基于多源信息融合的模糊决策的故障选线判据实施单相接地故障选线,开发了故障选线装置样机并进行了试验。
     本文总结了当前小电流接地系统中性点三种运行方式的特点及其应用。分析了当前小电流接地系统的选线方法及其优缺点,针对造成小电流接地系统选线难的因素,如故障建模难、故障特征信号微弱、消弧线圈等其他继电保护装置的干扰等,指出选线装置应根据不同的中性点接地方式采用多源信息特征量进行故障选线。
     本文以系统发生单相接地故障时的相电压和接地电流的变化为对象,讨论了电力系统中性点接地方式的划分依据及其特征。利用对称分量法分析了三种中性点接地方式下的单相接地故障情况,给出了零序电压、零序电流等物理量的表达式,并简析了系统发生单相接地故障时,各种接地方式下线路中零序分量的分布规律,为故障选线判据的设计奠定理论基础。
     本文对与单相接地故障特征相似的PT一次断线、系统断相和铁磁谐振故障进行了深入分析,分别提出了比较PT的线电压大小辨别PT一次断线故障和比较各相电压大小及其变化辨别系统断相故障的有效判据;提出了改进插值FFT算法和Prony算法提取谐振信号的谐波特征,从而快速准确地辨别谐波谐振类型(分次谐波谐振或高次谐波谐振)及有效消谐。
     本文针对单判据选线正确率低的特点,根据故障信号特征量变化规律和信号强度分别建立各选线方法的故障测度隶属函数和权系数函数,利用模糊判断取代传统的逻辑判断。基于多源信息融合技术综合各选线方法的优势,建立了NUS、NES两种系统的模糊决策故障选线判据体系。同时,针对NES的固有缺陷,提出了提高选线装置准确率的有效措施,如增大故障残流、配合消弧线圈调档采集数据等。利用仿真软件EMTP-ATP对小电流接地系统中的多种接地故障情形进行了大量的仿真,验证了选线方法的有效性。
     本文根据理论分析建立的模糊决策故障选线判据,基于PC104总线,开发了DOS操作系统下的小电流接地选线装置,并且对选线装置进行了两次系统的试验。试验结果表明:在系统发生单相接地故障情况下选线装置具有极高的选线准确率和良好的适应性。
When the single phase-to-earth fault occurs in the non-effectively grounded system (NUGS), the system can be permitted to operate for a period of time in order to enhance the reliability. However, the over-voltage will accelerate the insulation of equipment to become older, and arose the insulation flashover. Thus, the fault line must be selected and removed quickly and accurately by the fault line selection device. Because of the complexity of NUGS, there are some dead areas for the present fault line selection method, whose adaptability and robust are weak, and the correctness of fault line selection is low. Referring to the characteristics of grounded mode in the NUGS, the criterion of fuzzy decision-making fault line selection is prospered to carry out the fault line selection on the basis of multi-source data fusion, and a fault line selection device is developed and some tests are carried out.
     Firstly, in this paper the characteristics and application of three kinds of neutral operation mode are summarized. The fault line selection methods and their advantage and disadvantage in the NUGS are detailed. Aiming at the difficult factors of fault line selection, such as the difficult fault modeling, the faint fault signal, the unstable grounding arc and the interfere of arc-suppression or other relay protection, the fault line selection must be carried out by using the multi-source information characters according to the different neutral operation mode.
     when the single phase-to-earth faults occur, through analyzing the change of phase voltage and fault grounded current, the dividing criterions and characteristics of neutral grounded modes are explained. According to the symmetry weight method, the single phase-to-earth faults of three kinds of grounded modes are analyzed, and the expressions of zero sequence voltage and zero sequence current are detailed, and the distributing laws are indicated under all kinds of grounded modes, consequently, the theory is established for the criterion design of fault line selection in the paper.
     And then in this paper, the line break of PT’primary winding and the system’s phase break and the ferroresonance fault occur in the NUGS, the biggish zero sequence voltage will be exported from the PT’s open-delta, whose fault characteristic is similar to the single phase-to-earth fault, which are deeply researched in this paper. At the same time, the criterions of comparing the line voltage to distinguish the line break of PT’s primary winding fault and comparing the phase voltage and its change to distinguish the system’s phase break are prospered. And the improved interpolate FFT arithmetic and Prony arithmetic are prospered to obtain the harmonic characteristic quickly and accurately when the ferroresonance occurs, and then distinguish the types of harmonic resonance (frequency dividing resonance or higher frequency resonance), so that the ferroresonance eliminator can be effective.
     Aiming at the low veracity of present fault line selection method, some fault measurement membership functions and some criterion weight coefficient membership functions of fault line selection method are defined inspectively according to the variational law of fault signal character and the intension of fault signal, and the conventional logic judgment is replaced with the fuzzy judgment. Based on the large information fuse technology, the criterion of fuzzy fault line selection for the NUGS is built up under the neutral ungrounded system (NUS) and the neutral resonance system (NES). Especially, some good ways are prospered to enhance the veracity of fault line selection device for the inherent defectiveness of NES, such as increasing the remaining current, cooperating with the arc-suppression coil when carrying out data acquiring and so on. Aiming at many single phase-to-earth fault cases in the NUGS, many simulations are carried out by the EMTP-ATP software, and the fault line selection methods are validated.
     Finally, according to the criterion of fuzzy decision-making fault line selection built by the theory analysis above, the fault line selection device is developed under the DOS operate system on the basis of the PC104 bus, and some tests are carried out for the fault line selection device. The test results show that the fault line selection device has the high veracity of fault line selection and better application when the single phase-to-earth fault occurs in the NUGS.
引文
[1]要焕年,曹梅月.电力系统谐振接地[M].北京:中国电力出版社, 2000
    [2] R. Willheim, M. Waters. Neutral Grounding in High-voltage Transmission[M]. New York. Amsterdam. London. Princeton, 1956
    [3] Matti Lehtonen. Fault Management in Electrical Distribution System[M]. Final Report of the DIRED Working Group Fault Management. CIRED, 1999
    [4] IEEE recommended practice for grounding of industrial and commercial power systems[s]. IEEE Std 142-1991, 1992
    [5] Y. Harmand, M. Ciement, Ph. Juston. Neutral Grounding of MV Rural Networks—the French Solution. CIRED session 1, Argentina 25 desember, 1996, 4-14
    [6]李福寿.中性点非有效接地电网的运行[M].北京:水利电力出版社, 1993
    [7]要焕年.论城市电网中性点接地方式的发展方向[J].华中电力, 1993, 3(3): 1-4
    [8]王敦波.中压配电系统中性点接地方式[D].东南大学博士学位论文, 1995
    [9]肖静.中低压配电网单相接地故障检测的研究[D].硕士学位论文,山东大学, 2002
    [10] Bridger B. High-resistance Grounding[J]. IEEE Trans Ind Appl, 1983, 19(1): 234-248
    [11] Scott F E. New Ground Fault Protection System Minimizes Electrical Shock Hazards[M]. Coal Mining & Processing, 1981
    [12] Detjen E R, Shah K R. Grounding Transformer Applications and Associated Protection Schemes[J]. IEEE Trans Ind Appl, 1992, 28(4):25-31
    [13] C. Robert. 2eme Colloque UNIPEDE Sur La Distribution. Lisbonne. 25-27/09/89. Orientations Prises Par EDF Pour Amelicrer La Qualite Du Produit Electricite
    [14] Shi Minghe. A New Type Feeder Earth Fault Selecting Device for Neutral Isolated and Arc Suppression Coil Grounded Systems[C]. Proceedings of Beijing Electric Power International Conference on Transmission and Distribution. Nov.24-28th, 1997, 344-348
    [15] J. Bergeal, L. Berthet, 0. Grob et al. Single Phase Faults on Compensated Neutral Meduim Voltage Networks[C]. CIRED, Birmingham, 1993, No.373, pp.2.09
    [16] Russel, B. D, Benner, C.L. Arcing Fault Detection for Distribution Feeders: Security Assessment in Long Term Field Trials[J]. IEEE Transactions on Power Delivery, 1995, 10(2): 676-683
    [17] Matti L, Tapio H. Neutral Earthing and Power System Protection[M].ABB Transmit Oy Publication, Vaasa, Finland 1996
    [18] Griffel D, Leitloff V, Harmand Y, et al. A New Deal for Safety and Qualify on MV Networks[J].IEEE Transactions on Power Delivery. 1997, 12(4): 1429-1433
    [19] Gemot D. Erkennung Von Hochohmigen Erdschlussen in Geloschren Netzen[C]. Internationales Symposium NMT, 7-8, November 1995, Mulhouse France
    [20] Petersen W. Arcing Grounds (Inetermitten ground faults) E.T.Z. 1917, 38: 553-564
    [21] Strue L. Sensitive Earth Fault Protection for MV Distribution System[C].209 CIRED 1991
    [22] Petersen W. Suppression of Arcing Grounds Though Neutral Resistors and Lightning Arresters[J]. AIEE Trans, E.T.Z. 1918, 39:341
    [23]郑鹏鹏.小电流接地选线的工程实践与技术探讨[J].电力自动化设备,2003, 23(6): 82-85
    [24] Riikonen S. Distribution Network Operation and Protection; Experiences with Earth Fault Compensation[C]. Symposium of Relay Protection in Distribution Networks, Helsinki, Finland, March 12-13, 1995
    [25] P. Bertrand, R. Kaczmarek, X. Le Pivert et al. Earth-fault Detection in a Compensated Earthed Network, Without any Voltage Measurement[C]. CIRED2001, 18-21 June 2001, Conference Publication No.482 IEE 2001
    [26]贺志峰,刘沛.对中低压配电网中性点接地方法的研究[J].电力自动化设备,2002,22(9):70-73
    [27]齐郑,杨以涵.中性点非有效接地系统单相接地选线技术分析[J].电力系统自动化, 2004, 28(14): 1-5
    [28]徐丙垠,薛永端,李天友等.小电流接地故障选线技术综述[J].电力设备, 2005, 6(4): 1-7
    [29]郝玉山,杨以涵,任元恒等.小电流接地微机选线的群体比幅比相原理[J].电力情报, 1994, 5(2): 15-19
    [30]庞华,刘承洲,任元恒等.新型小电流接地系统微机消谐选线综合装置的原理及应用[J].电力情报, 1994, 13(1): 62-66
    [31]王坚,卢继平.新型小电流接地故障选线装置的设计[J].继电器, 2004, 32(14): 36-41
    [32] H. J. Dittrich, H. Hauser, B. Koetzold. Detection and Localization of Earth Faults[C]. ETG- Conference, Braunschweig, Germany, May, 18-19, 1988
    [33] Oink CHAARI, Michel MEUNIER, Franqoise BROUAYE. A New Tool for the Resonant Grounded Power Distribution Systems Relaying[j]. IEEE Transactions on Power Delivery, 1996, 11(3): 1301-1308
    [34]赵青春,刘沛,林湘宁等.基于综合判据的小电流接地选线装置研制[J].电力自动化设备, 2006, 26(5): 84-88
    [35]秦文杰,傅桂兴,毕建军等.一种新型谐振接地系统故障选线装置[J].电网技术, 2005, 29(11): 80-84
    [36]王宁,贾清泉,庞海雁.应用虚拟仪器实现配电网单相接地故障选线装置[J].电测与仪表, 2006, 43(481): 15-19
    [37]马星河,陈奎,唐轶等.基于80296和CPLD的补偿电网微机选线装置的设计[J].继电器, 2006, 34(13): 17-20
    [38]蔡旭,李仕平,杜永忠等.变阻尼调匝式消弧线圈及接地选线综合控制器[J].电力系统自动化, 2004, 28(5): 85-89
    [39]陈炯聪,齐郑,杨奇逊.基于模糊理论的小电流单相接地选线装置[J].电力系统自动化, 2004, 28(8): 88-92
    [40]李文磊,井元伟,刘晓平.模糊理论在新型接地故障选择装置中的应用[J].电测与仪表, 2001, 38(432): 18-22
    [41] Gangopadhyay A. A Low Cost Microprocessor Based Ground Fault Relay using Walsh Functions[C]. IEEE-IAS-1991 Annual Meeting
    [42]李文锋,杨继涛,连鸿波等.配电网接地故障信息管理系统[J].电力系统自动化, 2004, 28(7): 90-92
    [43] Charytoniuk W., Wei-Jen Lee, Mo-Shing Chen et al. Arcing Fault Detection in Underground Distribution Networks-feasibility Study. IEEE Transactions on Industry Applications, Nov.-Dec. 2000, 36(6): 1756-1761
    [44] Sture Lindahi. Sensitive Earth Fault Protection for MV Distribution System, 2.09 CIRED. 1991
    [45] W. Petersen. Limitation of Earth Current and Suppression of Earth Fault Arcs by the Earthing Coil[C]. Elektrotechnische Zeitschrif, January 2 and 9, 1919, 40: 5-7 and17-19
    [46] T. Dalstein, B. Kulicke. Neutral Network Approach to Fault Classification for High Speed Protective Relaying[J]. IEEE Transactions On Power Delivery, April 1995, 10(2):1002-1011
    [47] Seppo H?nninen, Matti Lehtonen. Characteristics of Earth Faults in Electrical Distribution Networks with High Impedance Earthing[J]. Electric Power Systems Research, 1998,44(3): 155-161
    [48] T. Welfonder. Network Parameters on the Performance of Algorithms for Resistive Earth Fault Detection in Compensated Distribution Systems[C]. UPEC, 1997, 947-950
    [49]张立华,徐文立.小接地电流系统单相接地故障选线的一种算法[J].清华大学学报(自然科学版), 1998, 38(9): 74-76
    [50]郝玉山,高曙,杨以涵等. MLN系列小电流接地微机选线装置动作原理[J].电力情报, 1994, 2(2): 7-11
    [51]陈火彬. 10kV配电线路单相接地故障的检测和预防[J].电力设备, 2005, 6 (3): 62-64
    [52] Jing X, Zhengcun P, Wei C, et at. The Study on Selective Grounding Fault Protection of Networks on Floating Neutral Based on Fuzzy Principe[C]. IEEE/CSEE International Conference on Power System Technology Proceeding, Oct, 2002, Kunming, China
    [53]马柯,张保会.中性点非直接接地系统故障选线原理的发展与展望[J].继电器, 2003, 31(5): 65-70
    [54]李孟秋,王耀南,王辉等.小电流接地系统单相接地故障点探测方法的研究[J].中国电机工程学报, 2001, 21(10): 6-9
    [55]桑在中,潘贞存,李磊.小电流接地系统单相接地故障选线测距和定位的新技术[J].电网技术, 1997, 21(10): 50-55
    [56]杨汉生,赵斌,姚晴林.基于零序功率的小电流选线方法[J].继电器, 2002, 30(15): 30-32
    [57]薛金娃.零序有功选线与消弧线圈接地系统单相接地故障处理过程优化[J].继电器, 2004, 32(2): 61-63
    [58]申东滨,潘贞存,张慧芬等.配电网单相接地故障的综合选线方法及其实现[J].继电器, 2005, 33(18): 11-14
    [59]牟龙华.零序电流有功分量法拉各项接地选线保护原理[J].电网技术, 1999, 23(9): 60-62
    [60]杜丁香,徐玉琴.消弧线圈接地电网有功选线[J].继电器, 2002, 30(5): 33-36
    [61] Mu Longhua, Meng Qinghai. Ground-fault Protection Based on Active Component of Zero-sequence Current in Resistance Neutral Grounded Distribution Systems[C]. Proceedings of IEEE TENCON’02, 2002, 1897-1907
    [62] Givelberg, Myron Lysenko, Efim et al. Zero Sequence Directional Earth-fault protection with Improved Characteristics for Compensated Distribution Networks[J]. Electric Power Systems Research. 1999, 52(3): 217-222
    [63] V. Leitloff, L. Pierrat, R. Feuillet. Study of the Neutral Ground Voltage in a Compensation Power System. European Transactions of Electrica1 Power, March 1994, 4(2): 145-153
    [64] I. Zamora, A. J. Mazon, K. J. Sagastabeitia,et al. Verifying Resonant Grounding in Distribution Systems[J]. IEEE Computer Applications in Power, October 2002, 15(4): 45-50
    [65] Etwell E A, Shaffer A W, Jerrings D I, et al. Performance Testing of the Norton High Impedance Ground Fault Detector on a Distribution Feeder [C]. Rural Electric Power Conference, New York, 1990:C6/1-C6/7
    [66]曾祥君,尹项根,张哲等.配电网接地故障负序电流分布及接地保护原理研究[J].中国电机工程学报, 2001, 21(6): 84-89
    [67]薛永端,徐丙垠,冯祖仁等.小电流接地故障暂态方向保护原理研究[J].中国电机工程学报, 2003, 23(7): 51-56
    [68]薛永端,冯祖仁,徐丙垠等.基于暂态零序电流比较的小电流接地选线研究[J].电力系统自动化, 2003, 27(9): 48-53
    [69] Kish D J, Heydt G T. A New Approach to Power Distribution System Transient Analysis Using Walsh Functions[C]. IEEE International Conference on Systems Man and Cybernetics, 1992, 1: 145-150
    [70] P. Ferracci, L. Berthet, M. Meunier. An Equivalent Circuit for Earth Fault Transient Analysis in Resonant-Grounded Distribution Power Networks[C]. Proceedings of the International Conference on Power System Transients, IPST' 95, Lisbon, Portugal, Sep.3-7 1995, 359-369
    [71] 0. Chaari, M. Meunier. A Recursive Wavelet Transform Analysis of Earth Fault Currents in Petersen-coil-protected Power Distribution Networks[C]. Proceedings ofthe IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, Philadelphia, Pennsylvania, USA, Oct.25-28, 1994, 162-165
    [72]贾清泉,刘连光,杨以涵等.应用小波检测故障突变特性实现配电网小电流故障选线保护[J].中国电机工程学报, 2001, 21(10): 78-82
    [73]陈奎,唐轶.小电流接地系统电弧接地选线方法的研究[J].继电器, 2005, 33(16): 5-9
    [74]毛鹏,段玉倩,姜娜.基于相关分析的故障选线方法[J].电网技术, 2004, 28(2): 36-39
    [75] B. D Russell, K. Mehta, R. P. Chinchali. An Arcing Fault Detection Technique Using Low Frequency Current Components Performance Evalution Using Recorded Field Data[M]. IEEE/PES Oct.1 1987
    [76] T. S. Sidhu, H. Singh, M. S. Sachdev. Design, Implementation and Testing of an Artificial Neural Network Based Fault Direction Discriminator for Protecting Transmission Lines[J]. IEEE Transactions on Power Delivery, April 1995, 10(2): 697-700
    [77]王德江,陈永衡,马文阁.中性点经消弧线圈接地系统单相接地故障暂态电流分析[J].继电器, 2002, 30(11): 16-18
    [78]束洪春,肖白.配电网单相电弧接地故障选线暂态分析法[J].电力系统自动化, 2002, 26(21): 58-61
    [79] Nikander A, Lakervi E, Suontausta J. Applications of Transient Phenomena During Earth Faults in Electricity Distribution Networks[J]. IEEE Catalogue No. 95TH8130, 1995, 234-239
    [80] Huang W.Y., Kaczmarek R., Bastard P. An Efficient Treatment of Transient Residual Currents in Distribution Networks Grounded with Petersen coil[C]. Eighth IEE International Conference on Developments in Power System Protection, April 5-8 2004, 2: 685-688
    [81]曹丰梅,苏沛浦.小波变换在配电自动化接地故障检测中的应用研究[J].电力系统自动化, 1999, 23(13): 33-36
    [82]毛鹏,孙雅明,张兆宁等.小波包在配电网单相接地故障选线中的应用[J].电网技术, 2000, 24(6): 9-13
    [83]戴剑锋,张艳霞.基于多频带分析的自适应配电网故障选线研究[J].中国电机工程学报, 2003, 23(5): 44-47
    [84] Love D J, Hashemi N. Considerations for Ground Fault Protection in Medium-voltage Insustrial and Cogeneration Systems[J]. IEEE Transactions on Industry Applications, 1988, 24(4): 549-553
    [85] J. Burke, D. Lawrence. Characteristics of Fault Currents on Distribution Systems. 1983 Transactions Paper No.83SM 441-3
    [86] Huang W. Y., Kaczmarek R., Bastard P. Equivalent Circuit Application to a Phase to Ground Fault Detection in Distribution Networks Without MV Voltage Measurements[C]. Eighth IEE International Conference on Developments in Power System Protection, April 5-8,2004, 2: 481-485
    [87] T.M.Lai, L.A.Snider, E.Lo,et al. High-Impedance Fault Detection Using Discrete Wavelet Transform and Frequency Range and RMS Conversion[J]. IEEE Transactions on Power Delivery, JANUARY 2005, 20(1): 397-407
    [88] S.J.Huang and C.T.Hsieh. High-impedance Fault Detection Utilizing a Morlet Wavelet Transform Approach[J]. IEEE Trans. Power Del., Oct. 1999, 14(4): 1401-1410
    [89] B. D. Russell, C. L. Benner. Analysis of High Impedance Faults Using Fractal Techniques[J]. IEEE Trans. Ind. Applicat., May/Jun. 1997, 33(3): 635-640
    [90] D. T.W. Chan, X.Yibin. A Novel Technique for High Impedance Fault Identification[J]. IEEE Trans. Power Del., Jul. 1998, 13(3): 738-744
    [91] A. E. Emanuel, D. Cyganski, J. A. Orr et al. High Impedance Fault Arcing on Sandy Soil in 15 kV Distribution Feeders: Contributions to the Evaluation of the Low Frequency Spectrum[J]. IEEE Trans.on Power Del., Apr. 1990, 5(2): 676-686
    [92] J. Tengdin, R. Westfall, K. Stephan. High Impedance Fault Detection Technology. PSRC Working Group Members, Rep. PSRC Working Group D15
    [93] A. M. Sharaf, L. A. Snider, K. Debnath. A Neural Network Based Relaying Scheme for Distribution System High Impedance Fault Detection[C]. in Proc. 1st New Zealand Int. Two-Stream Conf. Artificial Neural Networks Expert Systems, 1993, 321-324
    [94] L. A. Snider, Y. S. Yuen. The Artificial Neural Networks Based Relay for the Detection of Stochastic High Impedance Faults[J]. Neurocomput., 1998, 23(5): 243-254
    [95] S. Ebron, D. L. Lubkeman, M. White. A Neural Network Approach to the Detection of Incipient Faults on Power Distribution Feeders[J]. IEEE Transactions on Power Del., 1990, 5(2): 905-914
    [96] Lingling Li, Quanming Zhao, Dong Jiang et al. Key Technology on Off-turning Degree in Resonant Grounding Power Network[C]. Proceedings of the 4* World Congress on Intelligent Control and Automation June 10-14, 2002, Shanghai, P.R.China, 1078-1081
    [97] I. Zamora, A. J. Mazbn, P. Eguia, et al. Influence of Resonant Coil Tuning in the Fault Current Magnitude[C]. IEEE MELECON 2004, May 12-15,2004, Dubrovnik, Croatia, 979-983
    [98] D.L. Mader, Ontario Hydro, L.E. Zaffanella, et al. Network Analysis of Ground Currents in a Residential Distribution System[J]. IEEE Transactions on Power Delivery, January, 1993, 8(1): 344-350
    [99] Mader, DL., Bmw, D.A., Donnelly,et al. A Simple Model for Calculating Residential 60-Hz Magnetic Fields[J]. BIOELECTRO- MAGNETICS, 1990, 11(4): 283-296
    [100] Deaton R J. Limitations of Ground-fault Protection Schemes on Industrial Electrical Distribution Systems[C]. IEEE-IAS-1984 Annual Meeting
    [101] Furuhashi T, Okuma S, Uchikawa Y. A Study on the Theory of Instantaneous Reactive Power[J]. IEEE Transactions on IE,1990, 37(1): 86-90
    [102] Oinis C, Patrich B, Michel M. Prony’s method: An Efficient Tool for the Analysis of Earth Fault Currents in Petersen-coil-protected Networks[J]. IEEE Transactions on Power Delivery, 1995, 10(3): 1234-1241
    [103] Till W, Volker L, Rene F, et al. Location Strategies and Evaluation of Detection Algorithms for Earth Faults in Compensated MV Distribution System[J].IEEE Trans on Power Delivery, 2000, 15(4): 1121-1128
    [104] Chaari O, Meunier M. A Recursive Wavelet Transform Analysis of Earth Fault Currents in Petersen-Coil-Protected Power Distribution Networks[C]. Proceedings of the IEEE-SP Internation Symposium on Time-Frequency and Time-Scal Analysis, 1994: 162-165
    [105] Assef Y, Chaari O, Meunier M. Classification of Power Distribution System Fault Currents Using Wavelets Associated to Artificial Neural Networks[C]. Proceedings of the IEEE-SP Internation Sysmposium on Time-Frequency and Time-Scal Analysis, 1996: 421-424
    [106] Huang S J, Hsieh C T. High-impedance Fault Detection Utilizing a Morlet Wavelet Transform Approach[J]. IEEE Transactions on Power Delivery, 1999, 14(4):1401-1407
    [107] Oinis C, Michiel M, Francoise B. Wavelets: A New Tool for the Resonant Grounded Power Distribution System Relaying[J]. IEEE Transactions on Power Delivery, 1996, 11(3): 1301-1308
    [108]檀国彪,涂东明,陈大鹏.基于最大I sin?或ΔI sin?原理的选线方法[J].中国电力, 1995, 28(7): 16-20
    [109]肖白,束洪春,穆钢等.基于模极大值理论的配电网接地保护研究[J].继电器, 2004, 32(10): 36-39
    [110]陈玉书,张一华.谐振接地系统单相接地故障DK法选线及其应用,高电压技术, 2004, 30(6): 69-70
    [111] Zhicheng Zhou, Junjia He, Xiang Li, et al. Research on the novel comprehensive fault line selection method for the NUGS based on the fuzzy theory ,POWERCON2006,2006
    [112]徒有锋,何俊佳,周志成等.基于零序功率及谐波相位综合法的小电流接地系统微机选线装置,高压电器, 2006, 42(3): 190-193
    [113]唐轶,陈奎,陈庆等.导纳互差之绝对值和的极大值法小电流接地选线研究[J].中国电机工程学报, 2005, 25(6): 49-54
    [114]曾祥君,尹项根,张哲等.零序导纳法馈线接地保护的研究[J].中国电机工程学报, 2001, 21(4): 5-10
    [115]葛耀中,窦乘国.非直接接地系统中捡出单相接地线路的新方法[J].继电器, 2001, 29(9): 1-5
    [116]朱丹,蔡旭.小电流接地电网改进能量法接地选线原理[J].继电器, 2004, 32(10): 44-48
    [117]何奔腾,胡为进.能量法小电流接地选线原理[J].浙江大学学报(自然科学版), 1998, 32(4): 451-457
    [118]桑在中,张惠芬,潘贞存等.用注入法实现小电流接地系统单相接地选线保护[J].电力系统自动化, 1996, 20(2): 11-12
    [119]曾祥君,尹项根,于永源等.基于注入变频信号法的经消弧线圈接地系统控制与保护新方法[J].中国电机工程学报, 2000, 20(1): 29-32
    [120]熊睿,张宏艳,张承学等.小电流接地故障智能综合选线装置的研究[J].继电器, 2006, 34(6): 6-11
    [121]闫静,金黎,张志成.小电流接地选线系统的设计与实现[J].高电压技术, 2003, 29(12): 12-14
    [122]房鑫炎,庄伟.模糊神经网络在小电流接地系统选线中的应用[J].电网技术, 2002, 26(5): 15-19
    [123]刘雪莉,齐郑,杨以涵.数据挖掘技术在小电流故障选线中的应用[J].现代电力, 2005, 22(2): 16-21
    [124]曾祥君,K K Li,尹项根等.信息融合技术在电力系统故障检测中的应用探讨[J].中国电力,2003,36(4):8-13
    [125]曾祥君, K K Li,尹项根等.信息融合技术在故障选线中的应用[J].继电器, 2002, 30(9): 15-21
    [126]谌祥维.一种高灵敏接地选线方案[J].继电器, 2003, 31(12): 41-43
    [127] Zhang Q, Zhang Y, Song W, et al. Transmission Line Fault Location for Single-phase-to-earth Fault on Non-direct-ground Neutral System[J]. IEEE Transactions on Power Delivery, 1998, 13(4): 1086-1092
    [128] F. Ruz, J. A. Fuentes. Fuzzy Decision Making Applied to High Impedance Fault Detection in Compensated Neutral Grounded MV Distribution Systems[C]. Developments in Power System Protection, Conference Publication No.479 IEE 2001, 307-310
    [129] Chilard O, Perrault L. New MV Neutral Grounding of Earth Faults in Power Systems With a Compensated of an Unearthed Neutral [C]. 14th International Conference on Electricity Distribution CIRED, Birmingham, UK, June 1997
    [130] Hanninen S, Lehtonen M, Antila E. A Method for Detection and Location of High Resistance Earth Faults[C]. Proceeding of EMPD’98, 2: 495-500
    [131] Aucoin B M, Jones R H. High Impedance Fault Detection Implementation Issues[J]. IEEE Transactions on Power Delivery, 1996(11): 139-148
    [132] Janne A, Olavi M, Kimmo K, et at. Intermittent Earth Faults-need to Improve the Existing Feeder Earth Fault Protection Schemes[C]. 17th International Conference on Electricity Distribution CIRED, Barcelona, May 2003
    [133] Nikander A, Lakervi E. A Philosophy and Algorithms for Extinguishing Earth Fault Arcs in Suppressed Medium Voltage Networks[C]. 14th International Conference on Electricity Distribution CIRED, Birmingham, UK, June 1997
    [134] Gemot D, Reas K, Olaf S. A New Directional Transient Relay for High OHMIC Earth Faults[C]. 17th International Conference on Electricity Distribution CIRED,Barcelona, May 2003
    [135] Togami M, Abe N, Kitahashi T, et al. On the Application of a Machine Learning Technique to Fault Diagnosis of Power Distribution Lines[J]. IEEE Transactions on Power Delivery, 1995, 10(4): 1927-1936
    [136] Jota P R S, Jota F G. Fuzzy Detection of High Impedance Faults in Radial Distribution Feeders[J]. Electric Power Systems Research, 1999,(49): 169-174
    [137] Assef Y, Bastard P, Meunier M. Artificial Neural Networks for Single Phase Fault Detection in Resonant Grounded Power Distribution Systems[C]. Proc. IEEE PES Transmission and Distribution Conference, Los Angeles, Sept. 1996, 566-572
    [138]李洪波. 63 kV及以下变电站运行中几种相近异常现象的分析[J].电网技术, 2001, 25(12): 55-59
    [139]杜景远,崔艳.浅议PT断线、系统接地、母线失压的判据[J].继电器, 2002, 30(1): 60-61
    [140]张志英,王琳,文效宇.电力系统单相接地和断相故障的判断与处理[J].江西煤炭科技, 2001, 4: 28-29
    [141]冯叶亮.小电流接地系统铁磁谐振的防范与处理[J].大众科技, 2004, 7(11): 14~15
    [142]熊信银,张步涵.电气工程基础[M].武汉:华中科技大学出版社,2005
    [143]张怿宁,索南加乐,徐丙垠等.基于相间电压幅值比较原理的PT断线检测[J].继电器, 2005, 33(12): 22-26
    [144]吴红斌,丁明,宋金川等.线路保护中PT断线判据的分析和改进[J].继电器, 2004, 32(3): 63-65
    [145]王恒山,吴荣章.中性点不接地系统断相故障实例分析[J].高电压技术, 32(5): 124-125
    [146]刘水英,王玉山,王慎南.小电流接地系统非全相运行的应对措施[J].煤炭科技, 2003, 4:34-35
    [147]傅旭,王锡凡.同杆双回线断相故障计算的解耦相分量法[J].电力系统自动化, 2004, 28(6): 41-44
    [148]宗剑,李冠一,李晓波等.配电网单相接地和断线故障选线定位方法[J].工矿自动化, 2006, 4: 35-37
    [149]刘新东. 10-35kV配网铁磁谐振过电压的表现形式及消除措施[J].电工技术杂志, 2000, 6: 45-46
    [150]温新康. 10-35 kV中性点不接地系统中防止PT高压熔断器熔断的方法[J].高电压技术, 2002, 38(2): 52-53
    [151]徐勇,胡德. 10kV PT熔断器雷击熔断原因分析[J].高电压技术, 2000, 26(4): 46-47
    [152]王建赜,吴启涛,纪延超等.新型小电流接地系统选线消谐装置的研制[J].继电器, 2001, 29(5): 34-36
    [153]陈飞,田园. 10 kV电压互感器高压熔丝频繁熔断的分析[J].高电压技术, 2005, 31(9): 88-89
    [154]杜志叶,阮江军,王伟刚. PT铁损对铁磁谐振的影响分析[J].高压电器, 2005, 41(4): 257-261
    [155]韩洪泽. TV开口三角处并联消谐电阻的选用和注意事项[J].农村电气化, 2006, 6: 37
    [156]黄威,杨苏利.不接地系统抑制PT谐振措施的分析[J].河北电力技术, 1999, 18(5): 11-13
    [157]葛栋,鲁铁成,王平.配电网铁磁谐振消谐机理仿真计算研究[J].高电压技术, 2003, 29(11): 15-17
    [158]石晶,陈红坤,李艳.三相PT谐振消谐过程的数值仿真[J].高电压技术, 1999, 25(1): 82-83
    [159]张利庭.斜桥变电所铁磁谐振过电压的仿真研究[J].高电压技术, 2006, 32(7): 43-45
    [160]杜志叶,阮江军,王伟刚.应用MATLAB/ SIMULINK仿真研究铁磁谐振,高电压技术, 2004, 30(9): 30-33
    [161]冯平,王尔智.中性点接地电力系统三相铁磁谐振的理论分析[J].电工技术学报, 2004, 19(9): 57-61
    [162]许淑辉,冯平,朱伟.中性点接地电力系统铁磁谐振理论分析[J].辽宁石油化工大学学报, 2004, 24(3): 70-73
    [163]周浩,余宇红,张利庭. 10kV配电网铁磁谐振消谐措施的仿真比较研究[J].电网技术, 2005, 29(22): 24-34
    [164]王亮,李文艺,施围. 10kV系统中铁磁谐振过电压的计算机仿真研究[J].高压电器, 2004, 40(4): 269-271
    [165]许志龙,黄建华,王大忠. 10 kV电网TV铁磁谐振过电压数字仿真及研究[J].电力自动化设备, 2001, 21(2): 27-30
    [166]肖伟平,秦祖泽,龙卫华. Fuzzy理论在电力系统铁磁谐振研究中的应用[J].继电器, 2003, 31(2): 34-36
    [167]石启新,谈顺涛.不接地系统中电磁式PT异常运行的数字仿真分析[J].电工技术杂志, 2004, 6: 67-72
    [168]王亮,施围,沙玉洲.采用4TV法的配电网中铁磁谐振的研究[J].高电压技术, 2005, 31(10): 15-17
    [169] Jain V K, Collins W L, Davis D C. High-accuracy analog measurements via interpolated FFT[J]. IEEE Trans IM, 1979, 28: 112-113
    [170]张伏生,耿中行,葛耀中.电力系统谐波分析的高精度FFT算法[J].中国电机工程学报, 1999, 19(3): 63-66
    [171]李红斌,刘延冰,叶国雄.电容式电压互感器铁磁谐振的数值仿真[J].高压电器, 2004, 40(2): 124-126
    [172]黄丽云,张焰.电网铁磁谐振的产生机理与10kV配网铁磁谐振的小波分析[J].高压电器, 2006, 42(4): 253-255
    [173]王亮,施围,沙玉洲.电压互感器三相励磁特性对铁磁谐振的影响,继电器, 2005, 33(2):35-39
    [174]杨晓辉,蔡旭.分形理论在中压电网故障辨识中的应用[J].电力系统自动化, 2006, 30(4): 59-64
    [175]邹江锋,刘涤尘,谭子求.基于FFT算法的分次谐波测量与分析[J].高电压技术, 2003, 29(9): 29-32
    [176]石启新,谈顺涛.基于MATLAB的电压互感器铁磁谐振数字仿真[J].高电压技术, 2004, 30(8): 25-28
    [177]李一泉,何奔腾.基于PRONY算法的电容式电压互感器暂态基波辨识[J].中国电机工程学报, 2005, 25(14): 30-34
    [178] Hauer J F. Application of Prony Analysis to the Determination of Modal Content and Equivalent Models for Measured Power System Response[J]. IEEE Transactions on Power Systems, 1991, 6(3): 1062-1068
    [179] Pierre D A, Trudnowski D J, Hauer J F. Identifying Linear Reduced Order Models for Systems with Arbitrary Initial Conditions Using Prony SignalAnalysis[J]. IEEE Transactions on Automatic Control, 1992, 37(6): 831-835
    [180] Daqing Hou, Roberts J. Capacitive Voltage Transformer: Transient Overreach Concerns and Solutions for Distance Relaying[C]. Electrical and Computer Engineering, Canadian Conference on, 1996, 1(s): 119-125
    [181] Izykowski J, Kaszteny B, Rosolowski E, et al. Dynamic Compensation of Capacitive Voltage Transformers[J]. IEEE Transactions on Power Delivery, 1998, 13(1): 116-122
    [182]徐东杰,贺仁睦,高海龙.基于迭代PRONY算法的传递函数辨识[J].中国电机工程学报, 2004, 24(6): 40-43
    [183] Zahawi B A T AI, Emin Z, Tong Y K. Chaos in Ferroresonant Wound Voltage Transformer Effect of Core Losses and Universal Circuit Behaviour[J]. IEEE Transactions on Industry Applications, 1990, 27(5): 1791-1799
    [184] Walling R A, Hartana R K, Reckard R M, et al. Performance of Metal- oxide Arresters Exposed to Ferroresonance in Padmount Transformers[J]. IEEE Transactions on Power Delivery, 1994, 9(2): 788-795
    [185] Wright I A. Three-phase Oscillations in Symmetrical Power System[J]. IEEE Transactions on PAS, 1970, 89(8): 1295-1303
    [186] Mork B A, Stuehm D L. Application of Nonlinear Dynamics and Chaos to Ferroresonance in Distribution System[J]. IEEE Transactions on Power Delivery, 1994, 9(2): 1009-1017
    [187] I. Coemans, J. C. Maun, Using the EMTP and the Omicron to Design a Transients Based Digital Ground-Fault Relay for Isolated or Compensated Network[C]. Proceedings of the International Conference on Power System Transients, IPST'95, Lisbon, Portugal,Sep.3-7 1995, 270-275
    [188] G. Klir, B. Yuan. Fuzzy Sets and Fuzzy Logic, Theory and applications[M]. Ed. Prentice-Hall, London, UK, 1995
    [189] Chaari O, Bastard P. Prony’s method: an Effect Tool for the Analysis of Earth Fault Currents in Petersen-coil-protected Networks[C]. IEEE PES Winter Meeting, New York, JaniFeb, 1995, 95WM031-5PWRD
    [190] Chaari O, Meunier M. Wavelets: A New Tool for the Resonant Grounded Power Distribution System Relaying[J]. IEEE Trans PWRD, 1996, 11(3): 326-329
    [191] J. R. Boston. A Signal Detection System Based on Dempster–Shafer Theory and Comparison to Fuzzy Detection[C]. 2000, 30(1): 45-61
    [192] T. Denoeux. A K-nearest Neighbor Classification Rule Based on Dempster–Shafer Theory[C]. IEEE Transactions on System, Man and Cybernetics-Part C: Apllications and Reviews, 1995, 25: 804-813
    [193] A. Saffiotti. Issues of Knowledge Representation in Demster-Shafer’s Theory[J]. Advances in the Dempster-Shafer Theory of Evidence, R.R. Yager, M. Fedrizzi, J. Kacprzyk, Eds. New York: Wiley, 1994, ch.19
    [194] J. R. Boston, Effects of Membership Function Parameters on the Performance of a Fuzzy Signal Detector[J]. IEEE Transactions on Fuzzy Syst., 1997, 5: 249-255
    [195] K.-C. Ng, B.Abramson. Uncertainty Management in Expert Systems[M]. IEEE Expert, 1990
    [196] L. A. Zadeh. The Role of Fuzzy Logic in the Management of Uncertainty in Expert Systems[M]. Fuzzy Sets Syst., 1983
    [197] Ching-Lien Huang, Hui-Yung chu, Ming-Tong Chen. Algorithm Comparison for High Impedance Fault Detection Based on Staged Fault Test[J]. IEEE Transactions on Power Delivery, 1988, 3(4): 1427-1435
    [198] M. Aucion, B.D. Russell. Detection of Distribution High Impedance Faults Using Burst Noise Signals Near 60Hz[J]. IEEE Transactions on Power Delivery. 1987, PWRD-2(2): 342-348
    [199]姚天任,江太辉.数字信号处理.武汉:华中理工大学出版社, 2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700