多核并行和设计模式在海量电力暂态数据处理与分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电力系统自动化的快速发展和COMTRADE数据的日益广泛应用,基于COMTRADE的高级电力系统故障分析软件在电力系统安全运行中变得越来越重要。然而,随着电子技术的快速发展,电力系统暂态录波逐步向高采样率、连续记录和海量存储的方向发展,COMTRADE数据的海量化趋势明显,并已经在电力系统应用中造成了各种亟不可待的问题。同时,目前多核技术已经大规模普及,引发了并行计算的技术革命,这就为解决由海量COMTRADE数据引发的各种问题,提供了解决思路。另外,在软件设计方法学方面,模式理论已经成为当今指导先进软件系统开发的重要方法学。于是,本论文将多核并行计算技术和模式方法学相结合,首次研究并提出了针对海量COMTRADE数据处理和计算的一系列并行算法和快速算法,并采用当今先进的计算机技术,构建了一整套适应电力系统未来发展的高级电力系统暂态信息并行处理和分析系统(一套全图形化故障分析软件,一套可跨平台的在线自动故障分析软件,一套可跨平台的COMTRADE并行压缩/解压软件)。本文的研究成果解决了该领域内各种棘手的关键算法和技术问题,为电力系统海量暂态信息处理开辟了新的途径。目前,该系统已投入实际使用。
     在海量COMTRADE数据处理方面,通过深入研究COMTRADE标准和大量现场数据,提出了COMTRADE容错解析算法,大量试验证明该算法可明显提高故障分析软件的鲁棒性。为解决海量COMTRADE数据加载过程中效率低下的问题,采用并行流水线和共享队列的设计思想,并利用以往串行加载算法中没有用到的序号信息,针对二进制和ASCⅡ码数据文件分别提出了各自的并行加载算法,试验证明该算法可显著提高海量COMTRADE数据的加载效率。为解决海量COMTRADE数据大量占据磁盘空间和传输带宽的问题,采用多种提升格式小波和熵编码算法以及线程间竞争通道序号的思路,提出了面向COMTRADE格式的海量录波数据并行压缩/解压算法,试验证明该算法可获得较大的压缩比,且速度极快。为解决海量COMTRADE波形数据绘制效率低下的问题,以分图层并行绘制而后融合的思路,提出了海量COMTRADE波形数据并行绘制算法,试验证明了此算法可显著提高海量COMTRADE波形数据的绘制效率。
     在海量COMTRADE数据计算分析方面,研究了快速傅里叶算法的并行化和加窗双谱线插值谐波分析算法,试验证明了该算法的有效性。在分析相关文献的基础上,提炼出了适合海量COMTRADE通道数据计算的各种递推算法,并进一步提出了其通用的并行计算算法,试验证明了该算法可显著提高海量COMTRADE通道数据的计算效率。通过研究高压输电线路线电压幅值沿线分布规律,得出了现实中该分布曲线只可能最多由两条单调方向不同的曲线段组成的结论,并利用此结论提出了一种可排除伪根、精确求解、大幅降低计算量和简化程序设计的故障双端测距算法,试验证明了该算法的有效性。
     在软件系统研究方面,为解决目前各种第三方电力系统故障分析软件中存在的一系列不足和缺陷,采用面向对象的设计模式方法学,提炼出了适合电力系统故障分析软件设计的各种模式。为提高全图形分析环境的分析效率,结合设计模式,提出了一种和海量通道数据无关的图形记忆算法,实现了Undo/Redo功能。为提高电力系统故障分析的效率和直观性,提出了其三维分析方法,给出了故障分析中三维矢量数据的生成算法。为解决现有故障分析软件中二次分析环境的不足和缺陷,研究并设计了可扩展的电力系统故障集成分析环境。环境内集成了大量的电力系统通用分析算法,并可采用插件技术进行算法扩展。为和保护信息系统进行无缝融合,实现在线自动故障分析,研究并设计了一套可跨平台的COMTRADE在线自动故障分析软件系统,并提炼出与其相关的各种跨平台关键技术和算法。
     在软件体系结构研究方面,为指导未来更加先进电力系统专业分析软件的开发,结合动态语言技术和面向服务的体系结构(SOA),提出了一种可适应未来发展、具有良好扩展性的电力系统通用分析软件体系结构。
With the rapid development of power system automation and increasingly wider application of COMTRADE data of power system, the advanced analysis software system of power system based on COMTRADE is playing more important role in the safe operation of power system. However, combined with the rapid development of electronic technical, transient data record of power system is gradually growing toward higher sample rate, continuous record and massive storage, the massive trend of COMTRADE data is extremely obvious so that many exigent and important problems in the application of power system are resulted in. Meanwhile, as the multi-core technical is becoming more popular and causes a technical revolution of parallel computation, it provides feasible solution for the application problems caused by massive COMTRADE data. In addition, in the aspect of software design methodology, pattern theory becomes important one to guide the implementation of advanced software system. In this thesis, through the combination of multi-core technical and pattern methodology, a series of parallel algorithms and fast algorithms for the processing and computation of massive COMTRADE data are firstly put forward; by usage of these algorithms and current advanced computer technical, a set of advanced parallel processing and analysis systems of power system transient information are implemented (including a all-graphic fault analysis software system, a cross-platform online automatic fault analysis software system and a cross-platform COMTRADE parallel compression and decompression software system). The main contributions of this work have solved the stubborn and key algorithms and technical problems in power system. Now, these systems are put into service in power system.
     In the aspect of massive COMTRADE data processing, through the deep research on COMTRADE standards and a lot of field files, a fault-tolerance parsing algorithm of COMTRADE is proposed. Plentiful testing results of field data indicated that the new algorithm could obviously improve the robustness of fault-analysis software. To solve the problem of low efficiency in course of loading massive COMTRADE data file, by usage of the design idea of parallel pipeline and share queues, as well as the sequence number omitted in the past series-loading algorithm, two individual parallel loading algorithms are proposed for data files of BINARY and ASCII format. The testing results indicated that the algorithms could greatly improve the loading efficiency of massive COMTRADE data. To solve the problems of large disk space and transmission bandwidth occupied by massive COMTRADE data, by the adoption of various lifting scheme wavelet transform and entropy coding algorithms, as well as the idea of competition channel serial number among threads, a parallel compression and decompression algorithm of massive COMTRADE recorded data is proposed. The testing results indicated that great compression ratio could be got for massive COMTRADE file and its compression speed was extremely fast. To solve the problem of low efficiency to paint massive COMTRADE waveform data, by usage of the idea of parallel paint by graphic layer then mergence, a parallel painting algorithm for massive wave COMTRADE waveform data is provided. The testing result indicated that it could greatly improve the efficiency to paint the massive COMTRADE waveform data.
     In the computation and analysis aspect of massive COMTRADE data, the parallel fast Fourier transform algorithm and harmonic analysis algorithm based on window double-spectrum-line interpolation are researched. The testing result indicated it was feasible. On basis of analysis of a lot of related references, various recursive algorithms suitable for the computation of massive COMTRADE channel data is provided, furthermore, its general parallel computation algorithm is also proposed. The testing result indicated that it could greatly improve the computation efficiency of the massive COMTRADE channel data. By analyzing the change of line voltage along HV transmission line, conclusion was drew that the line voltages curve along HV transmission line only consisted of two different monotonous direction curve segments in the actual length line at most. With this conclusion, two-terminal fault location algorithm is proposed. It can remove false root andsolve accurately,as well as greatly reduce the computation amount and simplify the program design.
     In the research aspect of software system, to solve the defects and shortcomings existed in fault analysis software systems provided by third party, by usage of object-oriented design pattern methodology, various design patterns suitable for fault analysis software in power system are summarized. To improve the analysis efficiency in all-graphic analyzing environment, by combination of design pattern methodology, a graph state memory algorithm that is independent of massive channel data is proposed. The Undo/Redo function is realized. To improve the efficiency and intuitiveness, a 3-D method for fault analysis in electric power system is proposed and the generation algorithm of 3-D vector data for fault analysis is given. To solve the defects and shortcomings of secondary analysis environment in current fault analysis software systems, expansive integrated analysis environment for power system fault is researched and designed. Amount of general power analysis algorithms are integrated in this environment and plug in technical is used to expand the analysis algorithm. To integrate seamlessly with protection information system and realize the fault analysis automatically, a cross-platform online automatic fault analysis software system is researched and designed; some related important cross-platform technologies are summarized.
     In the research aspect of software structure, to guide the research and development of more advanced professional analysis software in future, by combination of dynamic language technical and Service Oriented Architecture (SOA), a general architecture of power system analysis software is proposed. It is suitable for future development and has remarkable extensible characteristic.
引文
[1]贺家李,宋从矩.电力系统继电保护原理[M].北京:中国电力出版社 1994.
    [2]许建安.电力系统微机继电保护[M].北京:中国水利水电出版社,2001.
    [3]Prabha Kundur.电力系统稳定与控制[M].周孝信,宋永华[译],北京:中国电力出版社,2002.
    [4]IEEE Standards Board.IEEE Standard Common Format for Transient Data Exchange(COMTRADE) for Power Systems IS].Power System Relaying Committee of the IEEE Power Engineering Society,IEEE C37.111-1991.
    [5]IEEE Standards Board.IEEE Standard Common Format for Transient Data Exchange(COMTRADE) for Power Systems.Power System Relaying Committee of the IEEE Power Engineering Society [S],IEEE C37.111-1999.
    [6]赵自刚,赵春雷.国产故障录波器现状分析及新型录波器展望[J].电网技术,1999,23(3):44-47.
    [7]王哲,焦彦军,张新国,等.高性能故障录波器的方案设计[J].电力自动化设备,2003,23(3):40-42.
    [8]白青刚,夏瑞华,周海斌,等.采用高性能集成芯片的故障录波故障设计[J].电力系统自动化,2005,29(22):94-96.
    [9]王振树,张波,李欣唐.新型电力故障录波监测系统[J].电力系统自动,2007,31(10):92-97.
    [10]倪益民,丁杰,赵金荣.电网继电保护及故障信息管理系统的设计与实现[J].电力系统自动化,2003,27(17):86-88.
    [11]廖泽友,连湛伟,柳凤夙.继电保护故障信息处理系统通信方案的工程实现[J].电力系统自动化,2004,28(4):78-81.
    [12]韩晓萍,李佰国,王肃,等.继电保护及故障信息系统的设计与实现[J].电网技术,2004,28(18):16-20.
    [13]姜建宁,章坚民.电网故障信息系统中的一次故障建模与识别[J].电力系统自动化,2006,30(16):51-56.
    [14]C.Xavier,S.S.Iyengar.并行算法导论[M].张云泉,陈英[译],北京:机械工业出版社,2004.
    [15]Ananth Grama,Anshul Gupta,George Karypis,等.并行计算导论[M].毛国勇,程海英[译],北京:机械工业出版社,2005.
    [16]张林波,迟学斌,莫则尧,等.并行计算导论[M].北京:清华大学出版社,2006.
    [17]Barry Wilkinson,Michael Allen.并行程序设计[M].陆鑫达[译],北京:机械工业出版社,2006.
    [18]汪芳宗.电力系统并行计算[M].北京:中国电力出版社,1998.
    [19]Shameem Akhter,Jason Roberts.多核程序设计技术[M].李宝峰,富弘毅,李韬[译],北京:电子工业出版社,2007.
    [20]Erich Gamma,Richard Helm,Ralph Johnson,等.设计模式:可复用面向对象软件的基础[M].李英军,马晓星,蔡敏,等[译].北京:机械工业出版社.2003.
    [21]Alexandrescu A.C++设计新思维:泛型编程与设计模式之应用[M].侯捷,於春景[译].武汉:华中科技大学出版社,2002.
    [22]Freeman E,Freeman E,Sierra k,et al.Head first design partterns[M].南京:东南大学出版社,2005.
    [23]Shalloway A,Trott R.Design patterns explained:A new perspective on object-oriented design[M].北京:中国电力出版社,2005.
    [24]Timothy G.Mattson,Beverly A.Sanders,Berna L.Massingill.并行编程模式[M].敖富江[译],北京:清华大学出版社,2005.
    [25]Alexander Stepanov,Matt Austern.Stlport background mainpage [EB/OL].http://www.stlport.org.
    [26]Josuttis N M.C++标准模板库[M].侯捷[译].武汉:华中科技大学出版社,2002.
    [27]Dave Abrahams,Darin Adler,Ed Brey,et al.Boost introduction [EB/OL]http://www.boost.org.
    [28]Kalsson B.超越C++标准库:Boost厍导论[M].张杰良[译],北京:清华大学出版社,2007.
    [29]Jasmin Blanchette,Mark Summerfield.C++ GUI Programming with Qt4[M].USA:Prentice Hall.2008.
    [30]蔡志明,卢传富,李立夏.精通QT4编程[M].北京:电子工业出版社,2008.
    [31]OpenGL Architecture Review Board.OpenGL参考手册[M].孙守迁,王剑,林宗楷译.北京:机械工业出版社,2001.
    [32]Shreiner D,Woo m,Neider J,et al.OpenGL编程指南[M].徐波[译],北京:机械工业出版社,2006.
    [33]Blaise Barney.POSIX Threads Programming[EB/OL].https://computing.11nl.gov/tutorials/pthreads/.
    [34]The Apache Software Foundation.Xerces-C++ Documentation v2.8.0[EB/OL].http://xerces.apache.org/xerces-c/apiDocs/index.html.
    [35]Fabic A.C++XML高级编程指南[M].武磊,刘栓强[译],北京:北京希望电子出版社,2002.
    [36]The Apache Software Foundation.Xalan-C++ API Documentation[EB/OL].http://xml.apache.org/xalan-c/apiDocs/XPathCAPI_8h.html.
    [37]Santoso S,Powers E J,Grady W M.Power quality disturbance data compression using wavelet transform methods[J].IEEE Trans.Power Delivery.1997,12(3):1250-1256.
    [38]Littler T B,Morrow D J.Wavelets for the Analysis and compression of power system disturbances[J].IEEE Trans.Power Delivery.1999;14(2):358-364.
    [39]何正友,钱清泉,刘志刚.一种基于优化小波基的电力系统故障暂态数据压缩方法[J].中国电机工程学报,2002,22(6):1-5.
    [40]刘志刚,钱清泉.基于多小波的电力系统故障暂态数据压缩算法[J].中国电机工程学报,2003,23(10):22-26.
    [41]胡国胜,任震,黄雯莹,等.基于最小带宽离散小波的故障信号消噪与压缩[J].中国电机工程学报,2001,21(11):6-8.
    [42]乐全明,郁惟镛,柏传军,等.基于提升算法的电力系统故障录波数据压缩新方案[J].电力系统自动化,2005,29(5):74-78.
    [43]苗世宏,王少荣,刘沛,等(.数据压缩技术在电力系统通信中的应用[J].电力自动化设备,1999,19(3):32-33.
    [44]张超,房若季.改进的LZSS压缩算法在故障信息文件远传中的应用[J].电网技术,2003,27(6):42-44.
    [45]闫常友,杨奇逊,刘万顺.基于提升格式的实时数据压缩和重构算法[J].中国电机工程学报,2005,25(9):6-10.
    [46]任明明,张彦斌,贾立新.一种基于提升小波和零树编码的录波数据压缩算法[J].西安交通大学学报,2006,40(4):494-496.
    [47]周瑞,鲍文,于霄,等.基于提升小波和混合熵编码的数据压缩方法[J].电力系统自动化,2007,31(22):65-79.
    [48]Hsieh C T,Huang S J.Disturbance data compression of a power system using the Huffman coding approach with wavelet transform enhancement[J].IEEE Proc- Gener.Transm Distrib,2003,150(1):7-14.
    [49]吴乐南.数据压缩[M].北京:电子工业出版社,2000.
    [50]Mallat S.A theory for multiresolution signal decomposion:the wavelet representation[J].IEEE Trans.Pattern Analysis and Machine Intelligence,1989,11(7):674-693.
    [51]Sweldens W.The lifting scheme:a construction of second-generation wavelets[J].SIAM Journal of Mathematical Analysis,1998,29(2):511-546.
    [52]Steven Molnar,Michael Cox,David Ellsworth,et al.A sorting classification of parallel rendering[J].IEEE Computer Graphics and Applications,1994,14(4):23-32.
    [53]Yang Jian,Shi Jiaoying,Jin Zhefan,et al.Design and implementation of a large-scale hybrid distributed graphics system[A].In:Proceedings of Eurographics Workshop on Parallel Graphics and Visualization,Saarbruecken,Germany,2002:39-49.
    [54]彭敏峰,曾亮,李思昆.并行绘制的动态负载平衡算法研究[J].计算机应用,2007,27(1):166-168.
    [55]郑恩让,杨润贤,高森.关于电力系统FFT谐波检测存在问题的研究[J].继电器,2006,34(18):52-57.
    [56]肖雁鸿,毛筱,周靖林,等.电力系统谐波测量方法综述[J].电网技术,2002,26(6):61-64.
    [57]中华人民共和国国家标准.GB/T 14549-93电能质量公用电网谐波[S].北京:国家技术监督局,1993.
    [58]潘文,钱俞寿,周鹗.基于加窗插值FFT的电力谐波测量理论(Ⅰ)窗函数研究[J].电工技术学报,1994,9(1):50-54.
    [59]潘文,钱俞寿,周鹗.基于加窗插值FFT的电力谐波测量理论(Ⅱ)双插值FFT理论[J].电工技术学报,1994,9(2):53-56.
    [60]张伏生,耿中行,葛耀中.电力系统谐波分析的高精度FFT算法[J].中国电机工程学报,1999,19(3):63-66.
    [61]赵文春,马伟明,胡安.电机测试中谐波分析的高精度FFT算法[J].中国电机工程学报,2001,21(12):83-88.
    [62]Zhang Fusheng,Geng Zhongxing,Yuan Wei.The algorithm of interpolating windowed FFT for harmonic analysis of electric power system[J].IEEE Transactions on Power Delivery,2001,16(2):160-164.
    [63]庞浩,李东霞,俎云霄,等.应用FFT进行电力系统谐波分析的改进算法[J].中国电机工程学报,2003,23(6):50-54.
    [64]许珉,张鸿博.基于Blankman-harris窗的加窗FFT插值修正算法[J].郑州大学学报(工学版),2005,26(4):99-101.
    [65]卿柏元,滕召胜,高云鹏,等.基于Nuttall窗双谱线插值FFT的电力谐波分析方法[J].中国电机工程学报,2008,28(25):153-158.
    [66]牟龙华,金敏.微机保护傅里叶算法分析[J].电力系统自动化,2007,31(6):91-94.
    [67]袁宇波,陆于平.傅氏算法在数字保护中的应用新解与讨论[J].江苏电机工程,2004,23(5):24-26.
    [68]袁宇波,陆于平,唐国庆.应用傅氏算法的几个问题讨论[J].继电器,2004,32(2):27-29.
    [69]高潮,郁惟镛.DFT递推算法及其应用[J].继电器,2005,33(5):1-3.
    [70]张立华,徐文立,常成,等.一种适用于微机保护的新的递推DFT 算法[J].电力系统自动化,2000,24(5):28-31.
    [71]李晨,张杭,张爱民,等.一种能滤除衰减直流分量的新递推离散傅氏算法[J].继电器,2005,33(17):17-20.
    [72]梅红伟,纪延超.改善电力系统谐波分析的加窗插值算法和递推傅氏算法[J].继电器,2004,32(24):6-9.
    [73]刘毅,温渤婴.差分与傅氏变换相结合算法在微机电流保护中的应用[J].继电器,2000,28(8):36-38.
    [74]姚亮,胡再超,杭泱.常见傅里叶变换的滤波性能分析[J].电力自动化设备,2008,28(1):73-76.
    [75]苏文辉,李钢.一种能滤去衰减直流分量的改进全波傅氏算法[J].电力系统自动化,2002,26(23):42-44.
    [76]焦彦军,于江涛.衰减直流分量对傅立叶变换快速算法的影响及其消除办法[J].华北电力大学学报,2006,33(2):37-39.
    [77]黄恺,孙苓生.继电保护傅氏算法中滤除直流分量的一种简便算法[J].电力系统自动化,2003,27(4):50-52.
    [78]李志民,陈学允.基于单侧信息的输电线路故障测距新方法[J].中国电机工程学报,1997,17(6):416-420.
    [79]索南加乐,齐军,陈福锋,等.基于R-L模型参数辨识的输电线路准确故障测距算法[J].中国电机工程学报,2004,24(12):119-125.
    [80]季涛,孙同景,徐丙垠,等.配电混合线路双端行波故障测距技术[J].中国电机工程学报,2006,26(12):89-94.
    [81]哈恒旭,张保会,吕志来.高压输电线路单端测距新原理探讨[J].中国电机工程学报,2003,23(2):42-46.
    [82]康小宁,索南加乐.基于参数识别的单端电气量频域法故障测距原理[J].中国电机工程学报,2005,25(2):22-27.
    [83]陈铮,董新洲,罗承沐.带串联电容补偿装置的高压输电线路双端故障测距新算法[J].中国电机工程学报,2003,23(1):11-15.
    [84]全玉生,王晓蓉,杨敏中,等.工频双端故障测距算法的鲁棒性问题和新算法研究[J].电力系统自动化,24(10):28-32.
    [85]董新洲,葛耀中.一种使用两端电气量的高压输电线路故障测距算法[J].电力系统自动化,1995,19(8):47-53.
    [86]苏进喜,罗承沐,解子凤,等.于GPS双端同步采样的输电线路故障定位的研究[J].清华大学学报(自然科学版),1999,39(9):47-50.
    [87]马文骐,郎燕生,马昭彦.分布参数输电线路故障模拟及测距[J].电力系统及其自动化学报,1996,8(3):7-16.
    [88]梁军 孟昭勇 车仁飞,等.精确双端故障测距新算法[J].电力系统自动,1997,21(9):24-27.
    [89]车仁飞,梁军,孟昭勇.一种考虑线路参数变化的输电线路双端测 距算法[J].中国电力,2004,37(2):45-49.
    [90]康小宁,索南加乐.求解频域参数方程的双端故障测距原理[J].电力系统自动化,2005,29(10).
    [91]徐鹏,王钢,李晓华,等.双端非同步数据故障测距的非线性估计算法[J].继电器,2005,33(1):16-20.
    [92]杜召满,赵舫.一种新的超高压输电线路双端测距算法[J].高电压技术,2003,29(11):11-13.
    [93]束洪春,高峰,陈学允,等.双端不同步采样的高压输电线路故障测距算法研究[J].电工技术学报,1997,12(6):43-48.
    [94]束洪春,司大军,葛耀中,等.利用双端不同步数据的高压输电线路故障测距实用算法及其实现[J].电网技术,2000,24(2):45-49.
    [95]黄雄,尹项根,辛振涛.基于分布参数模型的平行双回线故障测距新算法[J].电力自动化设备,2003,23(11):5-9.
    [96]滕林,刘万顺,李营,等.一种实用的新型高压输电线路故障双端测距精确算法[J].电力系统自动化,2001,25(9):24-27.
    [97]张杰,涂东明,张克元.基于COMTRADE标准的故障录波的分析与再现[J].继电器,2000,28(11):20-23.
    [98]郑敏,黄华林,吕鹏,等.故障录波数据通用分析与管理软件的设计[J].电网技术,2001,25(2):75-77.
    [99]刘天斌,王永业,柳焕章,等.基于COMTRADE格式的故障分析管理系统[J].继电器,2001,29(11):47-49.
    [100]丁俊健,陆于平.基于COM+技术的发电机变压器组故障录波分析系统软件[J].继电器,2002,30(1):40-43.
    [101]陈佳胜,曾克娥,孙扬声,等.大型发变机组故障录波装置分析软件的研制[J].电网技术,2002,26(5):76-80.
    [102]宋墩文,蒋宜国,许勇.波形数据通用分析系统的设计[J].电网技术,2002,26(11):77-79.
    [103]刘志超,黄俊,承文新,等.电网继电保护及故障信息管理系统的实现[J].电力系统自动化,2003,27(1):72-75.
    [104]许正伟.电力故障录波信息处理系统的研究与实现[硕士学位论文].北京:华北电力大学,2004.
    [105]崔巍,程逍,石东源,等.电力系统故障信息系统综合应用系统的研究[J].2004,24(5):27-30.
    [106]杜新伟,李媛,刘涤尘.电力故障录波数据综合处理系统[J].电力系统自动化,2006,30(12):75-80.
    [107]杨洋,唐睿,吕飞鹏.基于COMTRADE格式的故障录波分析软件设计[J].继电器,2008,36(7):67-71.
    [108]杨芙清,梅宏,李克勤.软件复用与软件构件技术[J].电子学报,1999,27(2):68-75.
    [109]曾克娥,谢庆国,沈轶,等.基于构件技术的能量管理系统设计思想[J].电力系统自动化,2001,25(9):35-37.
    [110]邓健,宋玮,张明霞,等.基于组件技术的继电保护整定计算软件的设计与实现[J].继电器,2004,32(6):44-48.
    [111]邓健,宋玮.面向可复用体系结构的潮流计算和故障计算软件的实现[J].电网技术,2004,28(22):71-75.
    [112]李书勇,宋玮,邓健,等.一种基于复用组件的电力系统软件体系结构[J].继电器,2005,33(2):39-42.
    [113]张惠山,宋玮.智能接口在电力系统构件复用软件体系结构中应用[J].电力自动化设备,2006,26(7):81-83.
    [114]Don Box.COM本质论[M].潘爱民[译],北京:中国电力出版社,2001.
    [115]朱其亮,郑斌.CORBA原理及应用[M].北京:北京邮电大学出版社,2001.
    [116]杨芙清.软件工程技术发展思索[J].软件学报,2005,16(1):1-7.
    [117]陈青,黄德斌,唐毅,等.一种新的继电保护整定计算及管理系统--高级编程语言HT[J].电力系统自动化,2002,26(17):59-61.
    [118]Herb Sutter.The free lunch is over:a fundamental turn toward concurrency in software[EB/OL].http://www.gotw.ca/publications/concurrency-ddj.htm.
    [119]Cameron Hughes,Tracey Hughes.C++并行与分布式编程[M].肖和平,张杰良[译],北京:中国电力出版社,2004.
    [120]Christopher Alexander.A Pattern Language[M].Britain:Oxford Universitt Press,2005.
    [121]Antaeus Feldspar.An Explanation of the Deflate Algorithm [EB/OL].http://www.zlib.net/feldspar.html.
    [122]Charles Petzold.Windows程序设计(第5版)(上下册)[M].候捷译,北京:北京大学出版社,2004.
    [123]邱关源.电路(下册)[M].北京:高等教育出版社,1997.
    [124]辛振涛,尚德基,尹项根.一种双端测距算法的伪根问题与改进[J].继电器,2005,33(6):36-39.
    [125]林成森.数值计算方法(上册)[M].北京:科学出版社,1998.
    [126]William H,Saul A,Brian P,et al.C++数值算法[M].胡建伟,赵志勇,薛运华,等[译],电子工业出版社,2005.
    [127]Johnston B.现代C++程序设计[M].曾葆青译.北京:清华大学出版社,2005.
    [128]侯俊杰.深入浅出MFC[M].武汉:华中理工大学出版社,2001.
    [129]Scintilla-interest Group.A free source code editing component for Win32 and GTK+[EB/OL].http://www.scintilla.org/.
    [130]The Apache Software Foundation.Apache FOP Version 0.94[EB/OL].http://xmlgraphics.apache.org/fop/0.94/index.html.
    [131]罗士萍.微机保护实现原理及装置[M].北京:中国电力出版社,2001.
    [132]Ousterhout J K.Scripting:Higher-Level Programming for the 21st Century[J].IEEE Computer Society:Computer,1998,31(3):23-30.
    [133]孟岩.未来属于动态语言--2006动态语言发展评述[J].程序员:2007,(1):66-67.
    [134]Pilgrim M.DiveIntoPython.pdf[EB/OL].http://www.diveintopython.org.
    [135]IEC.IEC61850 Communication Networks and System in Substation[S].IEC 2003.
    [136]张慎明.刘国定.IEC61970标准系列简介[J].电力系统自动化,2002,26(14):1-6.
    [137]Rappin N,Dunn R.wxPython in Action[M].USA:Manning Publications Co,2006.
    [138]Beazley D M.SWIG-1.3_Development_Documentation.pdf [EB/OL].http://www.swig.org.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700