小波能量谱在超高压输电线暂态识别中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超高压输电线路是长距离输电中的重要部分。为了保证高质量的输送电能,对超高压输电线路稳定可靠运行的要求就很高,如系统产生扰动信号,必须及时的判别是否由故障产生,若不能及时准确的做出判断,切除故障,将会影响正常供电,引起巨大的生命财产损失。为了避免事故的进一步扩大,提高输电网络运行的可靠性和稳定性,需要及时正确的识别不同类型、不同位置的暂态信号,以便尽早的排除故障,避免进一步的损失。随着电力输电网络的扩大和电压等级的升高,输电线路暂态信号识别就变得日益重要。
     本论文在详细、深入的分析了超高压输电线路特点的基础上,研究和综述了目前国内外学者对于超高压输电线路暂态信号识别的研究现状,并对小波能谱在暂态信号识别中应用的现状进行了分析。
     在阐述小波多分辨分析的基础上,介绍了小波能谱的基本原理,并提出了基于小波能谱的矩阵相似度和小波相对熵的概念,为仿真和算法的建立奠定了理论基础。为了解决不同电流幅值引起的判断困难问题,提出将小波能谱矩阵进行归一化处理的思路,将同一尺度上不同值域的数据都映射到同样的值域内。
     探讨了利用小波能谱识别电力暂态的可行性。首先建立了基于PSCAD/EMTDC的500kV超高压输电线路模型,仿真了单相接地短路故障、开关操作、故障性雷击和雷电扰动四种超高压输电线路中比较常见的暂态信号,并对比分析了它们的小波能谱。借鉴数学空间距离的计算方法,定量分析了不同暂态信号之间小波能谱的差别。比较分析结果表明,不同暂态信号在相同的高频和低频段能量分布存在差别,因此,利用小波能谱识别不同暂态信号是可行的。
     提出了基于小波能谱矩阵相似度的暂态识别方法。针对不同类型,不同位置的暂态信号的能量分布不同的特点,利用归—化小波能谱矩阵作为判断依据,计算待识别信号与标准能谱矩阵之间的矩阵相似度,根据相似度极大原则区分不同信号。仿真分析了四种常见的不同类型暂态信号的识别,以及不同位置开关操作产生暂态信号识别。仿真分析表明,基于小波能谱矩阵相似度的识别方法分类效果较好,能达到实际暂态信号识别的要求。
     深入研究了小波相对熵应用于暂态信号识别中的潜力,对比分析了不同工况下暂态信号与其标准能谱矩阵之间、不同类型暂态信号的标准能谱矩阵之间、不同工况下同类信号自身高低频段之间的三种小波相对熵的变化趋势和值域。根据信号各自的小波相对熵特点,给出了基于小波相对熵的输电线路暂态信号识别的方案。该方案同时利用信号与其标准矩阵之间和信号自身高低频能谱之间的两种小波相对熵的值域对不同暂态信号进行区分,仿真分析结果表明,该方案识别效果好,计算简便,可望在输电线路暂态识别中有一定的应用前景。
Extra High Voltage (EHV) transmission line is a very important part of long distance transmission. For high quality of power transmission, the stability and reliability of transmission line are so crucial. For example, a disturbance signal, which could not be recognized and cleared soon, may lead to large fault. It will affect the normal operation and great loss. Correct recognition of different type and location of transients is very important in improvement of the stability and reliability of power net and can avoid greater fault. With the development of power net and rise of voltage, recognition of transmission line transients becomes more and more important.
     On the base of analysis of EHV transmission line, the paper do some work on the resent research of its transient signal recognition and wavelet energy spectrum application in this filed.
     Based on multi-resolution, the wavelet energy spectrum is proposed. The matrix similarity and relative entropy, which are deduced by wavelet energy, are analyzed. This analysis provides a good foundation of further simulation and algorithm. In order to weaken the effect of different current magnitude, a normalized wavelet energy matrix is given. This normalized matrix could make all different data range mapped in a same range.
     A 500kV EHV transmission line is modeled in PSCAD/EMTDC. Four common kinds of transients, single phase to ground, breaker operation, faulted lightning and lightning disturbance, are modeled. Their wavelet energy spectrum is analyzed based on the method of math space distance, contrastively. From the contrast, it is easy to find that there are differences between different transient signals in both high and low frequency band. Thus, wavelet energy spectrum is a potential tool for transient signal recognition.
     With the different features of signals of different types and locations, the normalized wavelet energy matrix which can sharpen those differences is used in this paper to classify signals. Matrix similarities between signals and standard matrixes are calculated. When the similarity gets its max value, the signal is considered to be that standard type. In the simulation, transient signals of different types and different breaker locations are recognized. The simulation results shows the method based on wavelet energy matrix similarity is effective in classifying different signals and meets the needs of practical use.
     Finally, the application of wavelet relative entropy in EHV is studied. The relative entropy of three kinds--the entropy between signal and its standard matrix, the entropy between signals of different types, the entropy between high and low frequency band of certain signal, are analyzed, contractively. Based on this analysis, a recognition method based on wavelet relative entropy is proposed. Simulation is done in the same model above. Two kinds of entropy are adopted in this simulation. Shown by the simulation results, the wavelet relative entropy could distinguish different kinds of transient signals. This method is easy to done and needs little calculation. It is a potential tool for transmission line signal recognition.
引文
[1]安德生(J.G.Anderson)等著.西南电力设计院科技情报组,北京电力设计院情报组译.超高压输电线路.水利电力出版社,1979:10-14
    [2]李光琦.电力系统暂态分析(第二版).水利电力出版社,1995
    [3]斯卢茨(Lou van der Sluis)著.王一宇等译.电力系统暂态.中国电力出版社,2003
    [4]Bo Z Q.A New Non-communication Protection Technique for Transmission Lines.IEEE Trans on Power Delivery,1998,13(4):1073-1078.
    [5]何正友,陈小勤.基于多尺度能量统计和小波能量熵测度的电力暂态信号识别方法.电机工程学报.2006,26(10):33-39
    [6]束洪春,王永治,程春和,孙士云.±800kV直流输电线路雷击电磁暂态分析与故障识别.中国电机工程学报.2008,28(19):93-100
    [7]哈恒旭,张保会.输电线路边界保护中雷电冲击与故障的识别.继电器.2003,31(4):1-5.
    [8]段建东,张保会,郝治国,哈恒旭.超高压线路暂态保护中雷电干扰与短路故障的识别.电力系统自动化.2004,28(18):30-35
    [9]吴昊,肖先勇,邓武军.输电线行波测距中雷击与短路故障的识别.高电压技术.2007,33(6):63-67
    [10]杨汉生.提升小波在电能质量分析中的应用研究.南京理工大学博士学位论文.2006
    [11]张晓冰,崔家瑞,梁原华.基于多分辨率分析的电能质量扰动信号的检测.哈尔滨理工大学学报.2007,12(3):27-32
    [12]李习武,王艳松.基于小波神经网络的电能质量扰动辨识.电气技术.2007,9:56-58
    [13]Solanki,M.,Song,Y.H.Transient protection of EHV transmission line using discrete wavelet analysis.Power Engineering Society General Meeting,2003,IEEE.Volume 3,13-17
    [14]Bi Daqiang,Wang Weijian,Gui Lin,Wang Xiangheng.A new selective transient protection for the ground fault of large unit-connected generators.Power System Technology,2002.Proceedings.PowerCon 2002.International Conference on.vol.4,pp:2622-2626
    [15]Keizo Inagaki,Masaru Higaki,Yoshiaki Matsui,et al.Digital protection method for power transformers based on an equivalent circuit composed of inverse inductance.IEEE Trans on Power Delivery,1988,3(4):1501-1510
    [16]郝文斌,李群湛,黄咏容,韩正庆.基于支持向量机的励磁涌流识别算法.西南交通大学学报.2007,42(4):490-493
    [17]郭宁明,覃剑,陈祥训.雷击对行波故障测距的影响及识别.电力系统自动化.2008,32(5):76-79
    [18]向丽萍,王晓红,王建,项杨,谢桦,王晓茹.基于支持向量机的暂态稳定分类中的特征选择.继电器.2007,35(9):17-21
    [19]Li Ran Ix,Li Jinghua.The fault diagnosis layer model of electric power grid based on weighted mean roughness.Transmission and Distribution Conference and Exhibition:Asia and Pacific,2005 IEEE/PES.pp:1-5
    [20]Ancell,G.B.,Pahalawaththa,N.C..Maximum likelihood estimation of fault location on transmission lines using traveling waves.Power Delivery,IEEE Transactions on.Vol 9,pp:680-689
    [21]张全明,刘会金.最小二乘支持向量机在电能质量扰动分类中的应用.中国电机工程学报.2008,28(1):106-110
    [22]张文涛,王成山.基于改进贝叶斯分类法的电能质量扰动分类方法.电网技术.2007,31(7):22-25
    [23]Du Qingdong,Xu Lingyu,Zhao Hai.D-S evidence theory applied to fault diagnosis of generator based on embedded sensors.Information Fusion,2000.FUSION 2000.Proceedings of the Third International Conference on.vol.1,pp:TUD5/3 - TUD5/8
    [24]Gnatenko,M.A.,Shupletsov,A.V.,Zinoviev,G.S.,Weiss,H..Measurement system for quality factors and quantities of electric energy with possible wavelet technique utilization.Science and Technology,2004.KORUS 2004.Proceedings.The 8th Russian-Korean International Symposium on.vol.1,pp:325-328
    [25]解兵.电力变压器油纸绝缘模型老化新特征量的研究.重庆大学硕士论文,2005
    [26]何正友,符玲,麦瑞坤,钱清泉,张鹏.小波奇异熵及其在高压输电线路故障选相中的应用.中国电机工程学报.2007,27(1):31-36
    [27]全玉生,马彦伟,何秋宇,李学鹏,杨俊伟.基于模糊概率论的变压器局放信号模式识别法.电力系统自动化.2006,30(4):71-74
    [28]张文涛,王成山.基于概率神经网络的电压暂态扰动分类.电力系统自动化.2007,31(18):34-38
    [29]吕雪峰.基于遗传算法的电力系统故障诊断.大庆石油学院硕士论文.2006
    [30]林湘宁,刘沛,杨春明,刘世明.基于小波分析的超高压输电线路无通信全线速动保护方案.中国电机工程学报.2001,21(6):9-14
    [31]孔英会,车辚辚,苑津莎,安静,刘云峰.基于小波分解和数掘挖掘中决策树算法的电能质量扰动识别方法.电网技术.2007,31(23):78-82
    [32]谭书平,卿红梅,林帆.基于数学形态学的超高压输电线路暂态保护选相新方案.浙江电力.2008,2:5-8
    [33]林湘宁,刘沛,高艳.基于故障暂态和数学形态学的超高速线路方向保护.中国电机工程学报.2005,25(4):13-18
    [34]束洪春,王超,张杰,吴娜.基于形态学的HVDC线路故障识别与定位方法研究.电力自动化设备.2007,27(4):6-9
    [35]何友全,肖建,熊启军.基于分形理论的电力系统高频暂态波形特征识别.电力系统自动化.2005,29(2):29-33
    [36]黄咏容.变压器暂态故障仿真及基于支持向量机的故障辨识.西南交通大学硕士学位论文.
    [37]刘艳芳,顾雪平.基于支持向量机的电力系统暂态稳定分类研究.华北电力大学学报.2004,31(3):26-29
    [38]谢欢,张保会,于广亮,邹本国,李鹏,赵义术,李磊.基于轨迹几何特征的暂态不稳定识别.中国电机工程学报.2008,28(4):16-22
    [39]赵成勇,刘娟.Prony算法在电力系统暂态信号分析中的应用.电力系统及其自动化学报.2008,20(2):60-64
    [40]吴昊,肖先勇,沈睿佼.小波能量谱和神经网络法识别雷击与短路故障.高电压技术.2007,33(10):64-68
    [41]饶斌.输电线路暂态信号检测方法比较分析.电网与清洁能源.2008,24(2):17-20
    [42]何正友,蔡玉梅,钱清泉.小波熵理论及其在电力系统故障检测中的应用研究.中国电机工程学报.2005,25(5):38-43
    [43]齐辉,应鸿,李天云.识别变压器励磁涌流和内部短路电流的小波能量谱图解法.继电器.2004,32(4):5-8
    [44]班国邦,李永刚,刘锐,马小红,李丽娟,刘华麟.基于小波能谱的发电机转子匝间短路故障分析.大电机技术.2008,4:21-25
    [45]Zhang Yanping,Huang Shuhong,Gao Wei,Shen Tao.Vibration Fault Diagnosis of Steam Turbine Shafting Based on Probability Neural Networks.Image and Signal Processing,2008.CISP '08.Congress on.pp:582-585
    [46]雷莉.基于小波能量谱的输电线路故障行波定位与保护方法.长沙理工大学硕士学位论文,2007.
    [47]Hamzah,N.,Mohamed,A..A New Method for Locating The Source Of Lightning Transients.Power and Energy Conference,2006.PECon '06.IEEE International.pp:267-271
    [48]Zhang Xiaoli,Zeng Xiangjun,Lei Li,Choi,S.S.,Wang Yuanyuan.Fault location using wavelet energy spectrum analysis of traveling waves.Power Engineering Conference,2007.IPEC 2007.pp:1126-1130
    [49]陈小勤.基于小波熵测度的电力暂态信号检测与分类方法研究.西南交通大学硕士学位论文,2006:5-6.
    [50]李弼程,罗建书.小波分析及其应用.电子工业出版社,2003:1-140.
    [51]葛哲学.小波分析理论与MATLAB R2007实现.电子工业出版社,2007
    [52]Mallat S.A theory for multi-resolution signal decomposition:The wavelet representation.IEEE Trans.PAMI,198,11(7):674-693
    [53]沈庭芝,方子文.数字图像处理及模式识别.北京理工大学出版社,1998:150-152.
    [54]何正友,钱清泉.熵概念的泛化及其在电力系统故障检测和识别中的应用.电力系统及其自动化第二十一届学术年会论文集,广西大学.2005:2197-2201.
    [55]王太勇,刘兴荣,秦旭达,商同.谱熵分析方法在漏磁信号特征提取中的应用.天津大学学报,2004,37(3):216-220.
    [56]曲炜,朱诗兵.信息论基础及应用.清华大学出版社,2005.
    [57]张红涛,胡玉霞,邱道尹.基于相对熵阈值法的储粮害虫图像分割.华北水利水电学院学报,2003,24(3):27-29.
    [58]蔡玉梅.10kV铁路自闭贯通线路故障测距方法研究.西南交通大学硕士学位论文,2005.
    [59]王钢,李海锋,赵建仓,等.基于小波多尺度分析的输电线路直击雷暂态识别.中国电机工程学报,2004,24(4):139-144.
    [60]董杏丽,葛耀中,董新洲.行波保护中雷电干扰问题的对策.中国电机工程学报,2002,22(9):74-78.
    [61]何轶斌.电力系统暂态识别与人工智能技术.宁夏电力.1998,S1:34-39
    [62]董新洲,李幼仪,薄志谦.双回线无通道保护研究(一)故障分析和保护原理.电力系统自动化.2004,28(11):53-56
    [63]杨文献,姜节胜.机械信号奇异熵研究.机械工程学报.2000,36(12):9-13
    [64]李志民,李卫星,李勃龙.熵原理及其在电力系统可靠性中的应用.电力系统及其自动化学报.2001,13(3):25-29

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700