用户名: 密码: 验证码:
基于粗糙集理论的齿轮箱故障诊断研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
齿轮箱是机械系统的重要传动部件,故障发生率较高,其振动信号呈现非线性非平稳的特点,故障程度、部位和类型等对特征参量的影响很大。在对齿轮箱进行监测与故障诊断时,若监测点选择不当就不能采集到有效的故障信息,从而导致故障发生部位不易确定,敏感特征参量提取困难、故障模式识别率低。局域波分解方法将非平稳时变信号自适应地分解展开并映射到时频分析平面,能够同时展示信号的时域和频域信息的全貌;粗糙集理论的属性约简技术能够优化故障特征参量集,提取出敏感的故障特征参量;最小二乘支持向量机的函数逼近效果良好,模式识别能力强,本文在采用局域波分解法处理故障信号以及深入研究粗糙集理论的基础上,将粗糙集与最小二乘支持向量机相结合,建立了基于粗糙集支持向量机的齿轮箱智能故障诊断系统。本文的主要研究内容与结论如下:
     (1)在分析齿轮箱振动特性的基础上,提出采用局域波分解技术对齿轮箱故障信号进行处理并提取了初始的故障特征参量集。在局域波分解过程中,采用镜像延拓与窗函数相结合的方法缓解了端点效应问题,采用总体经验模态分解方法有效解决了模态混叠问题,实验结果表明这两种方法在齿轮箱故障信号分解中取得了较好的效果。根据衡量故障特征参量集的指标,提出采用每个工况的均方根有效值衡量故障特征参量集的稳定性,采用每个特征参量在六个工况之间的最小均值差衡量故障特征参量集的敏感性。实验中分别提取了基于EEMD的归一化能量特征参量集和基于EEMD的近似熵特征参量集,通过实际计算结果表明,前者与后者的敏感性基本一致,但是稳定性要优于后者,因此本文采用了基于EEMD的归一化能量特征参量集进行齿轮箱故障诊断。
     (2)提出一种基于改进Naive Scaler算法的全局动态寻优离散化算法。通过对Naive Scaler算法过程进行改进,确保能够得到所有保证不可分辨关系的断点;通过断点均分样本集、逐渐增加断点的方法动态地从候选集中选择断点集,保证了整个信息系统分类能力不变的条件下断点个数最少。通过与其它算法对比,实验结果表明该算法得到的断点个数较少,体现了其在连续属性离散化方面的优越性。
     (3)提出一种基于条件等价类的属性约简算法。该算法在核属性集的基础上,直接针对核属性的条件类中不能正确划入决策类的类,在核属性之外的其余条件属性中找到能够区分该类的属性,并添加到核属性集中,从而得到最小属性约简集。而基于启发式信息的属性约简算法无法保证所求约简集一定是最小属性约简集,实验结果表明该算法计算复杂度较低,提高了约简效率。
     (4)提出采用粗糙集的属性约简技术对故障监测点进行优化配置。该方法将六个故障监测点的最小属性约简集融合成一个大决策表进行属性约简,根据每个监测点的故障特征参量在最终约简集中出现的频次判定相应监测点的分类能力,实验结果表明该方法不需要对监测对象建模,也不需要对其进行动力学分析,而是直接对监测到的振动信号进行处理,根据各个测点的故障特征参量与故障种类之间的关联程度选择最佳测点,是一种行之有效的测点优化配置方法。
     (5)基于粗糙集理论提取决策规则的过程没有学习归纳的能力,故障模式识别率较低。粗糙集理论的属性约简技术能够提取敏感的故障特征参量,最小二乘支持向量机的模式识别能力强,因此为了充分利用两者在特征参量提取与模式识别方面的优势,构建了基于粗糙集支持向量机的智能故障诊断系统。理论与实践都表明该系统在一定程度上提高了齿轮箱故障诊断性能,为非线性非平稳故障信号的处理与识别提供了一种较通用的解决方案。
Gearbox is one of the most important transmission parts in the mechanical systems, but, for some uncertain reasons, the failure rate is higher, the vibration signal shows nonlinear and nonstationary, fault type and location as well as extent affect the characteristic parameters greatly. While monitoring and diagnosing the gearbox, selecting monitoring points improperly usually fails to gain the fault information effectively, determine the fault position, extract sensitive characteristic parameters and obtain high fault recognition rate. The method of local wave decomposition(LMD) could decompose the nonstationary signal adaptively and map to the time-frequence analysis plane, which could display signals in time domain and frequence domain simultaneously. Attributes reduction technology in rough sets (RS) could optimize the characteristic parameter set and extract the sensitive fault characteristic parameters. Least squares support vector machine (LSSVM) has good function approximation and high pattern recognition ratio. A method of combining RS with LSSVM through studying on LWD and RS deeply is proposed, intelligent fault diagnosis system of gearbox based on RS and LSSVM is established. The main work is as follows:
     (1) LWD is employed to process the vibration signal of gearbox and extract the initial characteristic parameters based on analying the vibration property. A method of combining mirror extension with window function is used to relieve endpoint effect, ensemble empirical mode decomposition (EEMD) method is utilized to solve the mode mixing problem effectively, experiments show that these methods have achieved good results in fault signal decomposition. According to the measurable indicators of fault characteristic parameter set, it is proposed to use the rms values of the fault characteristic parameters to measure the stability and the minimal mean difference of each characteristic parameters in six working conditions to measure the sensitivity. The normalized energy and approximate entropy characteristic parameter sets based on EEMD are extracted in the paper, calculating results show that the sensitivity of the former and the latter are basically the same, but the stability is superior to the latter, so the normalized energy characteristic parameter set would be used for gearbox fault diagnosis.
     (2) A global dynamic optimization algorithm for discretization based on improved Naive Scaler is proposed. The process of Naive Scaler algorithm is improved so that all breakpoints which warranties indiscernible relation would be got. The method of selecting breakpoints from the candidate set dynamically through separating the samples evenly by breakpoints and increasing the breakpoints gradually ensures the least breakpoints under the condition of keeping the classification ability of the whole information system. The experimental results show that the algorithm got the least breakpoints by comparison with other algorithms, which reflects the superiority in discretization aspects.
     (3) A new reduction algorithm based on condition equivalence classifications is proposed to delete the redundant features. The minimal attributes reduction set can be got through finding the attributes in the rest of the properties which can distinguish the samples in the condition equivalence classifications not assigned to decision classes properly only by the core attributes. Attribute reduction algorithms based on heuristic information can not guarantee the minimal attributes reduction set, experimental results show that computational complexity of the algorithm proposed in the paper is low relatively, which improves the reduction efficiency.
     (4) A method based on condition attribute reduction technology in Rough Sets is proposed to optimize the sampling points. The minimal attribute reduction sets of six fault monitoring points fuse into one big decision table for reduction, the classification ability of every monitoring point is determined according to the frequency of fault characteristic parameters in each point which appear in the final reduction set of the big decision table. Experimental results show the method needs neither modeling for the monitoring object nor dynamics analysis, but selects the effective sampling point directly according to the relationship between the fault characteristic parameters and fault types through processing the vibration signal, which is convenient and efficient to optimize the measuring points.
     (5) The method of extracting decision rules based on rough set theory does not possess the ability to learn and induction, so fault pattern recognition rate is low relatively. Attribute reduction technique in rough set theory could extract sensitive fault characteristic parameters, least squares support vector machine has strong pattern recognition ability, so in order to make full use of their advantages in the characteristic parameter extraction and pattern recognition, the intelligent fault diagnosis system is constructed based on RS and LSSVM. The theoretical and practical results have proved that the system improves the gearbox fault diagnosis performance and provides a relatively generic solution for processing and recognizing nonlinear and non-stationary fault signal.
引文
[1]王仲生.智能故障诊断与容错控制[M].西安:西北工业大学出版社,2005.
    [2]Willsky A S. A survey of design methods for failure detection in dynamic systems [J]. Automatic,1976,12(5):601-611.
    [3]Himmelblau D M. Fault detection and diagnosis in chemical and petrochemical process[M]. Amsterdam:Elsevier Press,1978.
    [4]叶银忠,潘日芳,蒋慰孙.动态系统的故障检测与诊断方法[J].信息与控制,1985,15(6):27-34.
    [5]周东华,孙优贤.控制系统的检测与诊断技术[M].北京:清华大学出版社,1994.
    [6]胡昌华,许化龙.控制系统故障诊断与容错控制的分析和设计[M].北京:国防工业出版社,2000.
    [7]杨伟,章卫国,杨朝旭等.容错飞行控制系统[M].西安:西北工业大学出版社,2007.
    [8]徐章遂,房立清.故障信息诊断原理及应用[M].北京:国防工业出版社,2000.
    [9]杨军,冯振声.装备智能故障诊断技术[M].北京:国防工业出版社,2004.
    [10]刘仲川.齿轮故障诊断润滑油在线监测[M].西安:西安交通大学出版社,1992.
    [11]Pawlak Z. Rough Sets. International Journal of Computer and Information Science, 1982,11(5):341-356.
    [12]Shen Lixiang, Francis E H T, Qu Liangsheng, et al. Fault diagnosis using rough sets theory[J]. Computers in Industry,2000,43:61-72.
    [13]沈仁发,郑海起,金海薇等.变精度粗糙集在齿轮故障诊断中的应用[J].振动、测试与诊断,2011,31(3):300-304.
    [14]Frank P M. Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy-a survey and some new results. Automatics,1990,26(3):459-474.
    [15]彭涛.基于传感器最优配置的故障检测方法研究[D].长沙:中南大学,2005.
    [16]张丽霞,冯辅周,江鹏程等.基于模态分析的变速箱振动测点优化配置[J].装甲兵工程学院学报,2012,26(2):43-48.
    [17]刘军.应用变精度粗糙集获取柴油机故障有效监测点[J].振动、测试与诊 断,2009,29(1):27-30.
    [18]Kammerd C. Sensor placement for on-orbit modal identification and correlation of large space structures[J]. Journal of Guidance, Control and Dynamics,1991,14(2): 251-259.
    [19]Udwadiaf E. Methodology for optimal sensor locations for parameters identification in dynamic system[J]. Journal of Engineering Mechanic,1996,120(2):368-390.
    [20]李戈,秦权,董聪.用遗传算法选择悬索桥监测系统中传感器的最优布点[J].工程力学,2000,17(1):25-34.
    [21]潘宏侠,黄晋英,毛宏伟等.粒子群优化技术用于故障诊断中的测点优化配置研究[J].火炮发射与控制学报,2008,6:85-87.
    [22]Stewart R M. Some useful analysis techniques for gearbox diagnostics. Machine Health Monitoring Group Technical Report:MHM/R/10/77,1977.
    [23]Jong J, McBride J, Jones J, etal. Synchronous phase averaging method for machinery diagnostics[R]. NTIS:ADP0102004,1996.
    [24]HuffE M, Mosher M, Barszcz E. An exploration of discontinuous time synchronous averaging using helicopter flight vibration data[R]. NTIS:N20030022710,2004.
    [25]Randll.R.B. Advances in the Application of Cepstrum Analysis to Gearbox Diagnosis [C]. Internationnal on ference Vibrations Rotating Machinery, I Mech E,1980:169-174.
    [26]牛立勇,关惠玲.细化和倒谱分析在坦克齿轮箱故障诊断中的应用[J].郑州大学学报(工学版),2003,24(3):95-97.
    [27]熊军,李凤英,沈玉娣.基于高阶倒谱熵的齿轮箱故障诊断[J].机械传动,2005,29(2):50-51.
    [28]李辉,郑海起,唐力伟.基于倒阶次谱分析的齿轮箱故障诊断研究[J].振动与冲击,2006,25(5):65-68.
    [29]Potter R.K. Kopp G Green H.C. Visible speech. NewYork, Van Nostrand,1947.
    [30]Koening R. Dunn H.K. Lack L.Y. The sound spectrograph.J.Acoust,1946, (18):19-49.
    [31]Allen J.B. Rabiner L. A Unified Approach to Short-Time Fourier Analysis and Synthesis. Proc.IEEE,1977,55(31):1558-1560.
    [32]Wigner E.P. On the Quantum Correction for Thermodynamic Equilibrium. Phys. Rev, 1932,40:749-759.
    [33]Ville J. Theorie et Applications de la Notion de Signal Analytiqae. Cables et Transmission,1948,2A:61-74.
    [34]Cohen L. Time-frequency Distributions—a Review. Proc. IEEE,1989, (77):941-981.
    [35]Grossmann A., Morlet.J. Decomposion of Hardy Function into Square Integrable wavelets of Constant Shape. PhiladelPhia:Society for Industrial and Applied Mathematics(SIAM),1984,15(4):723-736.
    [36]Mallat S.G Multi-frequeney Channel Decompositions of Image and Wavelet Models. IEEE Transactions on ASSP,1989,37(12):2091-2110.
    [37]Daubechies I. The Wvelet Transform, Time Frequeney Localization and Signal Analysis. IEEE Transactions on Information Theory,1990, (36):96-100.
    [38]Vetterli M., Herley C. Wavelets and Filter Banks:Theory and Design. IEEE Transactions on Signal Proeessing,1992,40(9):207-223.
    [39]Torresani B.Wavelets Assoeiated with RePresentations of the Affine Wely-Heisenberg Group. J.Math.Phys,1991,32(5):1273-1279.
    [40]Stepane Mallat著.杨力华,戴道清等译.信号处理的小波导引[M].北京:机械工业出版社,2002.
    [41]Daubechies I. Ten Lectures onWavelet[M]. Philadelphia. PA:1992.
    [42]Wickerhauser M. V. Intra Lectures on Wavelet Packet algorithms[J]. In Undelettes elpaquets d'ondelettes. Roquencourt, France,17(21) 1991:31-99.
    [43]Meyer Y. Wavelets Algorithlns & Applications[M]. New work, SIAM,1993.
    [44]郑建国,石智,权豫西.非平稳信号的小波包阈值去噪方法[J].信息技术,2007,3:16-19.
    [45]Yonging Zhou, Shengli Lai, Leian Liu, etal. An improved approach to threshold function de-noising of mobile image in CL2 multi-wavelet transform domain[J]. IEE Mobility Conference.2005.
    [46]Mohammed Bahoura. JeanRouat. Wavelet speech enhancement based on time-scale adaptation[J]. Speech Communication,2006,48:1620-1637.
    [47]S.Poornachandra. Wavelet-based de-noising using subband dependent threshold for ECCi signals[J]. Digital Signal Processing.2008,18:49-55.
    [48]Norden E.Huang, ZhengShen. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceeding of Royal Society London,1998,454(A):903-995.
    [49]Huang N E. A New View of Non-linear Waves:The Hilbert Spectrum. Annual Review of Fluid Mechanics.1999(31):417-457.
    [50]朱雪龙.应用信息论基础[M].北京:清华大学出版社,2001:3-5.
    [51]A.N.Kolmogorov. Three Approaches to the Quantitative Definition of Information. Problems of InformationTransmission,1965,1(1):1-7.
    [52]G. J. Chaitin. Informatio-n Theoretic Computational Complexity. IEEE Trnas Inform, Theory,1974, IT20:10-15.
    [53]S.M.Pincus. Approximate Entropy as a Measure of System Complexity. Proc. Natl. Acad. Sci,1991,88:2297-2301.
    [54]S.M.Pincus. Approximate Entropy as a Complexity Measure. Chaos,1995,5(1):110-117.
    [55]S.M.Pincus. A Regularity Statistic for Medical Data Analysis. Journal of Clinical Monitoring,1991,7(4):335-345.
    [56]Y. L. Meng, Liu B Z. A Comprehensive Nonlinear Analysis of Electromyogram. Proceeding of IEEE 23th Annual Conf Biological and Medical Engin,2001, Estanbul: 1078-1088.
    [57]胥永刚,李凌均.近似嫡及其在机械设备故障诊断中的应用[J].信息与控制,2002,31(6):547-551.
    [58]胥永刚,何正嘉.基于二维近似嫡度量轴心轨迹复杂性的研究[J].西安交通大学学报,2003,37(11):1171-1174.
    [59]马孝江,余伯,张志新等.一种新的时频分析方法—局域波法[J].振动工程学报,2000,13(5):219-224.
    [60]Baloeehi R, Menieucci D, Santareangelo etc. The respiratory sinus arrhythmia from the heartbeat timeseries using empirical mode decomposition[J]. Chaos, Solitons and Fraetals 2004,20(1):171-177.
    [61]Flandrin P, Rifling G, Goncalves P. On empirical mode decomposition as a filter bank [J]. IEEE Signal Processing Lett 2004,11(2):112-114.
    [62]Zhang R, Ma S, Hartzell S. Signatures of the seismic source in EMD-based characterization of the 1994 Northridge, California, earthquake recordings. Bulletin of the Seismological Society of Ameriea,2003,93(1):501-518.
    [63]Zhang Haiyong, Ma Xiaojiang, Gai Qiang.Wigner-Ville distribution based on intrinsic mode functions[C]. CIE International Conference of Radar Proceedings, Beijing: Proceedings of IEEE,2001,1015-1017.
    [64]Wang Fengli, Xing Hui. An investigation of tooth wear diagnosis of gear based on process systems modeling[J]. Advanced Materials Research,2012,549:834-838.
    [65]Hu Hongying, Ma Xiaojiang. Application of local wave approximate entropy in mechanical fault diagnosis[J]. Journal of Vibration and Shock,2006,25(4):38-40.
    [66]Li Hongkun, Ma Xiaojiang, Hu Hongying, etc. Investigation on reciprocating engine condition classification by using wavelet packet Hilbert spectrum[J]. Lecture Notes In Computer Science,2006,4222:588-597.
    [67]Hongkun Li, Xiaojiang Ma, Fengtao Wang, etc. Investigation on Reciprocating Engine Pattern Recognition by Combining SVM and Hilbert Spectrum Entropy[C]. Proceedings-ISDA 2006:Sixth International Conference on Intelligent Systems Design and Applications,2006,1:195-200.
    [68]Miao Gang, Ma Xiaojiang, Ren Quanmin. Application of multi-scale Hilbert spectrum entropy in reciprocating compressor fault diagnosis[J], Transactions of the Chinese Society of Agricultural Machinery,2007,38(3):176-178.
    [69]Ren Quanmin, Ma Xiaojiang, Miao Gang. Application of support vector machines in reciprocating compressor valve fault diagnosis[J]. Lecture Notes In Computer Science, 2005,3611(PART Ⅱ):81-84.
    [70]Yuan Yu, Wang Tingyu, Li Baoliang. Reciprocating compressor fault classify base on multi-component singular entropy[J]. Advanced Materials Research,2012,505:221-226.
    [71]Bie Fengfeng, Guo Zhenggang, Zhang Zhixin, etc. Research on system-level fault diagnosis based on local wave time-frequency spectrum[J]. Chinese Journal of Scientific Instrument,2008,29(5):1092-1095.
    [72]Bie Fengfeng, Wang Fengtao, Lu Fengxia. Intelligent diagnosis of reciprocating compressor based on local wave time-frequency spectra processing[J]. Transactions of the Chinese Society of Agricultural Machinery,2007,38(9):159-162.
    [73]Zhao Jinping. Mirror extending and circular spline fuction for empirical mode decomposition method[J]. Journal of Zhejiang University,2001,2 (3):247-252.
    [74]Deng Yongjun,Wang Wei. Boundary processing technique in EMD method and Hilbert transform[J]. Chinese Science Bulletion,2001,46(11):257-263.
    [75]Huang N E, Shen Z, Long S R. A new view of nonlinear water waves. The Hilbert spectrum[J]. Ann Rev Fluid mech,1999,31:417-457.
    [76]Huang N E, Wu M, Long S. A confidence limit for the empirical mode decomposition and Hilbert spectral analysis[J]. Proc R.Soc Lond A, September,2003,459:2317-2345.
    [77]Stevenson N, Mesbah M, Boashash B. A sampling limit for the empirical mode decomposition[C]. Proceedings-8th International Symposium on Signal Processing and its Applications, ISSPA 2005. Piscataway, NJ, USA:IEEE,2005:647-650.
    [78]崔宝珍.自适应形态滤波与局域波分解理论及滚动轴承故障诊断[D].太原:中北大学,2013.
    [79]Z.Pawlak. Rough Sets:Theoretical Aspects of Reasoning about Data[M]. Kluwer Academic, Dordrecht, The Netherlands,1991.
    [80]ZOU Z, TSENG T L B, SONG G, etal. A rough set based approach to distributor selection insupply chain managemen[J]. Expert Systems with Applications,2010, 24(4):297-304.
    [81]Miao DQ, Xu FF, Wei L. Fuzzy-rough attribute reduction via mutual information with an application to cancer classification[J]. Computers & Mathematics with Applications, 2009,57(6):1010-1017.
    [82]Hassanien AE, Ali JMH. Rough set approach for generation of clas-sification rules of breast cancer data[J]. Informatica,2004,15(1):23-38.
    [83]Pang QC, Hou AJ, Hua QP, etal. Mining classification rules of cancer patients for traditional Chinese medical treatments:A rough set based approach[C]. Fourth International Conference on Fuzzy Systems and Knowledge Discovery,2007:295-299.
    [84]孙亮,韩崇昭,康欣.多源遥感影像的集值特征选择与融合分类[J].电波科学学报,2004,19(04):479-484.
    [85]PATTARAINTAKORN P, CERCONE N..Integrating rough set theory and medical applications[J]. Applied Mathematics Letters,2008,21(4):400-403.
    [86]DONG Y, XIANG B,WANG T, etal. Rough set-based SAR analysis:An inductive method[J]. Expert Systems with Applications,2010,37(7):5032-5039.
    [87]Tay FEH, Shen LX. Economic and financial prediction using rough sets model[J]. European Journal of Operational Research,2002,141(3):641-659.
    [88]Mrozek A. Rough sets and dependency analysis among attributes in computer implementations of expert's inference models[J]. International Journal of Man-Machine Studies,1989,30(4):457-473.
    [89]Czogala E, Mrozek A, Pawlak Z. The idea of a rough fuzzy controller and its application to the stabilization of a pendulum-car system[J]. Fuzzy sets and systems, 1995,72(1):61-73.
    [90]Nguyen H.S. Skowron A. Quantization of real values attributes, rough set and Boolean reasoning approaches[C]. In:Proceedings of the 2nd Joint Annual Conference on Information Science, Wrightsville Beach, NC,1995,34-37.
    [91]Nguyen S.H, Nguyen H.S. Some efficient algorithms for rough set methods[C]. In: Proceedings of the Conference of Information Processing and Management of Uncertainty in Knowledge-Based Systems, Granada, Spain,1996,1451-1456.
    [92]Susmaga R. Analyzing discretizations of continuous attributes given a monotonic discrimination function[J]. Intelligent Data Analysis,1997,1(4):157-179.
    [93]Dai Jianhua, Li YuanXiang. Study on discretization based on rough set theory[C]. In: Proceedings of the first International Conference on Machine Learning and Cybernetics, Beijing,2002,1371-1373.
    [94]Chen CaiYun, Li ZhiGuo, Qiao ShengYong, etc. Study on discretization in rough set based on genetic algorithm[C]. In:Proceedings of the Second International Conference on Machine Learning and Cybernetics, Xi'an,2003,1430-1434.
    [95]Huang JinJie, Li ShiYong. A GA-based approach to rough data model[C]. In: Prceeedings of the 5th World Congresson Intelligent Control and Automation, Hangzhou,2004,1880-1884.
    [96]刘志先.一种基于遗传算法的连续属性离散化方法[J].钦州学院学报,2010,10(15):3730-3733.
    [97]Li MengXin, Wu ChengDong, Han Zhonghua, etc. A hierarchical clustering method for attribute discretization in rough set theory[C]. In:Proceedings of the third International Conference on Machine Learning and Cybernetics, Shanghai,2004,3650-3654.
    [98]Shen L., Tay E.H. A discretization method for rough sets theory[J]. Intelligent Data Analysis,2001,5(5):431-438.
    [99]Tay E.H., Shen L. A modified Chi2 algorithm for discretization[C]. IEEE Transactions on Knowledge and Data Engineering,2002,14(3):666-670.
    [100]Su Chao-Ton, Hsu Jyh-HWa. An extended Chi2 algorithm for discretization of real value attributes[C]. IEEE Transactions on Knowledge and Data Engineering, 2005,17(3):437-441.
    [101]Wong SKM, Ziarko W. On optimal decision rules in decision tables[J]. Bullet in of Polish Academy of Sciences,1985,33:693-696.
    [102]J. Jelonek. Rough set reduction of attributes and their domains for neural networks [J]. Computational Intelligence,1995,11 (2):339-347.
    [103]Pawlak Z. Rough set approach to multi-attribute decision analysis[J]. European Journal of Operational Research 1994,72:443-459.
    [104]Hu K, Lu Y, Shi C. Feature ranking in rough sets[J]. AI Communications,2003, 16(1):41-50.
    [105]Hu XiaoHua, Cercone N. Learning in relational databases:a rough set approach[J]. Computational Intelligence,1995,11(2):323-337.
    [106]Wang G, Zhao J, An J, etal. A Comparative Study of Algebra Viewpoint and Information Viewpoint in Attribute Reduction[J]. Funda-menta Informaticae,2005, 68(3):289-301.
    [107]Xueen W, Chongzhao H, Deqiang H. Reduction in decision table based on pair-wise complementarity of condition attributes[C].13th Conference on Information Fusion, Fusion 2010, Edinburgh,2010.
    [108]张海云,梁吉业,钱宇华.基于划分的信息系统属性约简[J].计算机应用,2006,26(12):2961-2964.
    [109]魏立力,韩崇昭.基于卡方统计量的属性约简新方法[J].计算机仿真,2007,24(5):72-74.
    [110]Yang Ming. A Novel Algorithm for Attribute Reduction Based on Consistency Criterion [J]. CHINESE JOURNAL OF COMPUTERS,2010,33(2):231-239.
    [111]Jensen R, Shen Q. Finding Rough Set Reducts with Ant Colony Optimization[C]. Proceedings of the 2003 UK Workshop on Computa-tional Intelligence,2003:15-22.
    [112]Ke LJ, Feng ZR, Ren ZG. An efficient ant colony optimization approach to attribute reduction in rough set theory[J]. Pattern recognition letters,2008,29(9):1351-1357.
    [113]Wang X, Yang J, Teng X, etal. Feature selection based on rough sets and particle swarm optimization[J]. Pattern recognition letters,2007,28(4):459-471.
    [114]Wang Wenhui, Zhou Donghua. An Algorithm for Knowledge Reduction in Rough Sets Basedon Genetic Algorithm[J]. Journal of system simulation,2001,13:91-94.
    [115]Jensen R, Shen Q. Computational Intelligence and Feature Selection:Rough and Fuzzy Approaches[M]. IEEE Press and Wiley & Sons,2008.
    [116]Pawlak Z. Rough classification[J]. International Journal of Man-Machine Studies,1984, 20(5):469-483.
    [117]Pawlak Z, Slowinski K, Slowinski R. Rough classification of patientsafter highly selective vagotomy for duodenal ulcer[J]. International Journal of Man-Machine Studies,1986,24(5):413-433.
    [118]Pawlak Z, Skowron A. A rough set approach for decision rules generation[R].1993.
    [119]Skowron A. Boolean reasoning for decision rules generation[C]. In:Komorowski J, Ras Z, editors. Methodologies for Intelligent Systems:Springer Berlin,1993.
    [120]Xu Yi, Li Longshu, Li Xuejun. Improved LEM2 rule Induction Algorithm[J]. Systems Engineering Theory & Practice,2010,30(10):1940-1848.
    [121]Dai Jianhua, PanYunhe. Algorithm for acquisition of decision rules based on classification onsistency rate[J]. Control and Decision,2004,19 (10):1806-1811.
    [122]Sun Lin, Xu jiucheng, Ma Yuanyuan. Rules extraction method of decision tree based on new conditional entropy[J]. Computer Applications,2007,27(4):884-887.
    [123]Luo Qiujin, Chen Shiliang. Algorithm based on value reduction and decision tree to generate minimal rules[J]. Computer Applications,2005,25 (8):1853-1855.
    [124]Jensen R, Cornelis C, Shen Q. Hybrid Fuzzy-Rough Rule Induction and Feature Selection[C].2009 IEEE International Conference on Fuzzy Systems,2009:1151-1156.
    [125]Chen D, He Q, Wang X. FRSVMs:Fuzzy rough set based support vector machines[J]. Fuzzy Sets and Systems,2010,161 (4):596-607.
    [126]孙亮,韩崇昭.集成特征选择的广义粗集方法与多分类器融合[J].自动化学报,2008,34(3):298-304.
    [127]Liao S H. Expert system methodologies and applications-A decade review from 1995 to 2004[J]. Expert Systems with Applications,2005,28(1):93-103.
    [128]Wang Y D, Lim E P, Hwang S Y. Efficient mining of group patterns from user movement data[J]. Data & Knowledge Engineering,2006,57(3):240-282.
    [129]Chou J S. Generalized linear model-based expert system for estimating the cost of transportation projects[J]. Expert Systemswith Applications,2009,36(3):4253-4267.
    [130]Doherty N F, Kochhar A K. MID AS:an application of model-based reasoning for the diagnosis of hydraulic systems[J]. Knowledge-Based Systems,1994,7(2):127-134.
    [131]Molina J M, Isasi P, Berlanga A, etal. Hydroelectric power plant management relying on neural networks and expert system integration[J]. Engineering Applications of Artificial Intelligence,2000,3(3):357-369.
    [132]Song G, He Y, Chu F, et al. HYDES:A Web-based hydro turbine fault diagnosis system[J]. Expert Systems with Applications,2008,34(1):764-772.
    [133]张德丰.MATLAB神经网络应用设计[M].北京:机械工业出版社,2009:92-179.
    [134]Simani S, Fantuzzi C. Fault diagnosis in power plant using neural networks[J]. Information Sciences,2000,127(34):125-136.
    [135]Tian Z, Wong L, Safaei N. A neural network approach for remaining useful life prediction utilizing both failure and suspension histories[J]. Mechanical Systems and Signal Processing,2010,24(5):1542-1555.
    [136]J.Rafiee, F.Arvani, A.harifi, etal. Intelligent condition monitoring of a gearbox using artificial neural network[J]. Mech.Syst. Signal Process,2007,21(4):1746-1754.
    [137]B.S.Yang, T.Han, J.L.An. ART-KOHONEN neural network for fault diagnosis of rotating machinery[J]. Mech.Syst.Signal Process,2004,18:645-657.
    [138]XUE Feng, KE Kong-lin. Five Category Evaluation of Commercial Bank's Loan by the Integration of Rough Sets and Neural Network[J]. Systems Engineering,2008,28(1): 40-45.
    [139]Liu Jianmin, Li Xiaolei, Zhang Xiaoming, etal. Misfire Diagnosis of Diesel Engine based on Rough Set and Neural Network[J]. Procedia Engineering,2011(16):224-229.
    [140]田静宜.基于粗糙集和神经网络的柴油机故障诊断研究[D].太原:中北大学:2011.
    [141]胡良谋,曹克强,徐浩军等.支持向量机故障诊断及控制技术[M].北京:国防工业出版社,2011.
    [142]Vapnik V N. Statistical Learning Theory[M].许建华,张学工,译.北京:电子工业出版社,2004.
    [143]Suykens J A K, Vandewalle J. Multiclass least squares support vector machines[C]. In IJCNN'99 International Joint Conference on Neural Networks, Washington, DC,1999.
    [144]Junfeng Gao. Support vector machines based on approach for fault diagnosis of valves in reciprocating pumps[C]. Proc. of the 2002 IEEE Canadian Conference of electrical & computer engineering,1622-1627.
    [145]Ganyun L V, Cheng HaoZhong, etal. Fault diagnosis of power transformer based on multi-layer SVM classifier. Electric Power Systems Research,2005,74:1-7.
    [146]谢芳芳.基于支持向量机的故障诊断方法[D].长沙:湖南大学,2006.
    [147]B.Samanta. Gear fault detection using artificial neural networks and support vector machines with genetic algorithms[J]. Mech.Syst.Signal Process,2004,18(3):625-644.
    [148]L.Jack, A.K.Nandi. Fault detection using support vector machines and artificial neural networks, augmented by genetic algorithms[J]. Mech.Syst.Signal Process,2002,16: 373-390.
    [149]杨凯.传动系统状态监测与故障诊断研究[D].南京:南京航空航天大学,2008.
    [150]成琼.基于小波分析的齿轮故障诊断研究[D].长沙:湖南大学,2001.
    [151]丁康,王延春.传动箱齿轮和轴的故障的振动诊断方法的研究[J].振动与冲击,1994,13(2):26-32.
    [152]韩捷,张瑞林.旋转机械故障机理及诊断技术[M].北京:机械工业出版社,1997.
    [153]秦树人,季忠,尹爱军.工程信号处理[M].北京:高等教育出版社,2008.
    [154]王宏禹.信号处理相关理论综合与统一法[M].北京:国防工业出版社,2005.
    [155]原平.基于EMD近似熵和LS-SVM的齿轮箱故障诊断研究[D].太原:中北大学,2013.
    [156]朱宁辉,白晓民,董伟杰.基于EEMD的谐波检测方法[J].中国电机工程学报,2013,33(7):92-97.
    [157]张文修,吴伟志,梁吉业等.粗糙集理论与方法[M].北京:科学出版社,2001.
    [158]刘保相.粗糙集对分析理论与决策模型[M].北京:科学出版社,2010.
    [159]孙秋野,黎明.粗糙集理论及其电力行业应用[M].北京:机械工业出版社,2009.
    [160]巩建闽,王国胜,萧蓓蕾.保持分类能力不变的一种连续属性离散化方法[J].曲阜师范大学学报,2005,31(1):95-99.
    [161]梁艳春,吴春国,时小虎等.群智能优化算法理论与应用[M].北京:科学出版 社,2009:75-81.
    [162]苗夺谦,李道国.粗糙集理论、算法与应用[M].北京:清华大学出版社,2008.
    [163]皮骏.基于粗糙集理论的旋转机械故障诊断技术[D].西安:西北工业大学,2006.
    [164]刘保相.粗糙集对分析理论与决策模型[M].北京:科学出版社,2010.
    [165]Ziarko W. Variable precision rough set model[J]. Journal of Computer and System Science,1993,46(1):39-59.
    [166]A.J.C.Sharkey, G.O.Chandroth, N.E.Sharkey. A Multi-Net System for the Fault Diagnosis of a Diesel Engine. Neural Comput & Applic,2000(9):152-160.
    [167]张德丰.MATLAB神经网络应用设计[M].北京:机械工业出版社,2009:92-179.
    [168]魏秀业.基于粒子群优化的齿轮箱智能故障诊断研究[D].太原:中北大学,2009.
    [169]邓乃扬,田英杰.支持向量机[M].北京:科学出版社,2009.
    [170]白鹏,张喜斌,张斌.支持向量机理论及工程应用实例[M].西安:西安电子科技大学出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700