时滞系统容错控制若干方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
容错控制技术是提高动态系统安全性、可靠性的一种极为重要的途径,因而深入研究容错控制技术,不但具有重要的理论意义,而且也具有巨大的实际应用价值。目前关于容错控制技术的研究引起了广泛关注,已经成为控制界的热门研究课题之一。在各类工业系统中,时滞现象是极其普遍的,如长管道进料或皮带传输、极缓慢的过程或复杂的在线分析仪等均存在时滞现象,这都可归结为时滞系统模型。时滞的存在使得系统的分析和综合变得更加复杂和困难,同时时滞的存在也往往是系统不稳定和系统性能变差的根源。正是在这一背景下,本文系统地研究了时滞系统的容错控制方法,主要内容及研究成果如下:
     研究了带有执行器故障的变时滞不确定系统的鲁棒可靠控制。给出了系统在正常运行和带有可预期执行器故障情况下,闭环系统保持二次稳定的时滞依赖充分条件。运用线性矩阵不等式方法给出了可靠状态反馈控制的综合方法。该方法相对于时滞独立条件下得到的结果,具有较小的保守性。
     研究了线性状态时滞不确定系统部分传感器和执行器同时失效的容错控制问题。给出了带有时滞的状态反馈控制的设计方法。采用该方法设计的容错控制系统能够在保证系统闭环稳定的同时满足给定的性能指标,所设计的状态反馈控制器含有时滞项,可以减小时滞对闭环系统带来的影响。问题解存在的条件以线性矩阵不等式的形式给出。H∞
     研究了多状态时滞系统的主动容错控制问题。基于广义内模控制,给出了两种容错控制的设计方法。第一种方法基于Youla控制器参数化,将闭环系统控制器设计纳入广义内模控制的框架;设计得到的控制器由两部分构成,分别针对系统的性能和鲁棒性。如果系统没有发生故障,只有针对性能设计的控制器起作用;而当系统发生故障,针对鲁棒性设计的控制器才会起作用。第二种方法在广义内模控制的结构下,利用互质分解方法设计了故障残差产生器,通过将故障诊断问题转化为H∞控制问题,从而引入了一类新的故障诊断性能指标;据此性能指标,给出了残差后滤波器的设计方法,该后滤波器可以实现故障信号的渐近估计。在故障估计的基础上,利用故障补偿实现了闭环系统的容错功能。该方法可视为故障检测与容错控制之间的桥梁,给出了故障残差与真实故障之间的对应关系。通过仿真研究验证了两种方法的有效性,并基于仿真结果对两种方法进行了对比分析。
     研究了带有不确定性的时变时滞系统的容错控制。基于滑模控制提出了一种容错控制设计方法。线性滑动平面存在的时滞依赖充分条件以线性矩阵不等式(LMI)可行性问题的形式给出,该滑动平面如果存在,即可以保证由原系统得到的降阶等价系统的轨迹在有限时间内收敛于该平面。基于这个滑动平面,设计了一种可以作为容错控制的到达控制。该控制可使得带有模型不确定性、扰动输入和执行器故障的闭环系统保持二次稳定,具有容错功能。
     研究了线性变参数时滞系统的主动容错控制问题。在参数的凸条件约束和系统参数矩阵的仿射依赖条件假设下,利用线性分式变换,将故障滤波器设计问题转化为H∞控制器设计问题,给出了该变参数控制器的存在条件和增益求解方法,并给出了故障补偿的设计方法。将故障诊断与容错控制设计问题变为H∞控制器设计问题的思想可以推广到其他类型的系统。
     采用一种基于Newton-Raphson算法的渐进式容错控制设计方法研究了带有参数故障的时滞系统的容错控制问题。该方法可明显降低由于控制增益计算和实施所带来的延迟而造成的性能损失和系统失稳的危险。该方法考虑非理想状况,即容错控制的实施不是在故障诊断结束之后立刻进行,因而实用性更强。
Fault-tolerant control is an important approach to improving the safety and reliability for dynamic systems. Hence, the study on fault-tolerant control technology has both theoretical and practical importances. At present, it has drawn wide attention, and has been one of the main topics in control science. Time delay is commonly encountered in various engineering systems, such as chemical processes, long transmission lines in pneumatic, hydraulic and rolling mill systems, furthermore, these can be regarded as time delay systems. Time delay usually results in unsatisfactory performances and is frequently a source of instability. The methods of fault-tolerant control for time delay systems are studied systematically in this dissertation. The main contributions of this dissertation can be summarized as follows:
     Robust reliable control design problem for uncertain systems with time-varying state delay as well as actuator failures in the input channels is discussed. A sufficient condition is established such that the quadratic stability of the closed-loop system is ensured for both the nominal system and the system with possible actuator failures. The condition is a delay-dependent one. A reliable state feedback controller is synthesized within the framework of linear matrix inequalities(LMIs). As compared with the delay-independent conditions, the result proposed has the merit of being less conservative.
     The fault tolerant control design problem for uncertain time-delay systems with both sensor and actuator failures is discussed. A memoryless and memory state feedback control, which can decrease the influence of time delay, is designed to guarantee the integrity of the system together with the prescribed H_∞performance index. The sufficient condition for the existence of the solution is formulated in terms of LMIs.
     Active fault-tolerant control problem of multi-state delay system is studied. Based on generalized internal model control (GIMC) two fault-tolerant control design methods are proposed. In the first method, based on Youla controller parameterization and GIMC, the feedback controller architecture includes two parts: one part for performance and the other part for robustness. The feedback control system will be solely controlled by the performance controller when there is no fault and the robust controller will be active when there are faults. In the second method, based on GIMC, firstly, the residual signal is generated by means of a co-prime factorization method. Secondly, a new performance index is proposed by converting the fault diagnosis (FD) problem to a H∞robust control problem. And then a post-filter is designed as a robust controller which can make the filtered residual signal close to the fault signal so that the fault estimation purpose can be fulfilled simply. This method may be regarded as a H∞bridge between FD and fault tolerant control, the relationship of residual signal and the real fault signal is established. Some illustrative design examples are used to demonstrate the validity and applicability of the proposed approaches. Some comparisons are made based on the simulation results.
     Fault tolerant control for uncertain systems with time varying state-delay is studied. Based on sliding mode controller design, a fault tolerant control method is proposed. By means of the feasibility of some LMIs, delay dependent sufficient condition is derived for the existence of a linear sliding surface which guarantees quadratic stability of the reduced-order equivalent system restricted to the sliding surface. A reaching motion controller, which can be seen as a fault tolerant controller and can retain the stability of the closed loop system in the present of uncertainties, disturbances and actuator fault, is designed. A numerical simulation shows the effectiveness of the approach.
     An active fault-tolerant control scheme of linear parameter varying time-delay system (LPVTD) is proposed. Under the assumption that the parameters are convex and the system matrices can be of affine parameter dependence, by a linear fractional transformation (LFT), the design of a fault filter can be equal to the design of a H∞controller. The existence condition and the method to get the gain of the controller are proposed, based on which fault compensation can be realized. The idea that transform the fault diagnosis and fault tolerant control problem to a H∞control problem can be easily extended to other kinds of systems.
     The fault accommodation problem for time-delay systems with parametric faults is studied. The progressive accommodation strategy which based on the Newton-Raphson scheme is adopted to solve this problem. This accommodation scheme significantly reduces the degradation of performance and the risk associated with system instability resulted from the time delay induced by fault accommodation algorithms to provide a solution. Consider that in the real situations, it takes some time for the controller to compute and apply the fault tolerant control after the fault been detected. So the delays should be considered and thus the method proposed is more applicable in practice.
引文
[1] Stengel R.F., Intelligent failure tolerant control. IEEE Control System Magzine, 1991. 11(3): p. 14-23.
    [2] M S Keating, P M Frank, C H Houpis. QFT applied to fault tolerant flight control system design. in In Proc. ACC'95. 1995. Seattle.
    [3] Williams S, H.A. A comparison of characteristic locus and H infinite design methods for VSTOL flight control system design. in In Proc. of ACC'90. 1990. San Diego.
    [4] Jacobson C A, Nef C N., An integrated approach to controls and diagnostics using the four parameter controller. IEEE Control Systems, 1991. 11(5): p. 22-29.
    [5] M.M. Mahmoud, J. Jiang, Y. Zhang., Active Fault Tolerant Control Systems. 2003, Berlin Heidelberg Springer-Verlag.
    [6] Blanke M, Kinnaert M Lunze J, et al., Diagnosis and Fault-Tolerant Control. 2006, Berlin Heidelberg: Springer-Verlag.
    [7] Isermann R, Balle P Trends in the application of model based fault detection and diagnosis of technical processes. in In Proceedings of 13th IFAC world congress. 1996. San Francisco, USA,pp:1-12.
    [8] Frank P.M., Fault diagnosis in dynamic system using analytical and knowledge based redundancy - a survey and some new results. Automatica, 1990. 26(3): p. 459-474.
    [9] Niederlinski A., A heuristic approach to the design of interacting multivariable systems. Automatica, 1971. 7(6): p. 691-701.
    [10] MacFarlane, Alistair George James, Complex variable methods for linear multivariable feedback systems. 1980, London: Taylor and Francis.
    [11] Shimemura E, Fujita M., A design method for linear state feedback systems possessing integrity based on a solution of a Riccati-type equation. International Journal of Control, 1985. 42(4): p. 887-899.
    [12] Gundes A.N., Stability of feedback systems with sensor or actuator failures: analysis. International Journal of Control, 1992. 56(4): p. 735-753.
    [13] Fujita M, Shimemura E, Integrity against arbitrary feedback-loop failure in linear multivariable control systems. Automatica, 1988. 24(6): p. 765-772.
    [14] Sebe N. Integrity Conditions. in in Proc. Of the 17th SICE Symposium on Dynamical System Theory. 1994.
    [15] Fujita M, Shimemura E, A Design Method of a Linear State Feedback System Possessing Integrity Against the Specified Actuator Failure. Trans. Of the Society of Instrument and Control Engineers, 1986. 22(1): p. 23-29.
    [16] Gundes A.N. Controller design for reliables tabilization. in In Proc of 12`" IFAC World Congress. 1993.
    [17] Yoshiro Hamada, Noboru Sebe. A Design Method for Fault-Tolerant ControlSystems Based on H infinite Optimization. in in Proceedings of the 35th Conference on Decision and Control. 1996. Kobe, Japan.
    [18] Iwasaki T., Control System Design via LMIs. Journal of the Society of Instrument and Control Engineers, 1995. 34(3): p. 164-169.
    [19]周东华, Ding x.,容错控制理论及其应用.自动化学报, 2000. 26(6): p. 788-797.
    [20] Saljak D.D., Reliable control using multiple control systems. International Journal of Control, 1980. 31(2): p. 303-329.
    [21] Vidyasayar M , Viswanadham N, Reliable stabilization using a multi-controller configuration. Automatica, 1985. 21(3): p. 599-602.
    [22]程一,朱宗林,高金陵,使闭环系统对执行器失效具有完整性的动态补偿器设计.自动化学报, 1990. 16(4): p. 297-301.
    [23] Sebe N, Kitamori T Reliable stabilization based on a multi-compensator configurable. in In :Proc. of 12th IFAC World Congress. 1993.
    [24] Saeks R, Murray J, Fractional representation, algebraic geometry, and the simultaneous stabilization problem. IEEE transactions on Automatic Control, 1982. 24(4): p. 895-903.
    [25] Wu dongnan, et al., Algorithm for simultaneous stabilization of single input systems via dynamic feedback. International Journal of Control, 1990. 51(3): p. 631-642.
    [26]曹永岩等,基于互质分解的同时镇定控制器参数化.控制理论与应用, 1995. 12(4): p. 503-508.
    [27] Chen H.B., Simultaneous stabilization using stable system inversion. Automatica, 1995. 31(4): p. 531-542.
    [28] Stoustrup Jakob, Blondel Vincent D, Fault Tolerant Control: A Simultaneous Stabilization Result. IEEE Transactions on Automatic Control, 2004. 49(2): p. 305-310.
    [29] Pakshin P V, Emelyanov A A. Robust and simultaneous stabilization of jump time-delay systems via output feedback. in 2005 International Conference on Physics and Control. 2005. St. Petersburg, Russian Federation,p697-702.
    [30]叶银忠,多变量固定状态反馈下的容错极点配置.控制理论与应用, 1993. 10(2): p. 212-218.
    [31] Vidyasagar M., Some results on simultaneous stabilization with multiple Domains of stabilities. Automatica, 1987. 23 (4): p. 535-540.
    [32] Ackermann J., Robustness against sensor failures. Automatica, 1984. 20(2): p. 211-215.
    [33] Shieh L S, Dib H M, Ganesan S, et al., Ganesan S, et al., Optimal pole-placement for state feedback systems possessing integrity. International Journal of Systems Science, 1988. 19(8): p. 1419-1435.
    [34]孙金生,李军,王执铨,时滞不确定系统的鲁棒容错控制.控制理论与应用, 1998. 15(2): p. 267-271.
    [35] C Cheng, Q Zhao, Reliable control of uncertain delayed systems with integral quadratic constraints. IEE Proceedings: Control Theory and Applications,2004. 151(6): p. 790-796.
    [36] Doyle J C, Glover K, Khargonekar P P, France B A, Khargonekar P P, France B A, State space solutions to standard control problems. IEEE Transactions on Automatic Control, 1989. 34(8): p. 831-847.
    [37] Frank P M, Brigit Koppen-Seliger. New developments using AI in fault diagnosis. in In Proceedings of the IFAC Artificial Intellgence in Real-Time Control. 1995. Beld, Slovenia,p1-12.
    [38] Isermann R., Process fault detection based modelling and estimation methods. Automatica, 1984. 20(4): p. 387-404.
    [39] Gertler J., Survey of Model Based Failure Detection and Isolation in Complex Plants. IEEE Control Systems Magazine, 1988. 8(6): p. 3-11.
    [40] Patton R. J. etal, Design of fault detection and isolation observers: A matrix pencil approach. Automatica, 1998. 34(9): p. 1135-1140.
    [41] J Jiang, Q Zhao., Comparison of RLS parameter and state estimation based FDI schemes. Journal of Franklin Institute, 2000. 14(4): p. 255-266.
    [42] Q Zhao, Fault tolerant control system design, in Department of Electrical and Computer Engineering Faculty of Engineering Science. 1999, The University of Western Ontario.
    [43] Moerder D D, Halyo N, Broussard J R, et al., Application of pre-computed control law in a reconfigurable aircraft flight control system. Journal of Guidance, 1989. 12(3): p. 325-333.
    [44] Apkarian P, P Gahinet, Convex Characterisationof Gain-Scheduled H∞Controllers. IEEE transactions on Automatic Control, 1995. AC-40(5): p. 853-864.
    [45] J. Chen, Patton R. J., Fault-tolerant control systems design using the linear matrix inequality method. in ECC'01. 2001. Porto.
    [46] Wang J, Rugh W J, Feedback linearization families for nonlinear systems. IEEE transactions on automatic control, 1987. 32(10): p. 935-940.
    [47] Ochi Y, Kanai K, Design of restructurable flight control systems using feedback linearization. Journal of Guidance, 1991. 14(5): p. 903-911.
    [48] Huang C Y, Stengel R F, Restructurable control using Proportional-Integral implicit model following. Journal of Guidance, 1990. 13(2): p. 303-309.
    [49] Morse W D, O ssmanK A, Model following reconfigurable flight control system for the AFTI/F-16. Journal of Guidance, 1990. 13(6): p. 969-976.
    [50] Y M Zhang, J Jiang, Fault tolerant control system design with explicit consideration of performance degradation. IEEE Transactions on Aerospace and Electronic systems, 2003. 39(3): p. 838-848.
    [51] Gao Z , Antsaklis P J, Stability of the pseudo-inverse method for reconfigurable control systems. International Journal of Control, 1991. 53(3): p. 717-729.
    [52] Jiang Bin, Wang Jian Liang, Actuator fault diagnosis for a class of bilinear systems with uncertainty. Journal of the Franklin Institute, 2002. 339(3): p. 361-374.
    [53] Jiang Bin, Wang Jian Liang, Soh Yeng Chai, An adaptive technique for robustdiagnosis of faults with independent effects on system outputs. International Journal of Control, 2002. 75(11): p. 792-802.
    [54] Jiang Bin, Staroswiecki Marcel, Cocquempot Vincent. Fault identification for a class of time-delay systems. in Proceedings of the American Control Conference. 2002. Anchorage, AK, p2239-2244.
    [55] Jiang Bin, Chowdhury Fahmida N, Parameter fault detection and estimation of a class of nonlinear systems using observers. Journal of the Franklin Institute, 2005. 342(7): p. 725-736.
    [56] Ahmed Zaid F, Ioannou P, GousmanK ,GousmanK ,et al., Accommodation of failures in the F-16 aircraft using adaptive control. IEEE Control Systems, 1991. 11(1): p. 73-78.
    [57] Groszkiewicz J E, Bodson M. Flight control reconfiguration using adaptive methods. in Proceedings of the 34th Conference on Decision and Control. 1995.
    [58] Bodson M, Groszkiewiez J E, Multivariable adaptive algorithms for reconfigurable flight control. IEEE transactions on Control Systems Technology, 1997. 5(2): p. 217-229.
    [59] Ikeda K, Shin S, Fault tolerance of autonomous decentralized adaptive control systems. International Journal of Systems Science, 1998. 29(7): p. 773-782.
    [60] Bogkovic J D, etal., A multiple model-based reconfigurable flight control system design. in Proceedings of the 37th IEEE Conference on Decision and Control. 1998. Florida, USA.
    [61] Boskovic J D , Li S , Mehta R K., A decentralized fault-tolerant scheme for flight control applications. in Proceedings of the 2000 American Control Conference. 2000. Chicago, USA.
    [62] Tao G, Joshi S M Adaptive state feedback control of systems with actuator f ailures. in Proceedings of the 2000 American Control Conference. 2000. Chicago:Illinois.
    [63] Gopinathan M, Bogkovic J D, Mehta R K, et al. A multiple model predictive scheme for fault-tolerant flight control design. in Proceedings of the 37th IEEE Conference on Decision and Control. 1998. Florida: IEEE Service Center.
    [64] Katebi M R, Grimble M J, Integrated control, guidance and diagnosis for reconfigurable autonomous underwater vehicle control. International Journal of Systems Science, 1999. 30(9): p. 1021-1032.
    [65] Huzmezan M , M aciejowski J M, Reconfigurable flight control during actuator failures using predictive control. in Proceedings of 14th World Congress of IFAC. 1999. Beijing: Publishing House of Pergamon.
    [66] Saluds S, Fuente M J, Neural-networks-based fault detection and accommodation in a chemical reactor. in Proceedings of 14th World Congress of IFAC. 1999. Beijing: Publishing House of Pergamon.
    [67] Katebi M.R. Guidance controller design for autonomous underwater vehicles. in Proceedings of 14th World Congress of IFAC. 1999. Beijing: Publishing House of Pergamon.
    [68] Gopinathan M , Mehra R K, Runkle J C, Hot isostatic pressing furnaces-their modeling and predictive fault-tolerant control. IEEE Control Systems Magazine, 2000. 20(6): p. 67 -82.
    [69] Jiang J., Design of reconfigurable control systems using eigenstructure assignments. International Journal of Control, 1994. 59(2): p. 395-410.
    [70] Zhang Y, Jiang J., Design of Proportional-Integral reconfigurable control systems via eigenstructure assignment. in in Proceedings of the 2000 American Control Conference. 2000.
    [71] Zhou K M, A new controller architecture for high performance, robust, and fault tolerant control[in in The 39th IEEE Conference on Decision and Control. 2000. Sydney: IEEE Service Center.
    [72]白雷石,田作华,施颂椒,翁正新,基于GH_2/H_∞控制的时滞系统控制/诊断器集成设计.上海交通大学学报, 2006. 40(5): p. 37-41.
    [73] Chiang C Y, Youssef H M, Neural network and fuzzy logic approach to aircraft reconfigurable control design. in in Proceedings of the 1995 American Control Conference. 1995. Washington.
    [74] Noriega J R, Wang H, A direct adaptive neural-network control for unknown nonlinear systems and its application. IEEE transactions on neural networks, 1998. 9(1): p. 27-34.
    [75] Wang H, Wang Y, Neural-network-based fault-tolerant control of unknown nonlinear systems. IEE Proceedings on Control Theory and Application, 1999. 146(5): p. 389-398.
    [76] Mort N, Derradji D A, Control reconfigurabtion in submersible vehicles using artificial neural networks. International Journal of Systems Science, 1999. 30(9): p. 989-1010.
    [77] Zhou C, Hu.W, Cheng Q, Nonlinear reconfigurable control based on RBF neural networks. in Proceedings of the 3rd World Congress on Intelligent Control and Automation. 2000. Hefei: IEEE Service Center.
    [78] Yu D L , Yu D W, Controlling a MIMO process with actuator and component faults. in The proceedings of the 6th IFAC symposiumon Dynamics and Control of Process System. 2001. Korea,pp514-519.
    [79] Yu Ding-Li, Chang Thoonkhin, Wang Jin, Fault tolerant control of nonlinear processes with adaptive diagonal recurrent neural network model. in Second International Symposium on Neural Networks. 2005.
    [80] C J Lopez, Toribio Takagi Sugeno, Takagi-Sugeno fuzzy fault-tolerant control for a non-linear system. in Proceedings of the 38th Conference on Decision and Control. 1999. Phonexi, Arizona USA,pp4368-4373.
    [81] Jia Li, Jinshou Yu, An Intelligent Control System Based on Recurrent Neural Fuzzy Network and its Application to CSTR. Journal of Systems Science and Complexity, 2005. 18(1): p. 43-54.
    [82] LatifShabgahi G, Hirst A J, A fuzzy voting scheme for hardware and software fault tolerant systems. Fuzzy Sets and Systems, 2005. 150(3): p. 579-598.
    [83] Richard J. P., Time-delay systems: an overview of some recent advances and open problems. Automatica, 2003. 39(10): p. 1167-1194.
    [84] Hsieh C. S., Reliable control design using a two-stage linear quadratic reliable control. IEE Proceedings on Control Theory and Application, 2003. 150(1): p. 77-82.
    [85] Yang G H, Wang J L, Soh Y C, Reliable H infinity controller design for linear systems. Automatica, 2001. 37(5): p. 717-725.
    [86] Xu Shengyuan, Lam James, Yang Chengwu, Verriest Erik I An LMI approach to guaranteed cost control for uncertain linear neutral delay systems. International Journal of Robust Nonlinear Control, 2003. 13(1): p. 35-53.
    [87] Watanabe K, Nobuyama E, Kojima A, Recent advances in control of time delay systems-A tutorial review. in Proceedings of the 35th IEEE Conference on Decision and Control. 1996. Kobe, Jpn,pp2083-2088.
    [88] Su N J, Su H Y, Chu J, Delay-dependent robust H infinity control for uncertain time-delay systems. IEE Proceedings: Control Theory and Applications, 2003. 150(5): p. 489-492.
    [89] Y He, M Wu, J H She, Delay-dependent stability criteria for linear systems with multiple time delays. IEE Proceedings on Control Theory and Application, 2006. 153(4): p. 447-452.
    [90] Parlakci, M N Alpaslan, Robust stability of uncertain time-varying state-delayed systems. IEE Proceedings on Control Theory and Application, 2006. 153(4): p. 469-477.
    [91] Y S Lee, Y S Moon, W H Kwon et al., Dely-dependent robust H infinity control for uncertain systems with a state-delay. Automatica, 2004. 40(1): p. 65-72.
    [92]俞立,鲁棒控制-线性矩阵不等式处理方法. 2002,北京:清华大学出版社,p8.
    [93] C J Seo, B K Kim, Robust and reliable H infinity control for linear systems with parameter uncertain and actuator failure. Automatica, 1996. 32(3): p. 465-467.
    [94] Frangos C., Linear optimal control for an aircraft model. Optimal Control Applications and Methods, 1993. 14(4): p. 281-287.
    [95] Bonfe Marcello, Geri Walter, Simani Silvio, Design and performance evaluation of residual generators for the FDI of an aircraft. International Journal of Automation and Computing, 2007. 4(2): p. 156-163.
    [96] Liang Bing, Duan Guangren, Robust H infinity fault-tolerant control for uncertain descriptor systems by dynamical compensators. Systems Engineering and Electronics, 2005. 27(12): p. 2075-2078.
    [97] Shao Ke yong, Zhou Luan jie, Zhang Hui zhen et al., Design of robust fault-tolerant H infinity control for linear uncertain systems. Systems Engineering and Electronics, 2005. 27(6): p. 1077-1079.
    [98]姜偕富,费树岷,冯纯伯,时滞线性系统控制.控制与决策, 1999. 14(6): p. 712-715.
    [99] Jie Chen, Patton R.J., Robust Model-based Fault Diagnosis for Dynamic Systems. 1999, Boston Kluwer Academic Publishers.
    [100] Venkat Venkatasubramanian, Raghunathan R, Kewen Yin, et al., A review of process fault detection and diagnosis Part I: Quantitative model-based methods. Computers and Chemical Engineering, 2003. 27(3): p. 293-311.
    [101] Youmin Zhang, Jin Jiang. Issues on integration of falt diagnosis and reconfigurable control in active fault-tolerant control systems. in in Proc. of IFAC Symp. on safeprocess'06. 2006. Beijing, China,1513-1523.
    [102] Kemin Zhou, Ren Zhang, A new controller architecture of high performance, robust, and fault-tolerant control. IEEE Transactions on Automatic control, 2001. 46(10): p. 1613-1618.
    [103]白雷石,何黎明,田作华,施颂椒,时滞依赖不确定状态时滞系统鲁棒故障诊断.上海交通大学学报, 2006. 40(11): p. 1924-1928.
    [104] Hong J. L., H-infinity control for multiple state-delayed systems: a coprime factorization approach. Journal of the Chinese Institute of Engineers, 2006. 29(2): p. 201-210.
    [105] Kemin Zhou, Doyle J C, Robust and optimal control. 1996, NJ, USA: Prentice-Hall.
    [106] Huang, Y.P., Robust control of uncertain time-delay systems. 2001, National Chung-Kung University: Taiwan.
    [107] Leishi Bai, Zuohua Tian, Songjiao Shi, Robust fault detection for a class of nonlinear time-delay systems. Journal of the Franklin Institute, 2007. 334(6): p. 873-888.
    [108] Janos G., All linear methods are equal-and extendible to (some) nonlinearities. International Journal of Robust Nonlinear Control, 2002. 12(8): p. 629-648.
    [109] X Ding, M Y Zhong, B Y Tang, H B Wang, An LMI approach to the design of fault detection filter fortime-delay LTI systems with unknown inputs. in Proceedings of the American Control Conference. 2001. Arlington,pp2137-2142.
    [110] M Y Zhong, S X Ding, J Lam, H B Wang, An LMI approach to design robust fault detection filter for uncertain LTI systems. Automatica 2003. 39(3): p. 543-550
    [111] Izadi I, Q Zhao, T W Chen, Analysis of performance criteria in sampled-data fault detection. Systems and Control Letters, 2007. 56(4): p. 320-325.
    [112] Guo L., H infinity output feedback control for delay systems with nonlinear and parametric uncertainties. IEE Proceedings on Control Theory and Application, 2002. 149(3): p. 226-236.
    [113] Yu Li, Chu Jian, An LMI approach to guaranteed cost control of linear uncertain time-delay systems. Automatica, 1999. 35(6): p. 1155-1159.
    [114] Yi Xiong, M Saif, Robust and Nonlinear Fault Diagnosis Using Sliding Mode Observers. in Proceedings of the IEEE Conference on Decision and Control. 2001. Orlando, Florida, USA, pp567-572.
    [115] Chee Pin Tan, C Edwards, Multiplicative fault reconstruction using sliding mode observers. in 5th Asian Control Conference. 2004. Melbourne, Australia,957-962.
    [116] Christopher Edwards, Chee Pin Tan, Fault tolerant control using sliding mode observers. in IEEE Conference on Decision and Control. 2004. Atlantis, Paradise Island, Bahamas,5254-5259.
    [117] Tae Kyeong Yeu, Kawaji Shigeyasu, Sliding Mode Observer Based Fault Detection and Isolation in Descriptor Systems. in 2002 American Control COnference. 2002. Anchorage, AK,4543-4548.
    [118] Wang Junzheng, Zhao Jiangbo, Ma Liling, A Robust Fault Detection and Isolation Method via Sliding Mode Observer. in Proceedings of the 5" World Congress on Intelligent Control and Automation. 2004. Hangzhou, P.R. China,1727-1730.
    [119] Xinggang Yan, C Edwards, Robust sliding mode observer-based actuator fault detection and isolation for a class of nonlinear systems. in in 44th IEEE Conference on Decision and Control. 2005. Seville, Spain,987-992.
    [120] Koshkouei A Jafari, Zinober A S I, Sliding mode time-delay systems. in Proceedings of the 1996 IEEE International Workshop on Variable Structure Systems, VSS'96. 1996. Tokyo,Japan,97-101.
    [121] Niu Y, Lam J, Wang X, Ho D W C, Sliding mode control for nonlinear state-delayed systems using neural network approximation. IEE Proceedings: Control Theory and Applications, 2003. 150(3): p. 233-239.
    [122] Li X, DeCarlo R A, Memoryless sliding mode control of uncertain time-delay systems. in Proceedings of the 2001 American Control Conference. 2001. Arlington, VA,4344-4350.
    [123] Hu K J, Basker V R, Crisalle O D,. Sliding mode control of uncertain input-delay systems. in Proceedings of the 1998 American Control Conference. 1998. Philadelphia, Pennsylvania,564-568.
    [124] Gouaisbaut Frederic, Dambrine Michel, Richard J P, Robust control of delay systems: a sliding mode control design via LMI. Systems and Control Letters, 2002. 46(4): p. 219-230.
    [125] Xia Yuanqing, Jia Yingmin, Robust Sliding-Mode Control for Uncertain Time-Delay Systems: An LMI Approach. IEEE transactions on Automatic Control, 2003. 48(6): p. 1086-1092.
    [126] Niu Y, Lam J, Wang X, Ho D W C, Observer-based sliding mode control for nonlinear state-delayed systems. International Journal of Systems Science, 2004. 35(2): p. 139-150.
    [127] Mahmoud Magdi S, Al-Muthairi Naser F, Quadratic stabilization of continuous time systems with state-delay and norm-bounded time-delay uncertainties. IEEE transactions on Automatic Control, 1994. 39(10): p. 2135-2139.
    [128] E Kreindle, A Jameson, Conditions for nonnegatives of portioned matrices. IEEE Transactions on Automatic Control, 1972. AC-17(1): p. 147-148.
    [129] Petersen I. R., A stabilization algorithm for a class of uncertain linear systems. Systems and Control Letters, 1987. 8(4): p. 351-357.
    [130] Y M Zhang, J Jinag, Active fault-tolerant control system against partial actuator failures. IEE Proceedings on Control Theory and Application, 2002. 149(1): p. 95-104.
    [131] G Y Liu, Y C Li, Active Fault Tolerant Control with Actuation Reconfiguration. IEEE Transactions on Aerospace and Electronic Systems, 2004. 40(3): p. 1110-1117.
    [132] Scherer C W, LPV control and full block multipliers. Automatica, 2001. 37(3): p. 361-375.
    [133] Sato M, Filter design for LPV systems using quadratically parameter-dependent Lyapunov functions. Automatica, 2006. 42(11): p. 2017-2023.
    [134] Mahmoud M S, New results on linear parameter-varying time-delay systems. Journal of the Franklin Institute, 2004. 341(7): p. 675-703.
    [135] Yingwei Zhang, S. Joe Qin. Adaptive actuator fault compensation for linear systems with matching and unmatching uncertainties,Journal of Process Control,2009,19(6) p 985-990.
    [136] Sauter, Dominique Jamouli, Hicham; Keller, Jean-Yveset.al. Actuator fault compensation for a winding machine ,Control Engineering Practice, 2005, 13(10) , p 1307-1314.
    [137] Fen Wu, Karolos M Grigoriadis, LPV systems with parameter-varying time delays: analysis and control. Automatica, 2001. 37(2): p. 221-229.
    [138] L Wu, P Shi, C Wang etal., Delay-dependent robust H infinity and L2-L infinity filtering for LPV systems with both discrete and distributed delays. IEE Proceedings on Control Theory and Application, 2006 153 (4): p. 483-492.
    [139]王俊玲,时滞线性参数变化系统的稳定性分析与增益调度控制. 2008,北京:科学出版社.
    [140] P Gahinet, P Apkarian, A linear matrix inequality approach to H infinity control. International Journal of Robust and Nonlinear Control, 1994. 9(8): p. 421-448.
    [141] Patton R. J., Fault tolerant control: the 1997 situation. In Proceedings of IFAC/IMACs Symposium of Fault Detection and Safety for Technical Process. 1997. Hull, England, p1033-1055.
    [142] Staroswiecki M., Progressive accommodation of actuator faults in the linear quadratic control problem. in In Proceedings of the 44th IEEE conference on decision and control 2004. Paradise Island, The Bahamas,5234-5241.
    [143] Blanke M, Kinnaert M Lunze J, et al., Diagnosis and Fault-Tolerant Control. 2006, New York: Springer Berlin Heidelberg.
    [144] Staroswiecki Marcel, Yang Hao, Jiang Bin, Progressive accommodation of parametric faults in linear quadratic control. Automatica 2007. 43(12): p. 2070-2076.
    [145] Kleinman D.L., On an iterative technique for Riccati equation computation. IEEE Transactions on Automatic Control, 1968. AC-13: p. 114-115.
    [146] Srichander R, Walker B K, Stochastic stability analysis for continuous-time fault tolerant controlsy systems. International Journal of Control, 1993. 57(2): p. 433-452.
    [147] Mahmoud M, Jiang J., Zhang Y., Stochastic stability of fault tolerant control systems with model uncertainties. in Proceedings of the 2000 American Control Conference. 2000. Chicago:Illinois,pp 4284-4288.
    [148] Mahmoud M, J Jiang, Zhang Y. Optimal control law for fault tolerant control systems. in The 39th IEEE Conferenceon Decision and Control. 2000. Sydney,pp4126-4131.
    [149] Mahmoud M, J Jinag, Zhang Y. Stochastic stability of fault tolerant control systems in the presence of noise. in in Proceedings of the 2000 American Control Conference. 2000. Chicago:Illinois,pp4294-4298.
    [150]刘骏跃,周亦鹏,邓辉,容错控制系统的可靠性研究.数学的实践与认识, 2003. 33(11): p. 22-26.
    [151] Xie L. Output feedback H∞control of systems with parameter uncertainty. International Journal of Control, 1996, 63(3): p. 741-750.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700