用海洋细菌Pseudoalteromonas tetrodonis QZ-4发酵生产褐藻胶裂解酶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
褐藻胶裂解酶在褐藻胶的生物降解、海藻原生质体制备以及治疗纤维化囊肿等方面有着重要的用途,特别在降解褐藻胶制备多种活性产物方面有着广阔的前景和实际生产意义。本研究分离到了一株新型产褐藻胶裂解酶的海洋细菌P. terodonis. QZ-4;在对其产酶培养基和培养条件进行优化的基础上,建立了分批发酵动力学模型;并探讨了以褐藻胶为底物发酵所得的褐藻胶裂解酶的纯化、酶学性质和酶促反应动力学;建立用粗酶液降解褐藻胶的方法;此外,还初步探讨了褐藻胶酶解糖液对玉米等萌发的影响。主要研究结论如下:
     1.在浙江舟山、山东青岛、西班牙等沿海地区采集样品,共采集海水、海藻、泥沙等样品58份,通过平板粗筛得到大量细菌、放线菌、酵母和霉菌,其中具有酶活性的细菌计483株、霉菌计1株;对这484株菌进行平板扩散筛选,结合摇瓶初筛和复筛手段,得到一株生长和产酶(70U/mL)较稳定的海洋细菌。该菌在2.5%NaCl浓度的分离筛选平板上,28℃培养1d,菌落为白色,圆形(Φ1mm),表面湿润光滑,不产色素,革兰氏染色阴性,菌体形态呈短杆状(0.2-0.4μmm×0.7-1μm),单端带鞭毛。通过16S rDNA鉴定,序列G+C含量为52.2%,BLAST程序比对,该菌株与Pseudoalteromonas tetrodonis相似性为97%,命名为Pseudoalteromonas terodonis QZ-4。
     27采用部分因子实验方法和响应面法对P. terodonis QZ-4发酵生产褐藻胶裂解酶的培养基条件进行优化。首先明确了磷酸氢二铵、氯化钠和硫酸亚铁是影响褐藻胶裂解酶活性的主要因素,进而用最陡爬坡路径逼近最大响应区域,并采用中心组合设计及响应面分析确定了主要影响因子的最佳浓度,最终获得的优化培养基组成为(g/L):褐藻酸钠5、磷酸氢二铵11.6、氯化钠32.9、硫酸亚铁0.08、硫酸镁0.3和磷酸氢二钾0.4。通过以上优化后的培养基培养的p.terodonis QZ-4,其褐藻胶裂解酶活力可达到148.24U/mL,与优化前相比,酶活提高了111.8%。
     3.研究了不同的表面活性剂对菌体生长和产酶的作用,结果表明Tween 80对P. terodonisQZ-4产酶的诱导效果最好,在0.01-0.16%浓度范围内均能促进酶的产生,而Triton x-100、SDS对生长和产酶均有不同程度的抑制作用。
     4.采用部分因子实验方法和响应面法对P. terodonis QZ-4发酵生产褐藻胶裂解酶的发酵条件进行优化,结果表明装液量等发酵条件对褐藻胶裂解酶活性有显著的影响;优化后的最佳发酵条件为:发酵温度25℃、转速160rpm、装液量为25mL、发酵时间为15h。理论最大产酶活力为229.40U/mL,实际发酵得到最大产酶活力为256.7U/mL,与优化前相比,酶活提高了73.2%,与起始酶活相比,提高了266.7%。
     5.在10L发酵罐中研究了以褐藻胶为底物发酵产褐藻胶裂解酶的动力学,并建立了褐藻胶裂解酶的生成动力学模型,底物消耗动力学模型为和菌体生长动力学模型。
     6.对褐藻胶裂解酶在PEG/(NH4)2SO4体系中的分配行为进行研究。发现在相同PEG浓度和硫酸铵浓度条件下,分子量范围在2000-6000的PEG,随着分子量的减小,体系的相比逐渐增大,但对酶和总蛋白在双水相体系的分配行为并无显著的影响;随着体系中酶液添加量的增加,分配系数均有所下降。当体系中PEG2000浓度从10%提高到25%时,相比增大,褐藻胶裂解酶的分配系数和萃取率分别从1.75和30.43%增加到10.97和88.76%。当体系中硫酸铵浓度从15%提高到30%时,相比减小,酶的分配系数和萃取率分别从从0.29和11.54%增加到5.14和70.72%。随着体系pH的增加,相比减小,酶的分配系数和回收率略有提高。
     7.对纯化后褐藻胶裂解酶的理化性质及反应动力学进行了研究,结果表明:该酶具有同时降解M段和G段的能力,分子量为27 kDa,由L-B作图法求得最大反应速度Vmax=0.541U/mL,米氏常数Km=0.051mg/mL。最适作用pH值和温度分别为7.5和40℃,最适缓冲液为0.05mM Tris-HCl缓冲液,在偏酸或偏碱,以及40℃以上保存则活力快速下降;该酶为金属酶,1.0mol/L EDTA可完全抑制其活性,Mg2+、Na+、Fe3+、Mn2+均对酶活有促进作用,其中以Mg2+的促进作用最为显著,提高50%;Zn2+、Al3+、Fe2+、Cu2+均对酶的活力有抑制作用。
     8.使用双水相萃取法制备的粗酶液,在35℃、100rpm恒温水浴条件下降解2%褐藻胶溶液,降解反应15~20h,沸水浴终止反应,通过离心和超滤两步分离,得到浓度为1.5~1.6%的酶解糖液。用GPC法分析糖液的分子量分布,以低分子量葡聚糖为标准品,推测制得的酶解寡糖混合液中各组分的聚合度在2~9之间。其中2-6聚合度的寡糖为主要成分,占总量的95.2%;酶解终产物为二糖和三塘,在酶解糖液中的含量分别为32.96%和31.45%。
     9.制得的酶解糖液经稀释后,可以作为促种子萌发剂,分别采用种子萌发前浸种和种子萌发后喷洒的方式处理玉米和小麦种子。选用100ppm浓度左右的酶解糖液浸种处理后,玉米和小麦种子的种子生活力均得到提高,小麦的发芽势也得到提高,小麦发芽后的芽长和根数没有明显变化,但是根长有一定增加,根尖活力提高。若选用直接对芽和根喷洒酶解糖液的方式,适用浓度应大幅调低,可选择10ppm浓度左右的酶解糖液,对芽长和根的增加均有促进作用,并避免喷洒浓度500ppm以上的酶解糖液,否则对根的生长和根系活力均有抑制破坏作用。
Alginate lyases, also known as alginases or alginate depolymerases, catalyze the degradation of alginate byβ-elimination mechanism, forming 4-deoxy-L-erythro-hex-4-enopyranosyluronate at the new non-reducing terminus. The various alginate lyases were reported to be applied in broad fields, including analyzing the fine structure of alginate, preparing protoplasts of seaweed, preparing specific food products, degrading alginate polysaccharide build-up in the lungs of CF sufferers, et al. We reported here a marine bacterium Pseudoalteromonas tetrodonis QZ-4 over-producing alginate lyase. The culture composition and culture conditions were optimized. The processes of fermentation in 10L bioreactor were discussed. Then the purification and characterization of alginate lyase were discussed as well as the processes and mechanism. At last the influence of alginate-derived oligosaccharide was tested on the seed germization of maize and wheat.
     The results were shown as below:
     (1) A marine strain QZ-4 was screened from seawater sample and identified as Pseudoalteromonas tetrodonis based on phylogenetic characteristic (G+C,52.2%). The strain is a Gram-negative rod measuring 0.3μm by 1.0μm with a single polar flagellum, pigment negative. The clone was tiny(Φ1mm),round and white, with moist and smooth surface, when cultured in plate contained 2.5% NaCl medium, at 28℃for 1d.
     (2) The effect of medium composition on alginate lyase production was investigated using surface response methodology. The concentrations of inorganic nitrogen and salts in culture medium, such as di-ammonium hydrogen phosphate, sodium chloride, ferrous sulfate, magnesium sulphate and potassium di-hydrogen phosphate, were changed to obtain the optimal model. The result showed that di-ammonium hydrogen phosphate, sodium chloride and magnesium sulphate had significant effects on alginate lyase production using a two-level fractional factorial design (FFD). The maximum yield of alginate lyase was attained in an optimized medium containing (g·L-1):Alginate sodium 5, (NH4)2HPO4 11.6, NaCl 32.9, FeSO4 0.03, MgSO4 0.08 and K2HPO4 0.4, using the surface response methodology and central composite design (CCD). The model prediction of alginate lyase yield at 145.45 U·ml-1 was experimentally verified.
     (3) The effect of surfactant of the alginate lyase production by strain QZ-4 was studied. The results indicated that concentration at 0.01~0.16%(W/V) of Tween 80 could promote the strain to produce alginate lyase. Triton x-100 and SDS, however, inhibited the production of alginate lyase and the growth of strain QZ-4.
     (4) The effect of culture condition on alginate lyase production was investigated using surface response methodology. Culture conditions as temperature, speed of rotation, loading volumn and fermentation time were studied. The result showed that loading volumn had significant effects on alginate lyase production using a two-level fractional factorial design. The maximum yield of alginate lyase was attained in an optimized culture condition:Temperature 25℃, speed of rotation 160rpm, loading volumn 25mL, time 15h, using the surface response methodology and central composite design (CCD). The model prediction of alginate lyase yield at 256.7 U·ml-1 was experimentally verified.
     (5) During fermentation processes in 10L bioreactor, the model of alginate lyase production, kinetic models of cell growth and product formation were described repectively.
     (6) The feasibility of alginate lyase purification from fermentation supernatant of strain QZ-4 with PEG-ammonium sulfate aqueous two-phase system was studied. PEG molecular weight(2000-6000), supernatant amount, pH, volumn of supernatant and concentration of PEG or ammonium sulfate had different effects on the partition of alginate lyase. A purification factor of 1.39 and 85% yield were reached.
     (7) The alginate lyase was purified using 30-80% saturation ammonium sulphate precipitation, Sephadex G-100 and DEAE-Sepharose FF chromatographic techniques. The purified alginate lyase was detected as a single protein band upon SDS-PAGE, with a moleculr weight of 34.6KD. It showed optimum activity at a temperature of 40℃and a pH 7.5. Also it showed stability below 40℃and pH range 6.5~8.0. The enzyme was promoted by Mg2+、Na+、Fe3+、Mn2+ and inhibited by Zn2+、Al3+、Fe2+、Cu2+ and EDTA.
     (8) The 2% alginate sodium solution was degraded by crude enzyme at 35℃for 15~20h, inactivated in boiling water. A mixture of oligosaccharide was obtained through centrifugation and ultrafiltration. The degree of degradation was analysed by HPGPC,using glucosans as standard. Degree of polymerization of different compositions was estimated as 2 to 6, amount to 95.2% and the end products of enzyme hydrolysis should be disaccharide and trisaccharide, amount to 32.96% and 31.45% respectively.
     (9) The influence of alginate-derived oligosaccharide was tested on germination of maize and wheat seed by different way, soaking seed before germination or spraring after germination. Seed vitality, seed germination energy, shoot length, root length, catalase activity and root vitality were estimated to evaluate effects of oligosaccharide mixture with different concentration. Compared with the control, the seed vitality and germination energy of wheat showed increase at 100ppm soaking treatment. And the root vitality increased also. To treat germinated wheat seed with 10ppm oligosaccharide mixture by sparying, could promote root vitality. However treatment over 500 ppm could inhibite the normal germination of wheat seed.
引文
[1]Gacesa P. Alginate-modifying enzymes. A proposed unified mechanism of action for the lyases and epimerases. FEBS Lett.1987,212(2):199-202
    [2]Min K.H., Sasaki S.F., Kashiwabara Y., et al. Fine structure of SMG alginate fragment in the light of its degradation by alginate lyases of Pseudomonas sp. J. Biochem. (Tokyo).1977,81(3):555-562
    [3]Haug A., Larsen B., Smidsr O. Studies on the Sequence of Uronic Acid Residues in Alginic Acid. Acta Chemical Scandinavica.1967,21691-704
    [4]宋凯.海洋弧菌Vibrio sp. QY101褐藻胶裂解酶的研究:[硕士论文].青岛:中国海洋大学,2004
    [5]Wong T.Y., Preston L.A., Schiller N.L. Alginate lyase:review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications. Annu. Rev. Microbiol. 2000, (54):289-340
    [6]Donnan F.G., Rose R.C. Osmotic pressure, molecular weight and viscosityof sodium alginate. Can. J. Res. Sect. B.1950,(28):105-113
    [7]Skjaak-Braek G., Larsen B. Biosynthesis of alginate. V. A new assay for mannuronan C-5-epimerase activity. Carbohydr. Res.1982,103(1):133-136
    [8]Sabra W., Zeng A.P., Deckwer W.D. Bacterial alginate:physiology, product quality and process aspects. Appl Microbiol Biotechnol.2001,56(3/4):315-325
    [9]继明侯.海藻化学.北京:科学出版社,1997,208-340
    [10]Ogawa H., Kajimoto N., Hiura N., et al. Effects of sodium alginate oligosaccharide on serum lipids, serum minerals, and urinary minerals in rats. Nippon Eiyo, Shokuryo Gakkaishi.2001,54(5):297-303
    [11]董晓莉,耿美玉,管华诗,et al.褐藻酸性寡糖对帕金森病大鼠纹状体、杏仁核多巴胺释放的影响.中国海洋药物.2003,(05):14-17
    [12]赵铮蓉,任娟,朱旭祥.褐藻多糖的药理作用与制备东海海洋.2004,(3):63-68
    [13]Skoryna S.C., Hong K.C., Tanaka Y. Effects of enzymic degradation products of alginates on intestinal absorption of radiostrontium. Proc. Int. Seaweed Symp.,7th.1972,605-607
    [14]Geng M., Xin X., Sun G., et al. Manufacture of alginic acid oligosaccharide fragment for treating Alzheimer's disease and diabetes mellitus. China,2004-03-24.
    [15]邱琳,辛现良,耿美玉.多糖构效关系研究进展.现代生物医学进展.2009,(09):174-178
    [16]Murata K., Inose T., Hisano T., et al. Bacterial alginate lyase:enzymology, genetics and application. J. Ferment. Bioeng.1993,76(5):427-437
    [17]韩文君.褐藻胶生物转化的分子生物学基础研究:[硕士论文].青岛:中国海洋大学,2003
    [18]窦勇.褐藻胶寡糖生物活性的研究进展.广西轻工业.2009,(10):17-18
    [19]陈丽,张林维,薛婉立.褐藻寡糖的制备及抑菌性研究.中国饲料.2007,(09):37-38,45
    [20]张真庆,江晓路,等.寡糖的生物活性及海洋性寡糖的潜在应用价值.中国海洋药物.2003,93(3):51-56
    [21]Hiura N., Takeda T., Sato R. Manufacture and purification of oligomeric alginic acid from sodium alginate with alginate lyase. JP,1990-10-31.
    [22]Yonemoto Y., Akiyama H., Komatsu I., et al. Degradation of alginic acid with Flavobacterium. JP, 1991-07-05.
    [23]Ou C.R., Xue C.H., Tang H.Q., et al. Preparation of oligosaccharides from alginate by fermenting combined with membrane separation method and analysis of the oligomers. Wei Sheng Wu Xue Bao. 2005,45(2):309-311
    [24]Takeuchi T., Takahashi E., Murata K., et al. Manufacture of degradation products of alginic acid, its salts, or its derivatives with alginate lyase. JP,1990-11-01.
    [25]郭文斌,王淑芳,曹名锋,et al.门多萨假单胞菌Pseudomonas mendocina NK-01合成褐藻寡糖及其结构鉴定.生物工程学报.2009,(09):94-98
    [26]Ou C., Xue C.,Tang H., et al. Preparation of oligosaccharides from alginate by fermenting combined with membrane separation method and analysis of the oligomers. Weishengwu Xuebao.2005,45(2): 309-311
    [27]Iwasaki K., Matsubara Y. Purification of alginate oligosaccharides with root growth-promoting activity toward lettuce. Biosci Biotechnol Biochem.2000,64(5):1067-1070
    [28]Xu X., Yu G.L., Liu B., et al. Structure characterization of unsaturated triguluronate and trimannuronate. Zhongguo Haiyang Daxue Xuebao, Ziran Kexueban.2004,34(2):217-223
    [29]Natsume M., Kamo Y., Hirayama M., et al. Isolation and characterization of alginate-derived oligosaccharides with root growth-promoting activities. Carbohydr. Res.1994,258(1-2):187-197
    [30]Aasen I.M., Folkvord K., Levine D.W. Development of a Process for Large-Scale Chromatographic Purification of an Alginate Lyase from Klebsiella pneumoniae. Appl. Microbiol. Biotechnol.1992,37(1): 55-60
    [31]Morris E.R., Rees D.A., Robinson G., et al. Competitive inhibition of interchain interactions in polysaccharide systems. J. Mol. Biol.1980, (138):363-374
    [32]Yonemoto Y., Tanaka H., Yamashita T., et al. Promotion of germination and shoot elongation of some plants by alginate oligomers prepared with bacterial alginate lyase. J. Ferment. Bioeng.1993,75(1): 68-70
    [33]Matsubara Y., Kawada R., Iwasaki K., et al. Extracellular poly(alpha-L-guluronate)lyase from Corynebacterium sp.:purification, characteristics, and conformational properties. J Protein Chem.1998, 17(1):29-36
    [34]Fujihara M., Nagumo T. The effect of the content of D-mannuronic acid and L-guluronic acid blocks in alginates on antitumor activity. Carbohydr. Res.1992, (224):343-347
    [35]Hisano T., Nishimura M., Yonemoto Y., et al. Bacterial alginate lyase highly active on acetylated alginates. J. Ferment. Bioeng.1993,75(5):332-335
    [36]Kennedy L., McDowell K., Sutherland J.W. Alginases from Azotobacter species. J. Gen. Microbiol. 1992,138(11):2465-2471
    [37]Linker A., Evans L.R. Isolation and characterization of an alginase from mucoid strains of Pseudomonas aeruginosa. J Bacteriol.1984,159(3):958-964
    [38]Vreeland V., Laetsch W. Agelling carbohydrate in algal cell wall formation In Organization and Assembly of Plant and Animal Extracellular Matrix. WS Adair, RP Mecham. San Diego, CA:Academic. 1990,137-171
    [39]Shiraiwa Y., Abe K., Sasaki S.F., et al. Alginate lyase activities in the extracts from several brown algae. Bot. Mar.1975,18(2):97-104
    [40]Watanabe T., Nisizawa K. Enzymic studies on alginate lyase from Undaria pinnatifida in relation to texture-softening prevention by ash-treatment (haiboshi). Nippon Suisan Gakkaishi.1982,48(2): 243-249
    [41]Watanabe T., Nishizawa K. Investigation of Alginate Lyase Activities in the Fronds of Undaria pinnatifida Treated with Ashes. Bulletin of the Japanese Society of Scientific Fisheries.1982,48(2): 237-241
    [42]胡晓珂.褐藻胶裂合酶工程化研究与应用:[博士论文].青岛:中国海洋大学,2004
    [43]Butler D.M., Oestgaard K., Boyen C., et al. Isolation conditions for high yields of protoplasts from Laminaria saccharina and L. digitata (Phaeophyceae). J. Exp. Bot.1989,40(220):1237-1246
    [44]Nakada H., Sweeny P. Alginic acid degradation by eliminases from abalone hepatopancreas. J. Biol. Chem.1967, (242):845-851
    [45]Elyakova L.A., Favorov V.V. Isolation and certain properties of alginate lyase Ⅵ from the mollusk Littorina species. Biochim. Biophys. Acta, Enzymol.1974,358(2):341-354
    [46]Favorov V.V., Vozhova E.I., Denisenko V.A., et al. A study of the reaction catalyzed by alginate lyase Ⅵ from the sea mollusc, Littorina sp. Biochim. Biophys. Acta, Enzymol.1979,569(2):259-266
    [47]Onishi T., Suzuki M., Kikuchi R. The distribution of polysaccharide hydrolase activity in gastropods and bivalves. Nippon Suisan Gakkaishi.1985,51(2):301-308
    [48]康平,汪秋宽,宋琳琳,et al.皱纹盘鲍内脏酶的酶学性质及褐藻胶裂解酶的分离纯化.水产学报.2007,31(1):15-23
    [49]Sawabe T., Ohtsuka M., Ezura Y. Novel alginate lyases from marine bacterium Alteromonas sp. strain H-4. Carbohydr. Res.1997,304(1):69-76
    [50]Sawabe T., Sawada C., Suzuki E., et al. Intracellular alginate-oligosaccharide degrading enzyme activity that is incapable of degrading intact sodium alginate from a marine bacterium Alteromonas sp. Fish. Sci. 1998,64(2):320-324
    [51]Iwamoto Y., Araki R., Iriyama K.-I., et al. Purification and characterization of bifunctional alginate lyase from Alteromonas sp. strain No.272 and its action on saturated oligomeric substrates. Biosci., Biotechnol., Biochem.2001,65(1):133-142
    [52]Aoyagi H., Akimoto-Tomiyama C., Tanaka H. Preparation of mixed alginate elicitors with high activity for the efficient production of 5'-phosphodiesterase by Catharanthus roseus cells. Biotechnol. Lett.2006, 28(19):1567-1571
    [53]Caswell R.C., Gacesa P., Weightman A.J. Detection of alginate lyases by isoelectric focusing and activity staining. Int. J. Biol. Macromol.1986,8(6):337-341
    [54]Xiao L., Han F., Yang Z., et al. A novel alginate lyase with high activity on acetylated alginate of Pseudomonas aeruginosa FRD1 from Pseudomonas sp. QD03. World J. Microbiol. Biotechnol.2006, 22(1):81-88
    [55]Preston L.A., Wong T.Y., Bender C.L., et al. Characterization of alginate lyase from Pseudomonas syringae pv. syringae. J. Bacteriol.2000,182(21):6268-6271
    [56]Tseng C.H., Yamaguchi K., Nishimura M., et al. Alginate lyase from Vibrio alginolyticus ATCC 17749. Nippon Suisan Gakkaishi.1992,58(11):2063-2067
    [57]Tseng C.H., Yamaguchi K., Kitamikado M. Isolation and some properties of alginate lyase from a marine bacterium Vibrio sp. AL-128. Nippon Suisan Gakkaishi.1992,58(3):533-538
    [58]Fu X.T., Lin H., Kim S.M. Purification and characterization of a Na+/K+ dependent alginate lyase from turban shell gut Vibrio sp. YKW-34. Enzyme Microb. Technol.2007,41(6-7):828-834
    [59]Hu X., Jiang X., Hwang H.-M. Purification and characterization of an alginate lyase from marine Bacterium Vibrio sp. mutant strain 510-64. Curr Microbiol.2006,53(2):135-140
    [60]Song K., Yu W., Han F., et al. Purification and characterization of alginate lyase from marine bacterium Vibrio sp. QY101. Shengwu Huaxue Yu Shengwu Wuli Xuebao.2003,35(5):473-477
    [61]Kitamikado M., Tseng C.H., Aoki T., et al. Isolation of bacteria capable of producing alginate-degrading enzyme from natural environment. Nippon Suisan Gakkaishi.1989,55(4):709-713
    [62]An Q.D., Zhang G.L., Wu H.T., et al. Properties of an alginate-degrading Flavobacterium sp. strain LXA isolated from rotting algae from coastal China. Can J Microbiol.2008,54(4):314-320
    [63]Takeuchi T., Nibu Y., Murata K., et al. Characterization of a novel alginate lyase from Flavobacterium multivorum K-11. Food Sci. Technol. Int., Tokyo.1997,3(4):388-392
    [64]Takeuchi T., Nibu Y., Murata K., et al. Purification and characterization of endo poly (alpha-L-guluronate) lyase in the enzyme system from Flavobacterium multivorum. Food Sci. Technol. Int., Tokyo.1997,3(1):22-26
    [65]Ma L.Y., Chi Z.M., Li J., et al. Overexpression of alginate lyase of Pseudoalteromonas elyakovii in Escherichia coli, purification, and characterization of the recombinant alginate lyase. World J. Microbiol. Biotechnol.2008,24(1):89-96
    [66]Chaki T., Baba T., Hiura N., et al. Purification and characterization of alginate lyase from Pseudoalteromonas sp. strain No.1786. J. Appl. Glycosci.2008,55(2):81-88
    [67]Haraguchi K., Kodama T. Purification and properties of poly(beta-D-mannuronate) lyase from Azotobacter chroococcum. Appl. Microbiol. Biotechnol.1996,44(5):576-581
    [68]Davidson I.W., Lawson C.J., Sutherland I.W. An alginate lyase from Azotobacter vinelandii phage. J. Gen. Microbiol.1977,98(1):223-229
    [69]Yue M., Ding H.-b., Qiao Y. Secreted expression of Azotobacter chroococcum alginate lyase gene (algL) in Pichia pastoris and primary analysis of enzymic properties. Haiyang Xuebao (Zhongwenban).2007, 29(5):154-160
    [70]Ertesvag H., Erlien F., Skjak-Braek G., et al. Biochemical properties and substrate specificities of a recombinantly produced Azotobacter vinelandii alginate lyase. J Bacteriol.1998,180(15):3779-3784
    [71]Pecina A., Pascual A., Paneque A. Cloning and expression of the algL gene, encoding the Azotobacter chroococcum alginate lyase:purification and characterization of the enzyme. J. Bacteriol.1999,181(5): 1409-1414
    [72]Svanem B.I., Skjak-Braek G., Ertesvag H., et al. Cloning and expression of three new Aazotobacter vinelandii genes closely related to a previously described gene family encoding mannuronan C-5-epimerases. J Bacteriol.1999,181(1):68-77
    [73]Svanem B.I., Strand W.I., Ertesvag H., et al. The catalytic activities of the bifunctional Azotobacter vinelandii mannuronan C-5-epimerase and alginate lyase AlgE7 probably originate from the same active site in the enzyme. J Biol Chem.2001,276(34):31542-31550
    [74]Aasen I.M., Folkvord K., Levine D.W. Development of a process for large-scale chromatographic purification of an alginate lyase from Klebsiella pneumoniae. Appl. Microbiol. Biotechnol.1992,37(1): 55-60
    [75]Baron A.J., Wong T.Y., Hicks S.J., et al. Alginate lyase from Klebsiella pneumoniae, subsp. aerogenes: gene cloning, sequence analysis and high-level production in Escherichia coli. Gene.1994,143(1): 61-66
    [76]Nakagawa A., Ozaki T., Chubachi K., et al. An effective method for isolating alginate lyase-producing Bacillus sp. ATB-1015 strain and purification and characterization of the lyase. J. Appl. Microbiol.1998, 84(3):328-335
    [77]Wicker-Bockelmann U., Wingender J., Winkler U.K. Alginate lyase releases cell-bound lipase from mucoid strains of Pseudomonas aeruginosa. Zentralbl Bakteriol Mikrobiol Hyg [A].1987,266(3-4): 379-389
    [78]Hansen J.B., Nakamura L.K. Distribution of alginate lyase activity among strains of Bacillus circulans. Appl. Environ. Microbiol.1985,49(4):1019-1021
    [79]Larsen B., Hooen K., Oestgaard K. Kinetics and specificity of alginate lyases. Hydrobiologia.1993, 260-261557-561
    [80]Matsubara Y., Iwasaki K., Muramatsu T. Action of poly (alpha-L-guluronate)lyase from Corynebacterium sp. ALY-1 strain on saturated oligoguluronates. Biosci Biotechnol Biochem.1998, 62(6):1055-1060
    [81]Shepard M.H., Lackey D.B., Cathers B.E., et al. Methods for identifying therapeutic targets for treating infectious disease. WO,2001-07-20.
    [82]Kim D.E., Lee E.Y., Kim H.S. Cloning and Characterization of Alginate Lyase from a Marine Bacterium Streptomyces sp. ALG-5. Marine Biotechnology (New York, N Y).2008,
    [83]Cao L.X., Xie L.J., Xue X.L., et al. Purification and characterization of alginate lyase from Streptomyces species strain A5 isolated from banana rhizosphere. J. Agric. Food Chem.2007,55(13):5113-5117
    [84]Watanabe T., Nisizawa K. Enzymatic Studies on Alginate Lyase from Undaria Pinnatifida in Relation to Texture-Softening Prevention by Ash-Treatment (Haiboshi). Bulletin of the Japanese Society of Scientific Fisheries.1982,48(2):243-249
    [85]Sawabe T., Ezura Y., Kimura T. Purification and Characterization of an Alginate Lyase from Marine Alteromonas Sp. Nippon Suisan Gakkaishi.1992,58(3):521-527
    [86]Sawabe T., Takahashi H., Ezura Y., et al. Cloning, sequence analysis and expression of Pseudoalteromonas elyakovii IAM 14594 gene (alyPEEC) encoding the extracellular alginate lyase. Carbohydr. Res.2001,335(1):11-21
    [87]Alexeeva Y.V., Ivanova E.P., Bakunina I.Y., et al. Optimization of glycosidases production by Pseudoalteromonas issachenkonii KMM 3549(T). Lett Appl Microbiol.2002,35(4):343-346
    [88]Alekseeva S.A., Bakunina I.Y., Nedashkovskaya O.I., et al. Intracellular alginolytic enzymes of the marine bacterium Pseudoalteromonas citrea KMM 3297. Biochemistry (Moscow, Russ. Fed.).2004, 69(3):262-269
    [89]Boyen C., Bertheau Y., Barbeyron T., et al. Preparation of guluronate lyase from Pseudomonas alginovora for protoplast isolation in Laminaria. Enzyme Microb. Technol.1990,12(11):885-890
    [90]Favorov V.V., Vozhova E.I., Denisenko V.A., et al. A study of the reaction catalysed by alginate lyase VI from the sea mollusc, Littorina sp. Biochim Biophys Acta.1979,569(2):259-266
    [91]Haugen F., Kortner F., Larsen B. Kinetics and specificity of alginate lyases. Part Ⅰ. A case study. Carbohydr. Res.1990,198(1):101-109
    [92]Heyraud A., Colin-Morel P., Gey C., et al. An enzymic method for preparation of homopolymannuronate blocks and strictly alternating sequences of mannuronic and guluronic units. Carbohydr. Res.1998,308(3-4):417-422
    [93]Heyraud A., Colin-Morel P., Girond S., et al. HPLC analysis of saturated or unsaturated oligoguluronates and oligomannuronates. Application to the determination of the action pattern of Haliotis tuberculata alginate lyase. Carbohydr. Res.1996,291115-126
    [94]Yue M., Ding H., Qiao Y. Expression of Pseudomonas aeruginosa alginate lyase gene (algL) in Pichia pastoris and characterization of the enzyme. Zhongguo Nongye Kexue (Beijing, China).2008,41(4): 1192-1198
    [95]Rehm B.H.A. Alginate lyase from Pseudomonas aeruginosa CF1/M1 prefers the hexameric oligomannuronate as substrate. FEMS Microbiol. Lett.1998,165(1):175-180
    [96]Davidson I.W., Lawson C.J., Sutherland I.W. An alginate lysate from Azotobacter vinelandii phage. J Gen Microbiol.1977,98(1):223-229
    [97]Sharp R., Hughes G., Hart A., et al. Bacteriophage for the treatment of bacterial biofilms. WO, 2004-01-12.
    [98]Kurachi M., Nakashima T., Miyajima C., et al. Comparison of the activities of various alginates to induce TNF-alpha secretion in RAW264.7 cells. J. Infect. Chemother.2005,11(4):199-203
    [99]Gomez-Pinchetti J.L., Garcia-Reina G. Enzymes from marine phycophages that degrade cell walls of seaweeds. Mar. Biol. (Berlin).1993,116(4):553-558
    [100]Tatnell P.J., Goldberg J.B., Gacesa P. Expression of the Klebsiella pneumoniae alginate lyase gene in Pseudomonas aeruginosa--effect on alginate structure. Biochem Soc Trans.1996,24(3):407S
    [101]Ostgaard K., Knutsen S.H., Dyrset N., et al. Production and characterization of guluronate lyase from Klebsiella pneumoniae for applications in seaweed biotechnology. Enzyme Microb Technol.1993,15(9): 756-763
    [102]Boyd J., Turvey J.R. Isolation of poly-alpha-L-guluronate lyase from Klebsiella aerogenes. Carbohydr Res.1977,(57):163-171
    [103]Baron A.J., Wong T.Y., Hicks S.J., et al. Alginate Lyase from Klebsiella Pneumoniae, Subsp Aerogenes-Gene Cloning, Sequence-Analysis and High-Level Production in Escherichia-Coli. Gene.1994,143(1): 61-66
    [104]Hisano T., Nishimura M., Yamashita T., et al. A simple method for determination of substrate specificity of alginate lyases. J. Ferment. Bioeng.1994,78(2):182-184
    [105]Yue M., Ding H., Qiao Y. Research advances on alginate lyase and genetic engineering. Shengwu Jishu Tongbao.2006, (6):5-8
    [106]Maki H., Mori A., Fujiyama K., et al. Cloning, Sequence-Analysis and Expression in Escherichia Coli of a Gene Encoding an Alginate Lyase from Pseudomonas Sp Os-Alg-9. J. Gen. Microbiol.1993, 139987-993
    [107]Hicks S.J., Gacesa P. Heterologous expression of full-length and truncated forms of the recombinant guluronate-specific alginate lyase of Klebsiella pneumoniae. Enzyme Microb. Technol.1996,19(1): 68-73
    [108]Ochiai A., Yamasaki M., Mikami B., et al. Crystallization and preliminary x-ray analysis of an exotype alginate lyase Atu3025 from Agrobacterium tumefaciens strain C58, a member of polysaccharide lyase family 15. Acta Crystallogr., Sect. F:Struct. Biol. Cryst. Commun.2006, F62(5):486-488
    [109]Ogura K., Yamasaki M., Mikami B., et al. Substrate recognition by family 7 alginate lyase from Sphingomonas sp. A1. J. Mol. Biol.2008,380(2):373-385
    [110]Rozeboom H.J., Bjerkan T.M., Kalk K.H., et al. Structural and Mutational Characterization of the Catalytic A-module of the Mannuronan C-5-epimerase AlgE4 from Azotobacter vinelandii. J Biol Chem. 2008,283(35):23819-23828
    [111]Suzuki H., Suzuki K., Inoue A., et al. A novel oligoalginate lyase from abalone, Haliotis discus hannai, that releases disaccharide from alginate polymer in an exolytic manner. Carbohydr. Res.2006,341(11): 1809-1819
    [112]Ojima T., Nishida K., Shimizu E. Cloning of cDNA for and use for the production of alginate lyase of abalone. JP,2002-05-07.
    [113]Heyraud A., Gey C., Leonard C., et al. NMR spectroscopy analysis of oligoguluronates and oligomannuronates prepared by acid or enzymatic hydrolysis of homopolymeric blocks of alginic acid. Application to the determination of the substrate specificity of Haliotis tuberculata alginate lyase. Carbohydr Res.1996,(289):11-23
    [114]Nibu Y., Satoh T., Nishi Y., et al. Purification and characterization of extracellular alginate lyase from Enterobacter cloacae M-1. Biosci., Biotechnol., Biochem.1995,59(4):632-637
    [115]Nakagawa A., Suzuki T., Iyobe S. Alginate lyase of Bacillus and its preparation and use for treating infection by Pseudomonas aeruginosa. JP,1995-06-23.
    [116]Kaiser P., Le Borgne L., Hardisson C., et al. Study of an alginate-lyase isolated from cultures of Clostridium alginolyticum. C R Acad Sci Hebd Seances Acad Sci D.1968,267(3):376-379
    [117]Kawamoto H., Horibe A., Miki Y., et al. Cloning and Sequencing Analysis of Alginate Lyase Genes from the Marine Bacterium Vibrio sp.O2. Mar. Biotechnol.2006,8(5):481-490
    [118]Hu X.K., Jiang X.L., Hwang H.M. Purification and characterization of an alginate lyase from marine bacterium Vibrio sp Mutant strain 510-64. Curr. Microbiol.2006,53(2):135-140
    [119]Pang M., Wang C., Han B., et al. Screening of alginase producing strain and optimization of fermentation condition. Zhongguo Haiyang Yaowu.2007,26(3):34-40
    [120]Han F., Gong Q.H., Song K., et al. Cloning, sequence analysis and expression of gene alyVI encoding alginate lyase from marine bacterium Vibrio sp. QY101. DNA Seq.2004,15(5-6):344-350
    [121]Wainwright M. Alginate degradation by the marine fungus dendryphiella salina. Mar. Biol. Lett.1980, 1(6):351-354
    [122]Kashiwabara Y., Suzuki H., Nisizawa K. Alginate lyases of Pseudomonads. J. Biochem. (Tokyo).1969, 66(4):503-512
    [123]Sawabe T., Takahasi H., Saeki H., et al. Enhanced expression of active recombinant alginate lyase AlyPEEC cloned from a marine bacterium Pseudoalteromonas elyakovii in Escherichia coli by calcium compounds. Enzyme Microb. Technol.2007,40(2):285-291
    [124]Takeshita S., Oda T., Muramatsu T. An improved plate method, in the presence of calcium chloride or sulfuric acid, for simultaneous detection of alginate lyases. Agric. Biol. Chem.1991,55(10):2637-2638
    [125]Holtan S., Bruheim P., Skjak-Braek G. Mode of action and subsite studies of the guluronan block-forming mannuronan C-5 epimerases AlgEl and AlgE6. Biochem J.2006,395(2):319-329
    [126]Lyman J., Fleming R.H. Composition of sea water. J Mar Res.1940,3 134-146
    [127]Preiss J. Bacterial alginate lyase. Methods Enzymol.1966,8641-644
    [128]Miller G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem.1959, 31426-428
    [129]Gacesa P., Wusteman F.S. Plate assay for simultaneous detection of alginate lyases and determination of substrate specificity. Appl. Environ. Microbiol.1990,56(7):2265-2267
    [130]席宇,朱大恒,刘红涛,et al.假交替单胞菌及其胞外生物活性物质研究进展.微生物学通报.2005,(3):113-117
    [131]余继叁,洪葵,林海鹏,et al.玫瑰孢链霉菌NRRL11379产达托霉素前体物A21978C的发酵培养基优化安徽农业科学.2008,(19):36-38
    [132]赵丽坤,郭会灿.微生物培养基优化方法概述.石家庄职业技术学院学报.2008,(4):56-58
    [133]Scott M.K., Connie M.B., Douglas C.M. A Modified Path of Steepest Ascent for Split-Plot Experiments. Journal of Quality Technology.2005,37(1):75-83
    [134]Murray R.S. Principles of Experimental Design for the Life Sciences,1996,
    [135]Ahuja S.K., Ferreira G.M., Moreira A.R. Application of Plackett-Burman design and response surface methodology to achieve exponential growth for aggregated shipworm bacterium. Biotechnology Bioengineering.2004,85(6):666-675
    [136]吴伟,崔光华.星点设计-效应面优化法及其在药学中的应用.国外医学.2000,27(5):292-298
    [137]Goes A., Sheppard J. Effect of surfactants on α-amylase production in a solid substrate fermentation process. J Chem Technol Biotechnol.1999,74709-712
    [138]陈启和.弹性蛋白酶发酵工艺及其发酵动力学研究:[博士论文].杭州:浙江大学,2003
    [139]Liu J., Yuan X., Zeng G., et al. Effect of biosurfactant on cellulase and xylanase production by Trichoderma viride in solid substrate fermentation process. Biochemistry.2006,412347-2351
    [140]Liu X.L., Zeng G.M., Tang L., et al. Effects of dirhamnolipid and SDS on enzyme production from Phanerochaete chrysosporium in submerged fermentation. Process Biochemistry.2008,43(11): 1300-1303
    [141]Reddy P.R.M., Reddy P.G., Seenayya G. Enhanced production of thermostable bamylase and pullulanase in the presence of surfactants by Clostridium thermosulfurogenes SV2. Process Biochemistry.1999, (34):87-92
    [142]Fu X.-Y., Li J.-B., Han F., et al. Studies on Vibrio sp. QY102 fermentation processes for alginate lyase production. Zhongguo Haiyang Daxue Xuebao, Ziran Kexueban.2007,37(3):432-436
    [143]张香治.发酵法生产褐藻胶寡糖的工艺研究:[硕士论文].青岛:中国海洋大学,2005
    [144]戚以政,汪叔雄.生化反应动力学与反应器.北京:化学工业出版社,1999,275-300
    [145]臧荣春,夏风毅.微生物动力学模型.北京:化学工业出版社,2003,120-200
    [146]Sakai S., Yamaguchi S., Takei T., et al. Oxidized Alginate-Cross-Linked Alginate/Gelatin Hydrogel Fibers for Fabricating Tubular Constructs with Layered Smooth Muscle Cells and Endothelial Cells in Collagen Gels. Biomacromolecules.2008,9(7):2036-2041
    [147]Oglesby Lashanda L., Jain S., Ohman Dennis E. Membrane topology and roles of Pseudomonas aeruginosa Alg8 and Alg44 in alginate polymerization. Microbiology.2008,154(Pt 6):1605-1615
    [148]Ashton R.S., Banerjee A., Punyani S., et al. Scaffolds based on degradable alginate hydrogels and poly(lactide-co-glycolide) (PLGA) microspheres for stem cell culture. Abstracts of Papers,236th ACS National Meeting, Philadelphia, PA, United States, August 17-21,2008.2008, BIOT-269
    [149]Zhang J., Zhao Y., Liang J., et al. High expression of alginate lyase from Pseudoalteromonas elyakovii IAM 14594 in Escherichia coli and detection of enzyme activities. Shipin Yu Fajiao Gongye.2007, 33(2):5-9
    [150]Yu W., Han F. A novel vibrio sp. and its use in preparing alginate lyase and alginate oligosaccharide. Application:CN.
    [151]钱铭镛.发酵工程最优化设计.南京:江苏科学技术出版社,1998,16-18
    [152]李友荣,马辉文.发酵生理学.长沙:湖南科技出版社,1988,44-70
    [153]黄建新,杨金水,阳卫.Z5-G菌生产聚β-羟基丁酸发酵动力学模型.化学工程学报.2005,33(1):44-47
    [154]杨金水,黄建新.动胶菌发酵生产聚羟基烷酸的动力学模型.化工学报.2006,57(7):1655—1658
    [155]马挺,李京浩,李国强,et al.红球菌DS—3脱硫发酵动力学模型的建立.化工学报.2006,57(6):1418—1421
    [156]Luedeking R., Piret E.L. A kinetic study of the lactic acid fermentation:batch process at controlled pH. Journal of Biochemistry and Microbiology Technology Engineering.1960, (2):393-412
    [157]郑毅,张志国,关雄.苏云金芽抱杆菌蛋白酶发酵动力学模型的构建.生物数学学报.2008,23(4):727-735
    [158]蔡俊鹏,程璐.褐藻胶裂解酶及其裂解产物的研究进展.食品研究与开发.2006,27(11):219-221
    [159]Wang Y.H., Yu G.L., Wang X.M., et al. Purification and characterization of alginate lyase from marine Vibrio sp. YWA. Acta Biochim. Biophys. Sin.2006,38(9):633-638
    [160]Sun L., Xue C., Xu J., et al. Purification and characterization of alginate lyase from Chlorostoma rustica. Zhongguo Shuichan Kexue.2004,11(3):266-271
    [161]AD D., JT H. Aqueous two2phase systems for biomolecule separation[J]. Adv Biochem Eng Biotechnol 1992, (47):89-135
    [162]郅文波,顾铭,宋江楠,et al.PEG-柠檬酸盐双水相体系纯化α2淀粉酶及模型构建.生物加工工程.2004,2(1):47-52
    [163]焦庆才,刘茜,陈耀祖.双水相萃取法从发酵液中分离提取α-淀粉酶和蛋白酶的研究:.高等学校化学学报.1998,19(3):391-394
    [164]李凯,李成付,李加友,et al.双水相体系萃取精氨酸脱亚胺酶.精细化工.2008,937-40
    [165]姜彬,冯志彪,陈一.PEG盐/双水相体系萃取小麦酯酶的研究.食品工业科技.2008,(9):194-197
    [166]黄燕华,贾楠,严岩,et al.双水相萃取法应用于从白萝卜中快速提取过氧化物酶.广东化工.2006,(1):35-36,45
    [167]Lowry O.H., Rosebrough N.J., Farr A.L., et al. Protein measurement with the Folin phenol reagent. J. Biol. Chem.1951, (193):265-275
    [168]郑楠,刘杰.双水相萃取技术分离纯化蛋白质的研究.化学与生物工程.2006,23(10):7-9
    [169]Horng P., Yao H.J., Li Y.K. Enzyme and Microbial Technology,2001,
    [170]周晓云,傅美景.双水相体系提取脂肪酶的研究.浙江大学学报(农业与生命科学版).1997,(2):97-102
    [171]黄淑霞,吴晓莉,尹卓容.PEG/(NH_4)2SO4双水相体系提取和纯化糖化酶.酿酒科技.2003,(2):12-13
    [172]邓静,吴华昌,赵树进.双水相技术在酶分离纯化中的运用.氨基酸和生物资源.2004,26(1):72-75
    [173]Adachi T., Ishii T., Hidaka H. Manufacture of oligomeric alginic acid with lyase. JP,1987-03-03.
    [174]Tomoda Y, Umemura K., Adachi T. Promotion of barley root elongation under hypoxic conditions by alginate lyase-lysate (A.L.L.). Biosci., Biotechnol., Biochem.1994,58(1):202-203
    [175]Umemura K., Tomoda Y., Adachi T. Induction of alcohol dehydrogenase formation by alginate lyase-Iysate in barley roots under hypoxic conditions. Meiji Seika Kenkyu Nenpo.1995,3418-24
    [176]Xu X., Iwamoto Y., Kitamura Y., et al. Root growth-promoting activity of unsaturated oligomeric uronates from alginate on carrot and rice plants. Biosci., Biotechnol., Biochem.2003,67(9):2022-2025
    [177]Doubet R.S., Quatrano R.S. Isolation of marine bacteria capable of producing specific lyases for alginate degradation. Appl. Environ. Microbiol.1982,44(3):754-756

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700