葛根素衍生物4ac纳米粒的制备和体内外评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
葛根为Pueraria lobata(Willd.)Ohwi的根,一种传统的中药,首载于《神农本草经》,长期用于治疗高血压、老年性脑缺血和心绞痛等。在葛根提取物中发现四个主要的黄酮类物质,葛根素、大豆苷、染料木苷、大豆苷原。大量的药理实验结果和临床应用表明,葛根素是其中含量最高,最主要的活性成分。近年来研究结果揭示,葛根素除有能治疗心脑血管疾病外,还具有保护中枢神经作用,可提高动物的学习和记忆,并能够解酒。尽管葛根素有着较为广阔的治疗前景,由于其生物利用度比较低,在大鼠和兔子中仅有5%-6%左右,临床上主要以注射作用应用形式,在制剂中高浓度丙二醇的加入可导致不良反应。口服是一种传统的给药方式,为病人所乐于接受,并能提高病人的生活质量。
     各种各样的方法被用于改善药物的生物利用度,以增加病人的依从性。为此,从一系列的葛根素衍生物中筛选出了4ac,纳米粒是一种粒径在10-1000nm的固体粒子,许多证据已表明,纳米粒可增加药物的口服生物利用度。
     溶解度、油/水分配系数、解离常数等理化性质的测定有助于对化合物的化学和生物的现象的理解,如反应速度、生物活性、吸收和转运。用溶剂蒸发法制备了4ac的纳米粒,以收率、包封率、粒径为指标,通过非线性回归,采用中心复合设计法结合效应面法优选了最佳的处方和工艺。大鼠的生物利用度实验、体外释放实验和Caco-2细胞培养实验用于评价4ac和两种纳米粒的吸收和机制。结果表明,纳米粒能够提高药物的口服生物利用度,增加药物穿过Caco-2细胞渗透量,这可能是由于制备成纳米粒后,分散性的提高、与肠黏膜的相互作用亲和力增加,以及纳米粒对肠上皮细胞强的渗透性。
Pueraria lobata(Willd.) Ohwi., a traditional Chinese medicinal herb, was first described in the Chinese material medica, Shen Nong Ben Cao Jing and has been used for the treatment of hypertension, senile ischemic cerebrovasular disease and angina pectoris for a long time. Four magor isoflavones were identified in the Pueraria lobata extract and quantified-namely, puerarin, daidzin, genistin and daidzein. pharmacology and clinical applications have shown that puerarin is the most major and abundant active ingredients. In years, Researches indicated that apart from treating of cerebrovascular and cardiovascular diseases, puerarin also has neuroprotective effects and can be used for protection of learning and memory and suppression of alcohol drinking. However, in spite of the great therapeutic interest of this drug, due to its low oral bioavailability, 5—6% only in rats and rabbit, puerarin is administered intravenously as its primary form of clinical application. Howerver, propylene glycol of high concentration is added in formulation of puerarin injection, resulting in much a few side effects. Oral form is convenient and thus preferred by the patients ,which can greatly improve the quality of life of the patients.
    Various techniques and methods for enhancement of oral bioavailability are proposed to improve patient compliance. For this reason, 4ac was selected from the series of derivatives of puerarin developed in our laboratory. Its oral bioavailability is markedly increased comparing with puerarin, but which still can not match clinical require. In order to overcome the difficulties as described above, improve the therapeutic efficacy and decrease its side effects, Alternative dosage forms have been suggested including incorporation of the drug into particulate carriers. Polymeric nanoparticles (NP),defined as solid particles with assize in the range of 10-1000nm, allow encapsulation of the drugs inside polymeric matrix. Nanoparticle have been proven to be an efficient approach to achieve better pharmacokinetic profiles and to increase the oral bioavailability. Most evidence suggests that the favoured site for uptake is the PP lympho-epitelial M cell. It was recently reported that particles in the
引文
[1] 牟善初.重视和加强老年心脑血管病的流行病学研究.中华老年心脑血管病杂志.1999,1(1):7
    [2] 潘洁敏,贾伟平.心血管疾病危险因素的研究进展.上海医学.2004,27(5): 367-369
    [3] 国家“九五”科技攻关课题协作组.我国中年人群心血管病主要危险因素流行现状及从80年代初至90年代末的变化趋势.中华心血管病杂志.2001,29(2):74-79
    [4] Berenson GS, Srinivasan S. Cholesterol as a risk factor for early atherosclerosis: the Bogalusa Heart Study. Progress in Pediatric Cardiology. 2003, 17: 113-122
    [5] Sauvant M-P, Pcpin D. Drinking water and cardiovascular disease. Food and Chemical Toxicology. 2002, 40: 1311-1325
    [6] Bello N, Mosca L. Epidemiology of Coronary Heart Disease in Women. Progress in Cardiovascular Diseases.2004, 46(4): 287-295
    [7] Adams KF, MD Jr. New Epidcmiologic Perspectives Concerning Mild-to-Moderate Heart Failure. The American: Journal of Medicine 2001, 110(7A): 6S-13S
    [8] Klein W. Cardiovascular disease at the turn of the millennium: focus on Europe.European Heart Journal Supplements.2000, 3 (Supplement M): M2-M6
    [9] 张彤,徐莲英,陶建生,等.多指标综合评分法优选葛根提取工艺.中草药.2004,35(1):38-40
    [10] 苗维纳,沈映君,曾晓荣,等.葛根素对豚鼠心肌细胞动作电位及有效不应期的影响.中国药理学通报.2001,17(5):565-569.
    [11] 郭晓纲,陈君柱,张雄,等.葛根素对大鼠心肌细胞L型钙离子通道的影响.中国中药杂志.2004,29(3):248-251
    [12] 张秀芹,侯金玲,朱燕,等.葛根素葡萄糖注射液对犬实验性心肌血的影响.中国新药杂志.2001,10(41):272-274
    [13] 刘启功,王琳,陆再英,等.葛根素对心肌梗塞犬冠脉侧枝循环的影响中国中药杂志.1999,24(5):304-306
    [14] 刘启功,王琳,陆再英,等.葛根素抗心肌缺血及其机理的实验研究.临床心血管病杂志.1998,14(5):292-295
    [15] 李岩,高成森,张莉莉.葛根素注射液与硝酸异山梨酯联用治疗冠心病心绞痛85例疗效观察.中华中西医杂志.2004,5(3):244-244
    [16] 郑德志.静脉注射葛根素治疗不稳定性心绞痛的临床疗效观察中国临床医药研究杂志.2003,(101):5-6
    [17] 黄兆铨,叶武,陈申杰,等.葛根素对高血压患者血浆内皮素和一氧化氮的影响.中国现代应用药学.1999,16(3):13-15
    [18] 陈沪生,王培仁,邵建华,等.葛根素的降压效果及其机理的研究.山东医科大学学报.1987,25(3):28
    [19] 冯德辉.葛根素治疗椎.基底动脉供血不足性眩晕疗效观察.中国中医急症.2004,13(5):282-283
    [20] 黄秀兰,王伟.葛根素抗动脉粥样硬化作用研究新进展.山西中医.2004,20(2):51-53
    [21] 董德武,李丽颖,魏宝霞,等.葛根素与雌激素替代疗法对老年高血压动脉粥样硬化患者血管内皮功能影响.中医药学报.2002,30(1):42-43
    [22] 张志荣,游学均,魏振平,等.愈风宁心胶囊在兔体内的药动学和生物利用度研究.中国药学杂志.1997,32(4):224-226
    [23] Cui SM, Zhao CS, Tang X, et al. Study on the bioavailability of puerarin from pueraria lobata isoflavone self-microemulsifying drug-delivery systems and tablets in rabbits by liquid chromatographymass spectrometry. Biomed. Chromatogr. 2005, 19(5): 375-378
    [24] 石昌顺.中药葛根的研究进展.中草药.1994,25(9):496-497,500
    [25] 王惠川,谭志萍,胡斌.葛根素注射液不良反应27例分析.中华现代中西医杂志.2003,1(7):639-640
    [26] Turner N.J., Tech. B.S., Thomson B.M., et al. Bioactive isoflavones in functional foods: the importance of gut microflora on bioavailability. Nutr. Rev., 2003, 61(6): 204-213
    [27] Dai J., Nagal T., Wang X., et al. pH-sensitive nanoparticles for improveing the oral bioavailability of cyclosporine A. Inter. J. Pharma.. 2004, 280(1-2): 229-240
    [28] Jung T., Kamm W., Breitenbach A., et al. Biodegradable nanoparticle for oral delivery of peptides: is there a role for polymers to affect mucosal uptake. Eur. J. Pharm. Biopharm..2000, 50(1): 147-160
    [1] 常新全,丁丽霞主编.中药活性成分分析手册(下册).学苑出版社。2002年第1版,2168
    [2] Vrakas D., Tsantili-Kakoulidou A. and Hadjipavlou-Litina D.. Exploring the consistency of logP estimation for substituted coumarins. OSAR Comb.Sci.2003, 22: 622-629
    [3] Gluck S. J., Cleveland J. A., Jr. Capillary zone electrophoresis for the determination of dissociation constants. Chromatogr. A. 1994, 680 (1): 43-48
    [4] Dodge J.A.. Natural and anthropogenic environmental oestrogens: the scientific basis for risk assessment. Structure/activity relationships. Pure Appl. Chem. 1998, 70(9): 1725-1733
    [5] Qiang Z. and Adams C.. Potentiomctric determination of acid dissociation constants (pKa) for human and veterinary antibiotics. Water Res. 2004, 38 (12): 2874-2890
    [6] Allen R.I., Box K.J., Comer J.E.A., et al. Multiwavelength spectrophotomctric determination of acid dissociation constants of ionizable drugs. J. Pharm. Biomed. Anal. 1998, 17(4-5): 699-712
    [7] Seok Y.J., Yang K.S. and Kang S.O.. A simple spectrophotometric determination of dissociation constants of organic compounds. Anal. Chim. Acta. 1995, 306(2-3): 351-356
    [8] Beltrán J.L, Sanli N., Fonrodona G., et al. Spectrophotometric, potentiometric and chromatographic pKa values of polyphenolic acids in water and acetonirile-water media Anal. Chim. Acta. 2003, 484(2): 253-264
    [9] Ornskov E., Linusson A., Folestad S., et al. Determination of dissociation constants of labile drug compounds by capillary electrophoresis. J. Pharm. Biomed. Anal. 2003, 33 (3): 379-391
    [10] Pérez-Urquiza M.and Beltrán J.L. Determination of the dissociation constants of sulfonated azo dyes by capillary zone electrophoresis and spectrophotometry methods. J. Chromatogr. A 2001, 917 (1-2): 331-336
    [11] Castro G. T., Giordano O.S. and Blanco S.E.. Determination of the pKa of hydroxy-benzophenones in ethanol-water mixtures. Solvent effects. J.Mol. Stru.: Theochem. 2003, 626(1-3): 167-178
    [12] Tam K.Y. and Takács-Nová k K. Multi-wavelength spectrophotometric determination of acid dissociation constants: a validation study. Anal. Chim. Acta. 2001, 434 (1): 157-167
    [13] Kara D. and Alkan M.. Determination of acidity constants of acid-base indicators by second-derivative spectrophotometry. Spectrochim Acta Part A 2000, 56 (14): 2753-2761
    [14] Tam K. Y., Hadley M. and Patterson W.. Multiwavelength spectrophotometric determination of acid dissociation constants: Part Ⅳ. Water-insoluble pyridine derivatives. Talanta 1999, 49 (3): 539-546
    [15] Adamczyk M., Chen Y.-Y., Mattingly P.G., et al. Modulation of the chemilumine-scent signal from N10-(3-sulfopropyl)-N-sulfonylacridinium-9-carboxamides. Tetrahedron.1999, 55 (36): 10899-10914
    [16] Takács-Novák K. and Tam K. Y., Multiwavelength spectrophotometric determination of acid dissociation constants: Part Ⅴ: microconstants and tautomeric ratios of diprotic amphoteric drugs. J. Pharm. Biomed. Anal.. 2000, 21 (6): 1171-1182
    [17] Foretic'B. and Burger. N.. The dissociation constants of 1, 1' Bis (pyridimium- 4-aldoxime) trimethylene dibromide. Monatsh. Chem.. 2004, 135(3): 261-267
    [18] Klein W., Kordel W. and Weiβ M., et al. Updating of the OECD Test Guideline 107 "partition coefficient N-octanol/water": OECD Laboratory Intercomparison Test on the HPLC method. Chemosphere. 1988, 17(2): 361-386
    [19] 张书胜,刘红霞,刘玉华,等.高效液相色谱法测定双哌嗪双季铵盐药物的分配系数及对构效关系的考察.色谱.1996:14(3):1936-195
    [20] M artin Y.C.. A practitioner's perspective of the role of quantitative structure-activity analysis in medicinal chemistry. J. Med. Chem. 1981, 24(3): 229-237
    [21] Wils P., Warnery A., Phung-Ba V., et al.High lipophilicity decreases drug transport across intestinal epithelial cells. J. Pharmacol. Exp. Ther.. 1994, 269(2): 654-658
    [22] Tsantili-Kakoulidou A, Varvaresou A, Siatra-Papastaikoudi T, et al. A comprehensive investigation of the partitioning and hydrogen bonding behavior of indole containing derivatives of 1, 3, 4-Thiadiazole and 1, 2, 4-Triazole by means of experimental and calculative approaches.Quant. Struct. Act. Relat.1999, 18: 482-489
    [23] Cichna M, Markl P. and Huber J. F. K. Determination of true octanol-water partition coefficients by means of solvent generated liquid-liquid chromatography. J.Pharm.Biomed. Anal. 1995, 13(4-5): 339-351
    [24] Takeda S, Wakida S, Yamane M. et al. Indirect determination of octanol-water partition coefficients by microemulsion electrokinetic chromatography. J. Chromatogr. A.1996, 744, 744(1-2): 141-146
    [25] Berthod A and CARDA-Broch S. Determination of liquid-liquid partition coefficients by separation methods. J. of Chromatogr. A.2004, 1037: 3-14
    [26] McLeodland G. S. and Shepherd M.. Determination of the ionization constants of isoflavones by capillary electrophoresis. J. Phytochem. Anal., 2000, 11(5): 322-326
    [1] 肖立中,黄志,马绍椿,等.葛根素对急性心肌梗死患者梗死面积的影响及其机制探讨.中国中西医结合杂志.2004,24(9):790-792.
    [2] 潘洪平,杨嘉珍,莫祥兰,等.葛根素注射液对急性脑缺血模型大鼠脑细胞损伤的保护作用.中国中药杂志.2005,30(6):457-459.
    [3] 张志荣,游学均,魏振平,等.愈风宁胶囊在兔体内的药动学和生物利用度研究.中国药学杂志.1997,32(4):224-226.
    [4] Cui SM, Zhao CS, Tang X, et al.Study on the bioavailability of puerarin from pueraria Iobata isoflavone self-microemulsifying drug-delivery systems and tablets in rabbits by liquid chromatography-mass spectrometry.Biomed. Chromatogr. 2005, 19(5): 375-378.
    [5] Chacón M, Berges L, Molpeceres J, et al. Optimized preparation of poly D, L(lactic-glycolic) microspheres and nanoparticles for oral administration. Int J Pharm. 1996, 141(1, 2): 81-89.
    [6] Molpeceres J, Guzman M, Aberturas M R, et al. Application of central composite designs to the preparation of Polycaprolactone nanoparticles by solvent displacement. J. Pharm. Sci. 1996, 85(2): 206-213.
    [7] Leo E, Bribara B, Fomi F, et al. In vitro evaluation of PLA nanoparticles containing a lipophilic drug in water-soluble or insoluble form. Int. J. Pharm.. 2004, 278(1): 133-141.
    [8] Mainardes R. M. and Evangelista R. C.. PLGA nanoparticles containing praziquantel: effect of formulation variables on size distribution. Int. J. Pharm..2005, 290(1-2): 137-144
    [9] Bilati U., Allémann E. and Doelker E.. Development of a naoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles.Eur. J. Pharm. Sci..2005, 24(1): 67-75
    [10] Vandervoort J. and Ludwig A.. Biocompatible stabilizers in the preparation of PLGA nanoparticles: a factorial design study. Int. J. Pharm.. 2002, 238(1-2): 77-92
    [11] Win K.Y., Feng S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials.2005, 26(15): 2713-2722
    [12] Kawashima Y., Yamamoto H., Takeuchi H. et al. Mucoadhesive DL-Lactide/Glycolide copolymer nanoparticles coated with chitosan to improve oral delivery of elcatonin. Pharm. Dev. Tech..2000, 5(1): 77-85
    [13] 江波,印春华.提高难溶性药物口服生物利用度的方法.中国医药工业杂志.2002,33(7):358-362
    [14] Xiao Y.Y., Song Y.M., Chen Z.P., et al. The preparation of silybin-phospholipid complex and the study on its pharrnacokinetics in rats. Int. J. Pharm..2006, 307(1): 77-82
    [15] Mannila J., Jarvinen T., Jarvinen K., et al. Effects of RM-β-CD on sublingual bioavailability of △9-tetrahydrocannabinol in rabbits. Eur. J. Pharm. Sci..2005, 26(1): 71-77
    [16] Chen Y., Zhang G.G.Z., Neilly J., et al. Enhancing the bioavailability of ABT-963 using solid dispersion containing Pluronic F-68. Int. J. Pharm..2004, 286 (1-2): 69-80
    [17] Manjunath, K. and Venkateswarlu V. Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration. J. Control. Release.2005, 107(2): 215-228
    [18] Venkatesan N. Yoshimitsu J. Ito Y.. et al. Liquid filled nanoparticles as a drug delivery tool for protein therapeutics. Biomaterials.2005, 26(34): 7154-7163
    [19] Lee W. Park J. Jung S. et al. Preparation and characterization of biodegradable nanoparticles entrapping immunodominant peptide conjugated with PEG for oral tolerance induction. J. Control. Release. 2005, 105(1-2): 77-88
    [20] Müller R.H., Runge S., Ravelli V.. et al. Oral bioavailability of cyclosporine: Solid lipid nanoparticles (SLN(R)) versus drug nanocrystals. Int. J. Pharm..(Article in Press, Corrected Proof)
    [21] Allemann E., Leroux J.C. and Gurny R.. Polymeric nano-and microparticles for the oral delivery of peptides and peptidominetics. Adv. Drug Del. Rev. 1998, 34(2-3): 171-189
    [22] Nishioka Y. and Yoshino H.. Lymphatic targeting with nanoparticulate system. Adv. Drug Del. Rev. 2001, 47(1): 55-64
    [23] Soppimath K.S., Aminabhavi T.M., Kulkarni A.R., et al. Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release. 2001, 70 (1): 1-20
    [24] 胡俊,刘玉玲.载药纳米粒的研究进展.中国医药工业杂志.2004,35(5):310-314
    [25] Sharma D., Chelvi T.P., Kaur J., et al. Novel Taxol formulation: polyvinylpyrrolidone nanoparticle-encapsulated Taxol for drug delivery in cancer therapy. Oncol Res. 1996, 8(7-8): 281-286
    [26] Qi L., Xu Z., Jiang X., et al. Preparaton and antibacterial activity of chitosan nanoparticles.Carbohydrate Res..2004, 339(16): 2693-2700
    [27] Ricci-Júnior E. and Marchetti J.M.. Zinc(Ⅱ) phthalocyanine loaded PLGA nanoparticles for photodynamic therapy use. Int. J. Pharm.. 2006, 310(1-2): 187-195
    [28] Lamprecht A., Ubrich N., Yamamoto H., et al. Design of rolipram-loaded nanoparticles: comparison of two preparation methods. J. Control. Release. 2001, 71(3): 297-306
    [29] Li Y., Pei Y., Zhang X., et al. PEGylated PLGA nanoparticles as protein carriers: synthesis, preparation and biodistribution in rats. J. Cont. Release.2001, 71(2): 203-211
    [30] Siegemunda T., Paulkec B.-R., Schmiedel H., et al. Thioflavins released from nanoparticles target fibrillar amyloid β in the hippocampus of APF/PS1 transgenic mice. Int. J. Dev. Neurosci.. 2006, 24(2-3): 195-201
    [31] Chandy T., Wilson R.F., Rao G.H., et al. Changes in cisplatin delivery due to surface-coated poly (lactic acid)-poly(epsilon-caprolactone) microspheres. J Biomater Appl. 2002, 16(4): 275-91
    [32] Arangoaa M. A., Ponchelb G., Orecchioni A. M., et al. Bioadhesive potential of gliadin nanoparticulate systems. Eur. J. Pharm. Sci..2000, 11(4): 333-341
    [33] Agnihotri S.A., Mallikarjuna N.N., Aminabhavi T.M..Recent advances on chitosan-based micro-and nanoparticles in drug delivery. J. Control. Release. 2004, 100(1): 5-28
    [34] Li Z., Zhuang X.P., Liu X.F., et al, Study on antibacterial 0-carboxymethylated chitosan/cellulose blend film from LiCl/N, N-dimethylacetamide solution. Polymer. 2002, 43 (4): 1541-1547
    [35] Sannan T., Kurita K. and Iwakura Y.. Studies on chitin, 2. Effect of deacetylation on solubility. Die Makromol. Che. 1976, 177(12): 3589-3600
    [36] Berschi P.C., Nies B., Liebendoffer A., et al Incorporation of basic fibroblast growth factor into methylpyrrolidinone chitosan fleeces and determination of the in vitro release characteristics. Biomaterials.1994, 15(8): 593-600.
    [37] Felt O., Buri P. and Gurny R.. Chitosan: a unique polysaccharide for drug delivery. Drug Dev. Ind. Pharm. 1998, 24(11): 979-993
    [38] Yao K.D., Peng T., Yin Y.J., et al. Microcapsules/microspheres related to chitosan, J. Macromol. Sci., Rev. Macromol. Chem. Phys.1995, C35: 155-18
    [39] van der Lubben I. M., Verhoef J.C., and Borchard G., et al. Chitosan for mucosal vaccination. Adv. Drug Deliv. Rev. 2001, 52(2): 139-144
    [40] 吴伟和催光华.星点设计-效应面优化法及其在药学中的应用.国外医学要学分册.2000,27(5):292-298
    [41] Liu J.J., Li S.P. and Wang Y.T. Optimization for quantitative determination of four flavonoids in Epimedium by capillary zone electrophoresis coupled with diode array detection using central composite design. J. Chromatogr. A.2006, 1103(2): 344-349
    [42] PlumbA. P., Rowe R.C., York E, et al. The effect of experimental design on the modeling of a tablet coating formulation using artificial neural networks. Eur. J. Pharm. Sci.. 2002, 16(4-5): 281-288
    [43] Wsól V. and Fell A. F. Central composite design as a powerful optimisation technique for enantioresolution of the rac-11-dihydrooracin—the principal metabolite of the potential cytostatic drug oracin. J. Biochem. Bioph. Meth..2002, 54(1-3): 377-390
    [44] Techapun C., Charoenrat T., Watanabe M. et al. Optimization of thermostable and alkaline-tolerant cellulase-free xylanase production from agricultural waste by thermotolerant Streptomyces sp. Ab106, using the central composite experimental design. Biochem. Eng. J.. 2002, 12(2): 99-105
    [45] Lundstedt T., Seifert E., Abramo L., et al. Experimental design and optimization. Chemometr. Intell. Lab..1998, 42(1-2): 3-40
    [46] Foster K.A., Yazdanian M.and Audus K.L. Microparticulate uptake mechanisms of in-vitro cell culture models of the respiratory epithelium.J. Pharm. Pharmacol.2001, 53(10): 57-66
    [47] Couvreur P. and Puisicux F. nano and microparticles for the delivery of polypeptides and proteins. Adv. Drug Deliv. Rev.1993: 10(2-3): 141-162
    [48] 寸冬梅,崔福德,关颖,等.乳酸-羟基乙酸共聚物微球中蜂毒包封率的测定.中国药学杂志.2005,40(2):120-122
    [49] 郭薇,吕大可.胸腺五肽注射微球包封率的测定.中国医药杂志.2004,1(6):248-250
    [50] Scholes P.D., Coombes A.G.A., Illum L..et al. Detection and determination of surface levels of poloxamer and PVA surfactant on biodegradable nanospheres using SSIMS and XPS. J. Control. Release. 1999, 59(3): 261-278
    
    [51] Feng s.and Huang G..Effects of emulsifiers on the controlled release of paclitaxel (Taxol) from nanospheres of biodegradable polymers. J. Control. Release. 2001, 71: (1)53-69
    [1] Cui SM, Zhao CS, Tang X, et al. Study on the bioavailability of puerarin from pueraria lobata isoflavone self-microemulsifying drug-delivery systems and tablets in rabbits by liquid chromatography-mass spectrometry. Biomed. Chromatogr. 2005, 19(5): 375-378
    [2] Ma Z., Wu Q., Lee D.Y.W., et al. Determination of puerarin in human plasma by high performance liquid chromatography. J of Chromatogr. B.2005, 823(2): 108-114
    [3] Prasain J.K., Jones K., Brissie N., et al. Identification of puerarin and its metabolites in rats by liquid chromatography-tandem mass spectrometry. J. Agric. Food Chem.. 2004, 52(12): 3708-3712
    [4] Yan B., Xing D., Ding Y., et al. HPLC method for the determination and pharmacokinetic studies on puerarin in cerebral ischemia reperfusion rat plasma after intravenous administraton of puerariae radix isoflavone. J. Pharm. Biomed. Anal. 2005, 37: 297-301
    [5] 郭健新,平其能,董隽,等.醋酸亮丙瑞林脂及壳聚糖包衣脂质体经肠道及Caco-2细胞转运机制.药学学报.2005,40(1):65-70
    [6] 王琰,李正荣,潘飞燕,等.口服胰岛素脂质体吸收的细胞学机制.中国医院药学杂志,2005,25(3):193-196
    [7] Li. A.P.. Screening for human ADME/Tox drug properties in drug discovery. Drug Discov Today. 2001, 6(7): 357-366
    [8] 金昔陆和朱秀媛.血浆中葛根素的高效液相色谱测定法及其在狗体内的药代动力学.药学学报.1997,32(10):782-785
    [9] 金昔陆和朱秀媛.葛根素在大鼠 家兔 犬中的药物动力学.中国药理学报.1992,13(3):284-288
    [10] 金昔陆和朱秀媛.葛根素在三种动物的药代动力学参数与体重的相关性.1991,11(1):25-27
    [11] 金昔陆和程桂芳.葛根素在健康志愿者的药代动力学.中国临床药理学杂志.1991,7(2):115-118
    [12] Piskula M.K., Yamakosh j. and Iwai Y.. Daidzein and genistein but not their glucosides are absorbed from the rat stomach.FEBS Lett. 1999, 447(2-3): 287-291
    [13] Izumi T., Piskula M.K., Osawa S., et al. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans.J. Nutr. 2000, 130(7): 1695-1699
    [14] Turner N.J., Tech. B.S., Thomson B.M., et al. Bioactive isoflavones in functional foods: the importance of gut microflora on bioavailability. Nutr. Rev.. 2003, 61(6): 204-213
    [15] Morand C., Manach C., Crespy V., et al. Quercetin 3-O-a-glucoside is better absorbed than other quercetin forms and isnot present in rat plasma. Free Radical Res. 2000, 33(5): 667-676
    [16] Hollman P. C., Bijsman M.N., van Gameren Y., et al. The sugar moiety is a major determinant of the absorption of dietary flavonoid glycosides in man. Free Radical Res.1999, 31(6): 569-573
    [17] Hillgren K.M., Kate A. and Borchardt R.T.. In Vitro Systems for Studying Intestinal Drng Absorption. Med. Res. Rev..1995, 15(2): 83-109
    [18] Mcunicr V., Bourriél M., Berger Y.. et al. The human intestinal epithelial cell line Caco-2; pharmacological and pharmacokinetic applications. Cell Biol. Toxicol. 1995, 11 (3-4): 187-194
    [19] Hilgers A.R., Conradi R.A. and Burton P.S.. Caco-2 Cell Monolayers as a Model for Drug Transport Across the Intestinal Mucosa. Pharm. Res.1990, 7(9): 902-910
    [20] Hidalgo IJ, Raub TJ, Borchardt RT. et al. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability.Gastroenterology, 1989, 96 (3): 736-749.
    [21] Hauri H.P., Sterchi E.E., Bienz D. Expression and intracellular transport of microvillus membrane hydrolases in human intestinal epithelial cells.J. Cell Biol.. 1985, 101(3): 838-851
    [22] Howell S., Kenny A. J. and Turner A. J.. A survey of membrane peptidases in two human colonic cell lines, Caco-2 and HT-29.Biochem.j.. 1992, 284: 595-601
    [23] Gan L.L. and Thakke D.R.. Applications of the Caco-2 model in the design and development of orally active drugs: elucidation of biochemical and physical barriers posed by the intestinal.epithelium. Adv. Drug Deliv. Rev. 1997, 23(1-3): 77-98
    [24] Collett A., Tanianis-Hughes J., Carlson G.L., et al. Comparison of P-glycoprotein-mediated drug-digoxin interactions in Caco-2 with human and rodent intestine: Relevance to in vivo prediction. Eur. J. Pharm. Sci.. 2005, 26(5): 386-393
    [25] Lee K., Johnson N., Castelo J., et al. Effect of experimental pH on the in vitro permeability in intact rabbit intestines and Caco-2 monolayer. Eur. J. Pharm.Sci..2005, 25(2-3): 193-200
    [26] Zhang L., Zheng Y., Chow M.S.S., et al. Investigation of intestinal absorption and disposition of green tea catechins by Caco-2 monolayer model. Int. J. Pharm.. 2004, 287(1-2): 1-12
    [27] 蒋学华,贾运涛,袁媛,等.Caco-2细胞模型在口服药物吸收过程研究中的应用.中国药学杂志.2002,37(5):325-327
    [28] 杨海涛,王广基.Caco-2单层细胞模型及其在药学中的应用.药学学报.2000,35(10):797-800
    [29] 关溯,陈孝,黄民.Caco-2细胞模型——药物吸收研究的有效“工具”.中国药理学通报.2004,20(6):609-614
    [30] Artursson P., Palm K. and Luthman K.. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv. Drug Del. Rev..2001, 46(1-3): 27-43
    [31] Win K.Y., Feng S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials.2005, 26(15): 2713-2722
    [32] Scholes P.D., Coombes A.G.A., Illum L..et al. Detection and determination of surface levels of poloxamer and PVA surfactant on biodegradable nanospheres using SSIMS and XPS. J. Control. Release. 1999, 59(3): 261-278
    [33] Feng s. and Huang G..Effects of emulsifiers on the controlled release of paclitaxel (Taxol) from nanospheres of biodegradable polymers. J. Control. Release. 2001, 71: (1) 53-69
    [34] Ubrich N., Schmidt C., Bodmeier R., et al. Oral evaluation in rabibits of cyclosporine-loaded Eudragit RS or RL nanoparticles. Int. J. Pharm.2005, 288(1) 169-175
    [35] El-Shabouri M. H. Positively Charged Nanoparticles for improving the oral bioavailability of cyclosporine-A. Int. J. Pharm. 2002,249(1-2):101-108
    1 胡俊,刘玉玲.载药纳米粒的研究进展.[J]中国医药工业杂志.2004,35(5):310-314
    2 王子妤,张东生.纳米药物的研究进展。[J]东南大学学报(医学版).2004,23(2):131-135
    3 Jung T.,Kamm,W. Breitenbach A., et al.Biodegradable nanoparticles for oral of peptides: is there a role for polymers to affect mucosal uptake?. [J] Eur. J of Pharm. Biophar..2000,50(1):147-160
    4 Hussain N., Jaitley V.,Florence A.T. Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. [J]Adv. Drug Del. Rev..2001,50(1-2):107-142
    5 Schipper N.G.,Olsson S.,Hoogstraate J.A.,et al.Chitosans as absorption enhancers for poorly absorbable drugs:mechanism of absorption enhancement. [J] Pharm. Res.1997,14(7):923-929
    6 Lehr C.M.,Bouwstra J.A.,Tukker J.J.,et al.Intestinal transit of bioadhesive microspheres in an in situ loop in the rat-acomparative study with copolymer and blends on poly(acrylic acid).[J] J.Control. Release.1990,13(1):51-62
    7 Aprahamian M.,Michel C.,Humbert W., et al. Transmucosal passage of polyalkylcyanoacrylate nanocapsules as a new drug carrier in the small intestine.[J] Biol.Cell.1987,61(1-2):69-76
    8 El-Arini S. K., Leuenberger H.. Dissolution properties of praziquantel-PVP systems.[J] Pharm. Acta Helv. 1998,73(2):89-94
    9 Thummel K.E., Kunze K. L., Shen D. D.. Enzyme. catalyzed processes of first-pass hepatic and intestinal drug extraction. [J]Adv. Drug Del.. Rev..1997, 27(2,3): 99-127
    10 Desai M.P., Labhasetwar V.,Amidon G.L, et al. Gastrointestinal Uptake of Biodegradable Microparticles: Effect of Particle Size.[J]Pharm.Res. 1996,13(12): 1838-1845
    11 Win K.Y., Feng S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs.[J]Biomaterials.2005, 26(15):2713-2722
    12 Chacon M., Berges L., Molpeceres J., et al. Optimized preparation of poly D,L(lactic-glycolic) microspheres and nanoparticles for oral administration.[J] Int. J.f Pharm..1996,141(11)81-91
    13 Molpeceres J., Guzman M., Aberturas M.R., et al. Application of central composite designs to the preparation of olycaprolactone nanoparticles by solvent displacement. [J] J. Pharm. Sci..1996,85(2):206-213
    14 Mainardes R. M., Evangelista R.C.. PLGA nanoparticles containing praziquantel:effect of formulation variables on size distribution. [J] Int. J. Pharm..2005,290(l): 137-144
    
    15 El-Shabouri M.H. Positively Charged Nanoparticles for improving the oral bioavailability of cyclosporine-A.[J]Int. J. Pharm. 2002,249(l-2):101-108
    
    16 Ubrich N.,Schmidt C.,Bodmeier R., et al. Oral evaluation in rabibits of cyclosporine-loaded Eudragit RS or RL nanoparticles. [J]Int. J. Pharm.2005,288(l) 169-175
    
    17 Arangoa M.A. Ponchel G,Orechioni A.M. et al. Bioadhesive potential of gliadin nanoparticulate systems.[J]European Journal of Pharmaceutical Sciences.2000, 11(4):333-341
    
    18 Wang XQ, Dai JD,Chen Z,et al.Bioavailability and Pharmacokinetics of Cyclosporine A-loaded PH-sensitive Nanoparticles for Oral Administration.[J] J. controlled release.2004,97(3): 421-429
    
    19 Norris D.A.,Sinko P.J..Effect of size,surface charge ,and hydrophobicity on the translocation of Polystyrene microspheres through gastrointestinal mucin. [J]J. Appl. Polym. Sci. 1997,63(11): 1481-1492
    
    20 Jepson M. A.,Simmons N.L.,Hagan D.T.O., et al.Comparison of poly(DL-lactide-co-glycolide) and polystyrene microsphere targeting to intestinal M cells. [J]J. Drug Targeting.l993,l(3):245-249
    
    21 Zengshuan M., Meng L.T., Lee-Yong L.. Pharmacological activity of peroral chitosan-insulin nanoparticles in diabetic rats. [J] Int. J. Pharm.. 2005, 293(1-2): 271-280

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700