SUMO1、CDK6和Rb在结直肠癌中的表达及对细胞周期调控的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结直肠癌是消化道常见的恶性肿瘤之一,循证医学得出,全球范围内结直肠癌的发病率处于恶性肿瘤的第三位,每年约有120万例新增患者。全身化疗临床使用受到较多关注,其目的是通过全身或局部作用,达到消灭或抑制病患体内的残余病灶、微转移灶,提高临床治愈机率,以延长患者中位生存期,最终实现生活质量改善。
     分子靶向治疗药物的开发及应用,使晚期大肠肿瘤的治疗获益,进一步推进了结直肠癌肿瘤综合治疗的发展。对肿瘤分子靶向治疗的研究已成为当前的热点,针对这些分子事件作为靶点,大量与肿瘤信号传导通路中的激酶相关的拮抗剂正在进行研究中。其中,关于CDK抑制剂的研究已成为新型抗肿瘤药物的研究热点。临床前研究显示出了与细胞周期和CDK相应的生理作用。
     在不同类型癌症中,cyclin D-CDK4和cyclin-CDK6复合体通过Rb磷酸化驱动细胞周期通过G1-S过渡。因此针对G1期激酶的靶向治疗药物被产生。其中,CDK4、CDK6选择性抑制剂PD-0332991,已经通过抗癌安全测试和I/II期临床测试。目前,没有研究关于这种抑制剂在大肠癌治疗中的治疗潜力,同样,也少有研究关注于细胞周期通路在大肠癌中的应用。临床前和临床研究已经表明PD-0332991的抗癌活性,它作为选择性细胞周期蛋白依赖性激酶4/6抑制剂,在不同肿瘤治疗中具有视网膜细胞瘤蛋白(Rb依赖性。目前还不清楚在结直肠癌,CDK4、CDK6或两者是否都需要Rb磷酸化,因此PD-0332991可用于针对这个CDK-Rb轴的癌症治疗。SUMO蛋白被广泛表达在整个真核生物界,在体内,SUMO化可能会
     影响靶蛋白在稳定、定位或激活的任何一个方面。SUMO蛋白作用广泛,参与细胞活动的各个阶段,目前已知包括细胞的有丝分裂、生长、分化、衰老及凋亡过程。研究表明,SUMO修饰途径在肿瘤发生、发展中起到重要作用。UBC9水平的增加在许多人类癌症中被发现,并且UBC9过表达能增加癌细胞生长。SUMO的E3蛋白PIAS3(活化的STAT3蛋白抑制剂)在许多不同的癌症类型被上调,SUMO E1酶水平升高与降低与肝细胞癌患者存活率相关。此外,SUMO化能参与并调节重要的肿瘤抑制蛋白。
     第一部分:PD-0332991通过CDK6-RB轴抑制结直肠癌生长机制研究
     目的:研究大肠癌组织及细胞系中CDK4、CDK6、Rb等表达情况,明确CDK4、CDK6在大肠癌细胞周期调节中的作用,检验PD-0332991在大肠癌细胞中的抑制作用并研究作用机制。方法:采用酸性磷酸酶法测定细胞生长抑制率,PI染色细胞周期检测,组织总蛋白提取,蛋白电泳及Western Blot检测,慢病毒转染及RNAi技术,shRNA细胞稳定转染等实验技术和方法。结果:本研究表明,大肠癌组织及其匹配的正常结直肠组织比较,G1期CyclinD1,D2,D3,CDK4,CDK6和pRB蛋白在大肠癌组织高表达,CDK4和CDK6控制细胞周期G1-S转变;CDK6敲除,而不是CDK4敲除,明显减少Rb磷酸化,抑制结直肠癌细胞生长。因此,CDK6起着Rb磷酸化和肿瘤生长的关键作用。在结直肠癌细胞中, PD-0332991通过G1期阻滞,诱导阻断Rb磷酸化,抑制细胞的生长。第一次表明CDK6-Rb轴在癌症生长中至关重要,由于可实现CDK6-RB轴的靶向定位,PD-0332991可能被证明是用于治疗结肠直肠癌的新型药物。
     第二部分:SUMO1参与结直肠癌中CDK6-RB通路的修饰。
     目的:研究大肠癌细胞系中SUMO1蛋白表达情况,明确并验证SUMO1参与大肠癌细胞周期蛋白的修饰,并探讨及作用机制。方法:采用酸性磷酸酶法细胞活力测定,PI染色细胞周期检测,蛋白电泳及Western Blot检测,慢病毒转染及shRNA细胞稳定转染,免疫沉淀IP等实验技术和方法。
     结果:研究表明,在大肠癌细胞中SUMO1通路被激活,SUMO1在大肠癌组织过度表达,SUMO1敲除抑制了大肠癌的细胞周期进程和肿瘤生长,细胞周期同步化16小时后,肿瘤细胞进入S期时间明显延长,IP表明CDK6被2种SUMO1单体修饰,CDK6的SUMO化稳定蛋白质,从而维持磷酸化Rb的酶激活。因此,我们在大肠癌细胞研究的前期工作中,初步建立了CDK6-SUMO1调控的细胞周期通路。CDK6-SUMO1-Rb通路的生物学功能使得它可能成为肿瘤分子靶向治疗的一个理想新靶标,并有可能在此基础上进一步发展为高效、特异及低毒的抗肿瘤药物。
     结论:
     通过本课题的研究,结直肠癌组织与癌旁正常组织对比,SUMO1,CDK6,CDK4高表达,SUMO1,CDK6,CDK4在结直肠癌细胞系中高表达;PD-0332991通过CDK6-Rb通路的抑制达到结直肠癌中的治疗有效性,PD0332991阻断Rb磷酸化,诱导G1逃逸,进而抑制大肠肿瘤细胞生长;大肠癌细胞COLO320中CDK6被2种SUMO1修饰,SUMO1参与大肠癌细胞COLO320中CDK6-RB通路的修饰调节;SUMO1、CDK6shRNA敲除明显抑制大肠癌COLO320细胞生长,且SUMO1与CDK6分别敲除后细胞生长曲线一致。
Colorectal cancer is one of the most common malignant tumor in digestivetract, it’s indicated that the morbidity of colorectal cancer is the third highest inmalignant tumor, there’s1200thousands new patients per year. Systemicchemotherapy is paid close attention in clinical, which aiming at eliminating orrestrain the patients from residual lesions and micrometastasis, improving theprovability of cure, lengthening the survival time and improving their lifequality by systematic and local function.
     The exploitation and application of the molecular targeted therapy makingcolorectal carcinoma great progress, which also boosting the comprehensivetreatment of the colorectal carcinoma, the related research is the hotspot, aimingat these molecular events, a large amount of researches about kinase relatedantagonists are underway, for example, CDK inhibitor is the hotspot of thenew-style anti-neoplastic drugs whose mechanism is the CDK functioning in thecell cycle.
     In different types of cancers, Cyclin D-CDK4and cyclin-CDK6complexdrive the cell cycle G1-S transition by Rb phosphorylation. So the related drugsoccur. CDK4and CDK6selective inhibitor PD-0332991has past the anti-cacertests and clinical stage I/II tests. Currently, there’re no related researches aboutapplying potential in colorectal cancer, meanwhile, there’re less people payingattention to the cell cycle passage applied on colorectal cancer. It’s indicated that PD-0332991has anticancer activity, it performs RB dependence in differenttumor treatments considered as selective cell cycle protein dependent kinase. It’sunknown whether CDK4and/or CDK6need Rb phosphorylation, so PD-0332991can be CDK-Rb axis cancer trement.
     SUMO protein is generally expressed in the whole eucaryotae, in the body,SUMOmay influence the target protein function of stabilization positioning oractivating. SUMO participate in every cell cycle stage including mitosis, growth,differentiation, aging and decay. It’s indicated that SUMO remodeling pathwaymakes difference in tumorgenesis and development. The increase of UBC9isdetected in many cancers, and UBC9overexpression can make tumor cell grow.E3protein PIAS3(activated STAT3protein inhibitor) of SUMO overexpressesin many different kinds of cancer, SUMO E1enzyme level is related to thesurvival rate of the hepatocellular carcinoma. Besides, SUMO can participateand adjust important tumor profiling.
     Part I: the mechanism research of PD-0332991colorectal cancer inhibitionthrough CDK6-RB axis
     Objective: Study the expression condition of the CDK4, CDK6, RB etc incolorectal cancer cells, verify the function of CDK4, CDK6in cell cycleadjustment, test the inhibition function of PD-0332991in colorectal cell andresearch the mechanism. Method: application of the acid phosphatase assay tomeasure the cell growth inhibition rate, cell cycle detection through PI dyeing, extract tissue total protein, protein electrophoresis and western Blot examination,lentiviral transfection and RNAi, shRNA cell stabilization transfection etc.Result: It’s indicated through this research that compared by the normalcolorectal tissue, the cancer tissue overexpresses the CyclinD1, D2, D3, CDK4,CDK6and pRB protein in G1stage, CDK4and CDK6control the G1-Stransform, CDK6knockout rather than CDK can obviously reduce Rbphosphorylation. Therefore, CDK6makes key function on RB phosphorylationand tumor growth. In colorectal cancer cell, PD-0332991induces RBphosphorylation blocked and control cells growth through G1stage retardation.Indicate the CDK6-Rb axis make difference in cancer growth for the first time,PD-0332991can be proved as the new type colorectal cancer drugs throughCDK6-RB axis target positioning test.
     Part II: participation of SUMO1in decoration of CDK6-RB pathway incolorectal cancer
     Objective: study the SUMO1protein expression condition in colorectalcells, verify the mechanism of the participation of SUMO in cell cycle proteindecoration. Method: cell activity test through acid phosphatase assay, cell cycledetection through PI dyeing, protein electrophoresis and western Blotexamination, lentiviral transfection and RNAi, shRNA cell stabilizationtransfection, Immunoprecipitation etc. Result: it’s indicated that SUMO1pathway is activated in colorectal cells, SUMO1overexpresses, so SUMO1 knockout can depress cell cycle of the cancer cell and tumor growth,16h aftercell cycle synchronization, the time of entering S stage is obviously lengthened.,it’s indicated by IP that CDK6is decorated by two kinds of SUMO1monomer,Sumolation of CDK6can stabilize the protein, thus sustain Rb phosphorylationenzyme activated. Therefore, in the early research, we preliminary establishCDK6-SUMO1cell cycle pathway. The biological function of CDK6-SUMO1-Rb pathway may let it become one of the ideal target, and may becomehigh efficient, specific and low-toxic antitumor drugs based on the current andfollowing research.
     Conclusion: It’s indicated through this research that compared by thenormal colorectal tissue, the cancer tissue overexpresses the SUMO1, CDK6,CDK4. SUMO1, CDK6and CDK4overexpress in colorectal cell lines;PD-0332991reach treatment effectiveness through inhibition of CDK6-Rbpathway, PD0332991blocks Rb phosphorylation, induce G1escape, and thenblock the growth of tumor cells; COLO320of the colorectal tumor cell isdecorated by two kinds of SUMO1, SUMO1participate in decorative adjust ofCDK6-Rb pathway in COLO320of colorectal tumor cell; SUMO1, CDK6shRNA knockout obviously inhibit COLO320growth, the growth curve ofSUMO1and CDK6separate knockout make consistency.
引文
[1] Jemal, A., et al., Global cancer statistics. CA Cancer J Clin,2011.61(2): p.69-90.
    [2] Siegel, R., D. Naishadham, and A. Jemal, Cancer statistics,2012. CA Cancer J Clin,2012.62(1): p.10-29.
    [3] Chen, W., et al., Annual report on status of cancer in China,2010. Chin J Cancer Res,2014.26(1): p.48-58.
    [4] Hyodo, I., et al., Present status and perspectives of colorectal cancer in Asia: ColorectalCancer Working Group report in30th Asia-Pacific Cancer Conference. Jpn J ClinOncol,2010.40Suppl1: p. i38-43.
    [5] Yeo, H.L. and P.B. Paty, Management of recurrent rectal cancer: practical insights inplanning and surgical intervention. J Surg Oncol,2014.109(1): p.47-52.
    [6] Lam, V.W., et al., A systematic review of repeat hepatectomy for recurrent colorectalliver metastases. J Gastrointest Surg,2013.17(7): p.1312-21.
    [7] Chen, Y.G., Z. Liu, and X.S. Wang, Classifying the stage IV colorectal cancer:prognostic impact of radical resection for colorectal liver metastases and proposal for anew staging system. Cell Biochem Biophys,2013.67(3): p.1445-9.
    [8] Oliver, J.S., et al., Gender differences in colon cancer treatment. J Womens Health(Larchmt),2013.22(4): p.344-51.
    [9] Kanemitsu, Y., et al., D3Lymph Node Dissection in Right Hemicolectomy with aNo-touch Isolation Technique in Patients With Colon Cancer. Dis Colon Rectum,2013.56(7): p.815-24.
    [10] Goodwin, R.A. and T.R. Asmis, Overview of systemic therapy for colorectal cancer.Clin Colon Rectal Surg,2009.22(4): p.251-6.
    [11] Kopetz, S., Novel targets for systemic therapy of colorectal cancer. Clin Adv HematolOncol,2008.6(1): p.38-40.
    [12] Meyerhardt, J.A. and R.J. Mayer, Systemic therapy for colorectal cancer. N Engl J Med,2005.352(5): p.476-87.
    [13] Arnold, D. and A. Stein, New developments in the second-line treatment of metastaticcolorectal cancer: potential place in therapy. Drugs,2013.73(9): p.883-91.
    [14] Wallin, U., et al., CEA-a predictor for pathologic complete response after neoadjuvanttherapy for rectal cancer. Dis Colon Rectum,2013.56(7): p.859-68.
    [15] DeFoe, S.G., et al., Dosimetric parameters predictive of acute gastrointestinal toxicityin patients with anal carcinoma treated with concurrent chemotherapy andintensity-modulated radiation therapy. Oncology,2013.85(1): p.1-7.
    [16] Benson, A.B., Chemotherapy: Adding oxaliplatin to the equation. Nat Rev Clin Oncol,2009.6(11): p.620-2.
    [17] Takiguchi, N., et al.,[Chemotherapy for elderly patients with colorectal cancer]. NihonRinsho,2014.72(1): p.139-42.
    [18] Matsumoto, T., et al., Phase II study of first-line chemotherapy with uracil-tegafur plusoral leucovorin in elderly (>/=75years) Japanese patients with metastatic colorectalcancer: SGOSG-CR0501study. Int J Clin Oncol,2014.
    [19] Kasuya, K., et al., Prediction of a side effect and efficacy of adjuvant chemotherapywith gemcitabine for post operative patient of pancreatic cancer by a geneticpolymorphism analysis. Hepatogastroenterology,2012.59(117): p.1609-13.
    [20] Orphanos, G.S., N.G. Stavrou, and M.K. Picolos, Hypertriglyceridemia: Anunderdiagnosed side effect of Capecitabine chemotherapy. Acta Oncol,2010.49(2): p.262-3.
    [21] Saxena, A., Cancer chemotherapy and its side effect management. Nurs J India,2006.97(5): p.109-10.
    [22] Watanabe, T.,[Practical guidance of outpatient cancer chemotherapy and managementof side effect]. Nihon Geka Gakkai Zasshi,2006.107(4): p.192-5.
    [23] Wang, Q., et al., Combination of mTOR and EGFR kinase inhibitors blocks mTORC1and mTORC2kinase activity and suppresses the progression of colorectal carcinoma.PLoS One,2013.8(8): p. e73175.
    [24] Komatsu, Y., et al.,[New molecular targeting drugs for metastatic colorectal cancer].Nihon Rinsho,2014.72(1): p.120-6.
    [25] Merla, A. and S. Goel, Novel drugs targeting the epidermal growth factor receptor andits downstream pathways in the treatment of colorectal cancer: a systematic review.Chemother Res Pract,2012.2012: p.387172.
    [26] Lin, H.R., et al., A Novel In-Situ-Gelling Liquid Suppository for Site-TargetingDelivery of Anti-Colorectal Cancer Drugs. J Biomater Sci Polym Ed,2011.
    [27] Okayama, H., Cell cycle control by anchorage signaling. Cell Signal,2012.24(8): p.1599-609.
    [28] Bertoli, C., J.M. Skotheim, and R.A. de Bruin, Control of cell cycle transcription duringG1and S phases. Nat Rev Mol Cell Biol,2013.14(8): p.518-28.
    [29] Coudreuse, D. and P. Nurse, Driving the cell cycle with a minimal CDK controlnetwork. Nature,2010.468(7327): p.1074-9.
    [30] Dehay, C. and H. Kennedy, Cell-cycle control and cortical development. Nat RevNeurosci,2007.8(6): p.438-50.
    [31] Lolli, G. and L.N. Johnson, CAK-Cyclin-dependent Activating Kinase: a key kinase incell cycle control and a target for drugs? Cell Cycle,2005.4(4): p.572-7.
    [32] Nurse, P., Cyclin dependent kinases and cell cycle control (nobel lecture).Chembiochem,2002.3(7): p.596-603.
    [33] Corellou, F., et al., Cell cycle-dependent control of polarised development by acyclin-dependent kinase-like protein in the Fucus zygote. Development,2001.128(21):p.4383-92.
    [34] Grana, X. and E.P. Reddy, Cell cycle control in mammalian cells: role of cyclins, cyclindependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinaseinhibitors (CKIs). Oncogene,1995.11(2): p.211-9.
    [35] MacLachlan, T.K., N. Sang, and A. Giordano, Cyclins, cyclin-dependent kinases andcdk inhibitors: implications in cell cycle control and cancer. Crit Rev Eukaryot GeneExpr,1995.5(2): p.127-56.
    [36] Liang, Y.W., et al., Preclinical Activity of Simvastatin Induces Cell Cycle Arrest in G1via Blockade of Cyclin D-Cdk4Expression in Non-Small Cell Lung Cancer (NSCLC).Int J Mol Sci,2013.14(3): p.5806-16.
    [37] Rezaei, P.F., et al., Induction of G1cell cycle arrest and cyclin D1down-regulation inresponse to pericarp extract of Baneh in human breast cancer T47D cells. Daru,2012.20(1): p.101.
    [38] Masamha, C.P. and D.M. Benbrook, Cyclin D1degradation is sufficient to induce G1cell cycle arrest despite constitutive expression of cyclin E2in ovarian cancer cells.Cancer Res,2009.69(16): p.6565-72.
    [39] Zhou, C.H., et al., Crocetin inhibits cell cycle G1/S transition through suppressingcyclin D1and elevating p27kip1in vascular smooth muscle cells. Phytother Res,2010.24(7): p.975-81.
    [40] Nakayama, K.I., S. Hatakeyama, and K. Nakayama, Regulation of the cell cycle at theG1-S transition by proteolysis of cyclin E and p27Kip1. Biochem Biophys ResCommun,2001.282(4): p.853-60.
    [41] Park, D.S., et al., G1/S cell cycle blockers and inhibitors of cyclin-dependent kinasessuppress camptothecin-induced neuronal apoptosis. J Neurosci,1997.17(4): p.1256-70.
    [42] Scaife, R.M., G2cell cycle arrest, down-regulation of cyclin B, and induction of mitoticcatastrophe by the flavoprotein inhibitor diphenyleneiodonium. Mol Cancer Ther,2004.3(10): p.1229-37.
    [43] Shu, C.H., et al., Cell cycle G2/M arrest and activation of cyclin-dependent kinasesassociated with low-dose paclitaxel-induced sub-G1apoptosis. Apoptosis,1997.2(5): p.463-70.
    [44] White, J., et al., Developmental activation of the Rb-E2F pathway and establishment ofcell cycle-regulated cyclin-dependent kinase activity during embryonic stem celldifferentiation. Mol Biol Cell,2005.16(4): p.2018-27.
    [45] Brehm, A., et al., The cell cycle-regulating transcription factors E2F-RB. Br J Cancer,1999.80Suppl1: p.38-41.
    [46] Kennedy, B.K. and J.K. Pennypacker, RB and Lamins in Cell Cycle Regulation andAging. Adv Exp Med Biol,2014.773: p.127-42.
    [47] Lim, S. and P. Kaldis, Cdks, cyclins and CKIs: roles beyond cell cycle regulation.Development,2013.140(15): p.3079-93.
    [48] Buck, S.H., D. Chiu, and R.M. Saito, The cyclin-dependent kinase inhibitors, cki-1andcki-2, act in overlapping but distinct pathways to control cell cycle quiescence during C.elegans development. Cell Cycle,2009.8(16): p.2613-20.
    [49] Fukuyama, M., et al., Essential embryonic roles of the CKI-1cyclin-dependent kinaseinhibitor in cell-cycle exit and morphogenesis in C elegans. Dev Biol,2003.260(1): p.273-86.
    [50] Zhang, L.Q., et al., The role of cyclin D1expression and patient's survival innon-small-cell lung cancer: a systematic review with meta-analysis. Clin Lung Cancer,2012.13(3): p.188-95.
    [51] Wang, Q., et al., Cyclin dependent kinase1inhibitors: a review of recent progress. CurrMed Chem,2011.18(13): p.2025-43.
    [52] Mohammadizadeh, F., et al., Role of cyclin D1in breast carcinoma. J Res Med Sci,2013.18(12): p.1021-5.
    [53] Glickstein, S.B., et al., Cyclin D2is critical for intermediate progenitor cellproliferation in the embryonic cortex. J Neurosci,2009.29(30): p.9614-24.
    [54] Choi, D., et al., Characterization of cyclin D2expression in human endometrium. J SocGynecol Investig,2002.9(1): p.41-6.
    [55] Igawa, T., et al., Cyclin D2is overexpressed in proliferation centers of chroniclymphocytic leukemia/small lymphocytic lymphoma. Cancer Sci,2011.102(11): p.2103-7.
    [56] Cao, X., et al., The expression of SOX11, cyclin D1, cyclin D2, and cyclin D3in B-celllymphocytic proliferative diseases. Med Oncol,2012.29(2): p.1190-6.
    [57] Urbach, A., et al., Cyclin D2knockout mice with depleted adult neurogenesis learnBarnes maze task. Behav Neurosci,2013.127(1): p.1-8.
    [58] Parry, P.V. and J.A. Engh, The role of cyclin-d2in the tumorgenesis of glioblastoma.Neurosurgery,2012.71(6): p. N22-3.
    [59] Tiemann, K., et al., Small interfering RNAs targeting cyclin D1and cyclin D2enhancethe cytotoxicity of chemotherapeutic agents in mantle cell lymphoma cell lines. LeukLymphoma,2011.52(11): p.2148-54.
    [60] Tsutsui, M., et al., Methylated cyclin D2gene circulating in the blood as a prognosispredictor of hepatocellular carcinoma. Clin Chim Acta,2010.411(7-8): p.516-20.
    [61] Josefsberg Ben-Yehoshua, L., et al., Characterization of cyclin E expression in multiplemyeloma and its functional role in seliciclib-induced apoptotic cell death. PLoS One,2012.7(4): p. e33856.
    [62] Karst, A.M., et al., Cyclin e1deregulation occurs early in secretory cell transformationto promote formation of fallopian tube-derived high-grade serous ovarian cancers.Cancer Res,2014.74(4): p.1141-52.
    [63] Caldon, C.E., et al., Cyclin E2overexpression is associated with endocrine resistancebut not insensitivity to CDK2inhibition in human breast cancer cells. Mol Cancer Ther,2012.11(7): p.1488-99.
    [64] Touati, S.A., et al., Cyclin A2is required for sister chromatid segregation, but notseparase control, in mouse oocyte meiosis. Cell Rep,2012.2(5): p.1077-87.
    [65] Syed Khaja, A.S., et al., Cyclin A1modulates the expression of vascular endothelialgrowth factor and promotes hormone-dependent growth and angiogenesis of breastcancer. PLoS One,2013.8(8): p. e72210.
    [66] Shapiro, S.D., et al., Cyclin A2induces cardiac regeneration after myocardial infarctionthrough cytokinesis of adult cardiomyocytes. Sci Transl Med,2014.6(224): p.224ra27.
    [67] McLenachan, S., et al., Cyclin A1is essential for setting the pluripotent state andreducing tumorigenicity of induced pluripotent stem cells. Stem Cells Dev,2012.21(15): p.2891-9.
    [68] Polanski, Z., H. Homer, and J.Z. Kubiak, Cyclin B in mouse oocytes and embryos:importance for human reproduction and aneuploidy. Results Probl Cell Differ,2012.55:p.69-91.
    [69] Choi, H.J. and B.T. Zhu, Critical role of cyclin B1/Cdc2up-regulation in the inductionof mitotic prometaphase arrest in human breast cancer cells treated with2-methoxyestradiol. Biochim Biophys Acta,2012.1823(8): p.1306-15.
    [70] Cole, A.M., et al., Cyclin D2-cyclin-dependent kinase4/6is required for efficientproliferation and tumorigenesis following Apc loss. Cancer Res,2010.70(20): p.8149-58.
    [71] Hu, M.G., et al., A requirement for cyclin-dependent kinase6in thymocytedevelopment and tumorigenesis. Cancer Res,2009.69(3): p.810-8.
    [72] Malumbres, M., et al., Mammalian cells cycle without the D-type cyclin-dependentkinases Cdk4and Cdk6. Cell,2004.118(4): p.493-504.
    [73] Li, B., et al., Knockdown of CDK6enhances glioma sensitivity to chemotherapy. OncolRep,2012.28(3): p.909-14.
    [74] Kohoutek, J., P. Dvorak, and A. Hampl, Temporal distribution of CDK4, CDK6,D-type cyclins, and p27in developing mouse oocytes. Biol Reprod,2004.70(1): p.139-45.
    [75] Kozar, K. and P. Sicinski, Cell cycle progression without cyclin D-CDK4and cyclinD-CDK6complexes. Cell Cycle,2005.4(3): p.388-91.
    [76] Yu, Q., et al., Requirement for CDK4kinase function in breast cancer. Cancer Cell,2006.9(1): p.23-32.
    [77] Rader, J., et al., Dual CDK4/CDK6inhibition induces cell-cycle arrest and senescencein neuroblastoma. Clin Cancer Res,2013.19(22): p.6173-82.
    [78] Besker, N., A. Amadei, and M. D'Abramo, Molecular mechanisms of activation inCDK2. J Biomol Struct Dyn,2013.
    [79] Jahn, S.C., et al., Assembly, activation, and substrate specificity of cyclin D1/Cdk2complexes. Biochemistry,2013.52(20): p.3489-501.
    [80] Hwang, C.Y., et al., CDK2differentially controls normal cell senescence and cancercell proliferation upon exposure to reactive oxygen species. Biochem Biophys ResCommun,2012.425(1): p.94-9.
    [81] Lim, S. and P. Kaldis, Loss of Cdk2and Cdk4induces a switch from proliferation todifferentiation in neural stem cells. Stem Cells,2012.30(7): p.1509-20.
    [82] Adhikari, D., K. Liu, and Y. Shen, Cdk1drives meiosis and mitosis through twodifferent mechanisms. Cell Cycle,2012.11(15): p.2763-4.
    [83] Koivomagi, M. and M. Loog, Cdk1: a kinase with changing substrate specificity. CellCycle,2011.10(21): p.3625-6.
    [84] Garneau, H., et al., E2F4expression is required for cell cycle progression of normalintestinal crypt cells and colorectal cancer cells. J Cell Physiol,2009.221(2): p.350-8.
    [85] Szeberenyi, J., Problem-solving test: E2F: A family of S phase regulating transcriptionfactors. Biochem Mol Biol Educ,2014.42(1): p.88-90.
    [86] Burke, J.R., et al., Multiple mechanisms for E2F binding inhibition by phosphorylationof the retinoblastoma protein C-terminal domain. J Mol Biol,2014.426(1): p.245-55.
    [87] Tsai, S.Y., et al., Mouse development with a single E2F activator. Nature,2008.454(7208): p.1137-41.
    [88] Garcia-Garcia, A., et al., E2F-1lacking the transcriptional activity domain inducesautophagy. Cancer Biol Ther,2012.13(11): p.1091-101.
    [89] Xanthoulis, A., et al., The Relationship Between E2F Family Members and TumorGrowth in Colorectal Adenocarcinomas: A Comparative Immunohistochemical Studyof100Cases. Appl Immunohistochem Mol Morphol,2012.
    [90] Rubin, S.M., Deciphering the retinoblastoma protein phosphorylation code. TrendsBiochem Sci,2013.38(1): p.12-9.
    [91] Costa, C., et al., E2F1loss induces spontaneous tumour development in Rb-deficientepidermis. Oncogene,2013.32(24): p.2937-51.
    [92] Martinez, J.C., et al., Retinoblastoma (Rb) tumor-suppressor pathway alterations inmeningeal hemangiopericytomas: High E2F transcription factor1expression and lossof Rb expression: study by double immunofluorescence staining and laser-scanningconfocal microscopy. Cancer,2008.113(1): p.166-74.
    [93] Jeffrey, P.D., L. Tong, and N.P. Pavletich, Structural basis of inhibition of CDK-cyclincomplexes by INK4inhibitors. Genes Dev,2000.14(24): p.3115-25.
    [94] Carnero, A. and G.J. Hannon, The INK4family of CDK inhibitors. Curr Top MicrobiolImmunol,1998.227: p.43-55.
    [95] Wiedemeyer, W.R., et al., Pattern of retinoblastoma pathway inactivation dictatesresponse to CDK4/6inhibition in GBM. Proc Natl Acad Sci U S A,2010.107(25): p.11501-6.
    [96] Shin, J.Y., et al., Mechanism for inactivation of the KIP family cyclin-dependent kinaseinhibitor genes in gastric cancer cells. Cancer Res,2000.60(2): p.262-5.
    [97] Hengst, L. and S.I. Reed, Inhibitors of the Cip/Kip family. Curr Top MicrobiolImmunol,1998.227: p.25-41.
    [98] Ullah, Z., C.Y. Lee, and M.L. Depamphilis, Cip/Kip cyclin-dependent protein kinaseinhibitors and the road to polyploidy. Cell Div,2009.4: p.10.
    [99] Nabel, E.G., CDKs and CKIs: molecular targets for tissue remodelling. Nat Rev DrugDiscov,2002.1(8): p.587-98.
    [100] Vernon, A.E., et al., Notch targets the Cdk inhibitor Xic1to regulate differentiation butnot the cell cycle in neurons. EMBO Rep,2006.7(6): p.643-8.
    [101] Bruggeman, S.W. and M. van Lohuizen, Controlling stem cell proliferation: CKIs atwork. Cell Cycle,2006.5(12): p.1281-5.
    [102] Li, B., et al., Simultaneous targeting of EGFR and mTOR inhibits the growth ofcolorectal carcinoma cells. Oncol Rep,2012.28(1): p.15-20.
    [103] Michaud, K., et al., Pharmacologic inhibition of cyclin-dependent kinases4and6arrests the growth of glioblastoma multiforme intracranial xenografts. Cancer Res,2010.70(8): p.3228-38.
    [104] Toogood, P.L., et al., Discovery of a potent and selective inhibitor of cyclin-dependentkinase4/6. J Med Chem,2005.48(7): p.2388-406.
    [105] Roberts, P.J., et al., Multiple roles of cyclin-dependent kinase4/6inhibitors in cancertherapy. J Natl Cancer Inst,2012.104(6): p.476-87.
    [106] Liu, G., et al., A Phase II trial of flavopiridol (NSC#649890) in patients withpreviously untreated metastatic androgen-independent prostate cancer. Clin Cancer Res,2004.10(3): p.924-8.
    [107] Schwartz, G.K., et al., Phase I study of PD0332991, a cyclin-dependent kinaseinhibitor, administered in3-week cycles (Schedule2/1). Br J Cancer,2011.104(12): p.1862-8.
    [108] Fry, D.W., et al., Specific inhibition of cyclin-dependent kinase4/6by PD0332991andassociated antitumor activity in human tumor xenografts. Mol Cancer Ther,2004.3(11):p.1427-38.
    [109] Flaherty, K.T., et al., Phase I, dose-escalation trial of the oral cyclin-dependent kinase4/6inhibitor PD0332991, administered using a21-day schedule in patients withadvanced cancer. Clin Cancer Res,2012.18(2): p.568-76.
    [110] Finn, R.S., et al., PD0332991, a selective cyclin D kinase4/6inhibitor, preferentiallyinhibits proliferation of luminal estrogen receptor-positive human breast cancer celllines in vitro. Breast Cancer Res,2009.11(5): p. R77.
    [111] Blagden, S. and J. de Bono, Drugging cell cycle kinases in cancer therapy. Curr DrugTargets,2005.6(3): p.325-35.
    [112] Malumbres, M., Cell cycle-based therapies move forward. Cancer Cell,2012.22(4): p.419-20.
    [113] Collins, I. and M.D. Garrett, Targeting the cell division cycle in cancer: CDK and cellcycle checkpoint kinase inhibitors. Curr Opin Pharmacol,2005.5(4): p.366-73.
    [114] Feligioni, M. and R. Nistico, SUMO: a (oxidative) stressed protein. NeuromolecularMed,2013.15(4): p.707-19.
    [115] Saitoh, H., et al.,[Studying the SUMO modification pathway: from molecular structureto regulation of epigenome]. Tanpakushitsu Kakusan Koso,2006.51(10Suppl): p.1195-200.
    [116] Hickey, C.M., N.R. Wilson, and M. Hochstrasser, Function and regulation of SUMOproteases. Nat Rev Mol Cell Biol,2012.13(12): p.755-66.
    [117] David, R., Sumoylation: Targeting SUMO. Nat Rev Mol Cell Biol,2010.11(6): p.387.
    [118] Sarge, K.D. and O.K. Park-Sarge, SUMO and its role in human diseases. Int Rev CellMol Biol,2011.288: p.167-83.
    [119] Lyst, M.J. and I. Stancheva, A role for SUMO modification in transcriptional repressionand activation. Biochem Soc Trans,2007.35(Pt6): p.1389-92.
    [120] Meulmeester, E. and F. Melchior, Cell biology: SUMO. Nature,2008.452(7188): p.709-11.
    [121] Isogai, S. and M. Shirakawa,[Protein modification by SUMO]. Seikagaku,2007.79(12): p.1120-30.
    [122] Ulrich, H.D., The SUMO system: an overview. Methods Mol Biol,2009.497: p.3-16.
    [123] Navarro, M.S. and J. Bachant, RanBP2: a tumor suppressor with a new twist on TopoII,SUMO, and centromeres. Cancer Cell,2008.13(4): p.293-5.
    [124] Takahashi, Y., et al., Cytoplasmic sumoylation by PIAS-type Siz1-SUMO ligase. CellCycle,2008.7(12): p.1738-44.
    [125] Zunino, R., et al., The SUMO protease SENP5is required to maintain mitochondrialmorphology and function. J Cell Sci,2007.120(Pt7): p.1178-88.
    [126] Di Bacco, A. and G. Gill, SUMO-specific proteases and the cell cycle. An essential rolefor SENP5in cell proliferation. Cell Cycle,2006.5(20): p.2310-3.
    [127] Dunnebier, T., et al., Common variants in the UBC9gene encoding theSUMO-conjugating enzyme are associated with breast tumor grade. Int J Cancer,2009.125(3): p.596-602.
    [128] Gonzalez-Santamaria, J., et al., Regulation of the tumor suppressor PTEN by SUMO.Cell Death Dis,2012.3: p. e393.
    [129] Li, M., et al., SUMO wrestling with type1diabetes. J Mol Med (Berl),2005.83(7): p.504-13.
    [130] Steffan, J.S., et al., SUMO modification of Huntingtin and Huntington's diseasepathology. Science,2004.304(5667): p.100-4.
    [131] Yang, W., et al., Cerebral ischemia/stroke and small ubiquitin-like modifier (SUMO)conjugation--a new target for therapeutic intervention? J Neurochem,2008.106(3): p.989-99.
    [132] Geiss-Friedlander, R. and F. Melchior, Concepts in sumoylation: a decade on. Nat RevMol Cell Biol,2007.8(12): p.947-56.
    [133] Cen, L., et al., p16-Cdk4-Rb axis controls sensitivity to a cyclin-dependent kinaseinhibitor PD0332991in glioblastoma xenograft cells. Neuro Oncol,2012.14(7): p.870-81.
    [134] Baughn, L.B., et al., A novel orally active small molecule potently induces G1arrest inprimary myeloma cells and prevents tumor growth by specific inhibition ofcyclin-dependent kinase4/6. Cancer Res,2006.66(15): p.7661-7.
    [135] Leonard, J.P., et al., Selective CDK4/6inhibition with tumor responses by PD0332991in patients with mantle cell lymphoma. Blood,2012.119(20): p.4597-607.
    [136] Liu, F. and M. Korc, Cdk4/6inhibition induces epithelial-mesenchymal transition andenhances invasiveness in pancreatic cancer cells. Mol Cancer Ther,2012.11(10): p.2138-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700