电磁—凝固传输间接耦合过程的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“三传”是凝固过程中重要的传输现象,“热-动-质”各场量彼此紧密关联、相互影响,其传输行为决定着铸件的结晶质量和性能,电磁场的引入会使这些传输现象更加复杂。因此,对合金的电磁铸造过程建立一个普适的电磁凝固传输统一数值模型并采用一种高效的算法来求解,对于研究不同合金在不同电磁铸造工艺中的凝固传输行为,实现参数优化具有重要的理论和实际意义。本文通过建立电磁场与凝固传输间接耦合过程的统一数值模型,拓展并应用求解压力-速度(P-V)耦合过程的Direct-SIMPLE法(直接求解压力耦合方程的半隐方法),着重解决电磁场与合金凝固传输间接耦合的宏观传输高效数值计算的相关问题。
     采用ANSYS有限元(FEM)软件详尽的计算和分析了用于电磁连铸等电磁铸造加工中二维和三维数值计算的静磁场和行波/谐波磁场。发现物性参数假定为常数时其静磁场的磁感应强度幅值(|B|max)随电流密度载荷线性增加;相同电流密度载荷下一对极行波磁场的|B|max和感应电流密度都较二对极行波磁场的大,但二对极行波比一对极行波变化均匀。通过电磁模型的计算和分析,为电磁凝固传输间接耦合计算奠定了理论基础并提供了电磁载荷数据。
     建立了能综合考虑铸件与铸模存在相对运动并适用于纯液/固相情况和有/无电磁场的电磁凝固耦合统一数学模型,基于交错网格并通过有限容积法(FVM)导出了求解二维/三维P-V耦合的Direct-SIMPLE算法。该方法导出的压力和速度场的分解式与修正式具有明确的物理意义,且只需对压力矩阵做迭代计算,而无需对速度和压力做反复迭代修正,因而可极大提高计算效率。
     提出和编写了一套将二维/三维电磁场FEM格式数据转换成FVM数据格式的有效方法和程序,它可实现不同FEM和FVM软件间格式的相互转化。在三维模型中,将各种形状FEM单元统一分解为四面体单元再与FVM网格中心点查找和对应,然后用四面体形函数线性插值;二维模型则直接用三角形和四边形单元形函数插值。该方法简单可行,且精度高、耗时短。同时编写了用于二维和三维标/矢量场显示的通用后处理程序,该显示程序能实现坐标旋转和数据反馈等诸多功能。
     将ANSYS计算的静磁场和行波磁场结果耦合到连铸过程的凝固传输二维计算,实现了电磁场与连铸凝固传输的间接耦合计算。结果表明,适当的静磁场能够有效抑制板坯连铸过程中的环流;随着磁场的增加,射流冲击和液面波动幅度减小、流股变弱。本文计算中大小为|B|max=5.5×10-3T的静磁场能起到很好的制动和降低宏观偏析的效果;施加一对极或二对极的行波磁场后,熔池中上下两股环流在洛仑兹力影响下被明显改变,加强了弯月面处和凝固界面前沿熔体的流动,本文中二对极行波磁场的综合作用优于一对极行波磁场。将本文模型和算法扩展至三维开放系统的薄板坯水平连铸计算,模拟了在不同外形和强度的虚拟和真实静磁场作用下单带式连铸的流动和传热。结果表明,静磁制动使熔体均匀的输送到水冷带上。本文考察的两类三种外形静磁场中,竖直条形及L形磁场的效果较佳,真实静磁场值|B|=0.4T时能使出口处冲击变小、单带上凝壳均匀生长,且流动形态达到最优。
     基于本文提出的数学模型和导出的数值算法,采用FEM-FVM结合的间接耦合计算方案,对Ti-50Al合金直接和间接感应加热区熔定向凝固工艺进行了模拟、设计和实验,获得了质量完好的定向凝固试棒。有电磁场条件下的钛铝合金定向凝固工艺设计和无电磁场条件下的Al-Cu-Si共晶合金的模拟和实验表明,本文电磁凝固传输统一数值模型、算法及间接耦合方法是简单、准确和高效的。
In the coupled process of electromagnetic-solidification transport process(EM-STP) of multi-component alloys, the heat transport, mass transport and flowof alloy melt are the important transport phenomena in solidification process,which determines the crystalline quality and the ultimate performance of thecasting. The transport of various physical fields in solidification process areclosely interrelated and influenced each other, and those transport phenomenabecome even more complex once the EM-field was introduced. Therefore,establishing a universal unified numerical model for EM-STP during EM-casting(EMC), and proposing an efficient numerical methods for solving these processesare very important theoretically and practically for studying the laws of STP ofdifferent alloys and optimizing the parameters in various EM-casting. Theobjectives in this paper are solving the issues relating to macro-transportphenomena of EM-STP with efficient numerical calculation, by establishing a2D/3D uniform numerical model of EM-STP and expanding and applying theDirect-SIMPLE (Direct Semi-Implicit Method for Pressure Linked Equations)method that solve the coupled process of pressure field and velocity field.
     Some EM models, including static magnetic field (SMF), traveling/harmonicmagnetic field (TMF/HMF) under two/three dimentional (2D/3D) were calculatedand analised by ANSYS finite element method (FEM) software in detailedly,which were prepared for2D and3D EM-STP numerical calculation such asEM-continous casting (EMCC) and etc. The rusults indicate that the maximummagnitude of magnetic flux denstity (|B|max) increase with current loads linearly in2D and3D EM models. The|B|maxand induced current density of1-pairs of poles(1-POP) TMF are larger than that of2-POP TMF, while it is not homogeneous andsmooth in comprison of2-POP TMF. All of these calculation results and analysisessever as groundwork and provid EM-data for indirect coupled EM-STP.
     A uniform mathematical model for coupled EM-STP was proposed in thispaper, in which the relative movments between melt/solide phase and mold istaken into account, and it is suitable for the case of only liquid/solide phase existsin the model and that absence or with EM-field. The Direct-SIMPLE method forsolving pressure and velocity (P-V) in2D/3D models was deduced based onstagger grids system. The decompose and correction expressions of velocity andpressure formulas possess clear physical meanings in this method, and iterationcalculations only need to be carried out for pressure coefficient matrix instead ofrepeating iteration correction between pressure and velocity, thus the computational efficiency of numerical simulation be improved greatly.
     A set of data format convertion method and program were proposed andwrited for2D and3D EM-field data, the data stored with FEM format and finitvolume/difference method (FVM/FDM) format can be converted between twodifferent softwares. All the elements with various shapes are divided intotetrahedron elements uniformly in3D model, and then the center points ofFVM/FDM grids mapping with these new sub-tetrahedron elements, once a centerpoint is confirm to be located in a tetrahedron element, it can be linear interpolatedwith the shape function of tetrahedron element. In a2D model, the shape functionof triangle or quadrilateral element would be directly used to linear interpolat. Thishandling method is not only simple and feasible, but also accurate and efficient.Subsequently, a universal post-process program for displaying scalar/vecter fieldsin2D and3D models was proposed, it can achieve coordinate rotation and datafeedback.
     SMFs and TMFs exported by ANSYS were coupled to the CC transportcalculation, and an indirect-coupled process of STP with EMF was realized. Theresults show that the appropriate SMF can effectively suppress the circulationflows in the CC-process of slab, the impact of jet on the side wall and theamplitude of level fluctuation as well as the depth of stream decreases withincreasing magnetic flux density. A SMF with|B|max=5.5×10-3T plays a goodbraking effect and can decrease macrosegregtion remarkablely. Once1pair ofpoles (1-POP) or2-POP TMF was applied, the top and lower circulation flows aresignificantly transformed under the influence of the Lorentz force, the flow of meltat meniscus and the front of solidification interface are imforced reasonablely bylinear stirring, the comprehensive effects of2-POP TMF is better than that of1-POP TMF. Finally, the model and numerical method proposed in this paper wasused for the flow and heat transfer simulation in a3D open system of horizontalsingle-belt caster (HSBC), which under the actions of pseudo and the real SMFswith different shapes and intensities. The results show that the EMBr will producea uniform melt conveying to the water-cooled moving single-belt. Among the threecontours of SMF in this paper, a beneficial effect can be achived by the verticaland L-shaped magnetic field, and|B|max=0.4T can decrease the impact of outletflow, bring the solidification shell growth homogeneously on the single-belt andreach a optimal flow pattern in the mold.
     The zone melting directional solidification (DS) process of Ti-50Al alloywith direct and indirect induction heating were numerical simulated respectively,where they were disigned and experimental verified using the numerical models,algorithms and FEM/FVM indirect-coupled calculation method proposed in thispaper, and directional solidification samples with good quality were obtained. The process design of Ti-Al alloy EM-DS under EM-field as well as the simulation andexperiment of Al-Cu-Si eutectic alloy show that the EM-STP unified numericalmodel, algorithm and indirect-coupled method are simple, accurate and efficient.
引文
[1]张晓明.实用连铸连轧技术[M].北京:化学工业出版社,2008:33.
    [2] Versnyder F I, Shank M E. The development of columnar grain and singlecrystal high temperature materials through directional solidification [J].Materials Science and Engineering,1970,6(4):213–247.
    [3]郭景杰,张铁军,苏彦庆,等.电磁技术在铸造中的研究与应用[J].特种铸造及有色合金,2002,(3):37-39.
    [4]王宝峰,李建超.连铸电磁搅拌和电磁制动的理论及实践[M].北京:冶金工业出版社,2011:3.
    [5] Zhang Z F, Li T J, Wen B, et al. Electromagnetic continuous casting byimposing multi electromagnetic field [J]. Trans. Nonferrous Met. Soc. China,2000,10(6):741-744.
    [6] Hao H, Zhang X G, Hou X G, et al. Technological investigation ofelectromagnetic casting for double-ingot [J]. Trans. Nonferrous Met. Soc.China,2000,10(5):590-594.
    [7] Liu C T, Chen Y M, Hwang C C,3-D Field Path Adjustments of an in-moldelectromagnetic stirrer for steel mill application [J]. IEEE Transactions onMagnetics,2009,45(3):1784-1787.
    [8]李宝宽,赫冀成,贾光霖,等.薄板坯连铸结晶器内钢液流场电磁制动的模拟研究[J].金属学报,1997,33(11):1207-1214.
    [9]陈芝会,王恩刚,张兴武,等.静磁场控制板坯连铸结晶器液面波动[J].钢铁研究学报,2008,20(2):21-24.
    [10]常国威,袁军平,王自东,等.工艺参数对电渣感应连续定向凝固组织稳定性的影响[J].铸造,2000,49(11):819-822.
    [11]傅恒志,丁宏升,陈瑞润,等.钛铝合金电磁冷坩埚定向凝固技术的研究[J].稀有金属材料与工程,2008,37(4):565-570.
    [12]柳百成.铸件凝固过程的宏观及微观模拟仿真研究进展[J].中国工程科学,2000,2(9):29-36.
    [13]柳百成.铸件充型凝固过程数值模拟国内外研究进展[J].铸造,1998,(8):40-45.
    [14]包燕平,张涛,蒋伟,等.板坯连铸结晶器内钢液流场的三维数学模型[J].北京科技大学学报,2001,23(2):106-110.
    [15] Asai S. Recent development and prospect of electromagnetic processing [J].Science and Technology of Advanced Materials,2000(1):191-200.
    [16]陈瑞润,丁宏升,毕维生,等.钛合金冷坩埚电磁约束铸造工艺研究[J].特种铸造及有色合金,2005,25(6):323-325.
    [17] Teuk M Y, Chang N K, A numerical analysis of molten steel flow underapplied magnetic fields in continuous casting [J]. KSME InternationalJournal,2003,17(12):2010-2018.
    [18]张志峰,李廷举,温斌,等.复合电磁场对连铸结晶器弯月面金属液运动行为及铸坯质量的影响[J].钢铁研究学报,2000,12(增):36-40.
    [19]雷作胜,任忠鸣,杨松华.连铸保护渣道动态压力的研究[J].上海金属,2001,23(2):14-18.
    [20] Liu X F, Zhang J Y, Du W D, et al. Numerical simulation of coupled moltensteel flow and temperature fields in compact strip production casting [J].Journal of Iron and Steel Research, Internaitonal,2007,14(3):20-25.
    [21] Thomas B G. Continuous casting [J]. The encyclopedia of materials: Scienceand Technology,2001,(2):1595-1599.
    [22] Peter D. Lee, P. E. Ramirez-Lopez, K. C. Mills, B. Santillana, review: the‘‘butterfly effect’’ in continuous casting [J]. Ironmaking and Steelmaking,2012,39(4):244-253.
    [23]蔡宁,杜锋.提高板坯连铸拉速的技术措施[J].炼钢,2007,23(5):58-62.
    [24] Seung L C, Keun J R, Hwa S P. Numerical simulation on the effect of anelectromagnetic brake to continuous thin slab casting [J]. Metals andMaterials International,2002,8(6):527-533.
    [25] Trippelsdorf H, Marraccini R, Kollberg S. Advances in strip surface qualityfrom thin slab casters [C]. International Scientific Colloquium, Modelling forElectromagnetic Processing, Hannover,2003:189-196.
    [26] Miki Y J, Applications of MHD to continuous casting of steel [C]. The5thInternational Symposium on Electromagnetic Processing of Materials,Sendai, Japan, ISIJ,2006:26-30.
    [27]陈芝会,王恩刚,赫冀成.板坯连铸结晶器电磁制动技术及其应用[J].炼钢,2004,20(3):48-52.
    [28] Lehman A, Tallb ck G, Rullg d. Electromagnetic braking improves steelquality in continuous casting [J]. ABB Review,1996,1:4-10.
    [29] Lei H, Zhang H W, He J C. Flow, Solidification, and solute transport in acontinuous casting mold with electromagnetic brake [J]. Chem. Eng. Technol.2009,32(6):991-1002.
    [30] Yu H Q, Zhu M Y, Numerical simulation of the effects of electromagneticbrake and argon gas injection on the three-dimensional multiphase flow andheat transfer in slab continuous casting mold [J]. ISIJ International,2008,48(5):584-591.
    [31] Li B K, Tsukihashi F, Effects of electromagnetic brake on vortex flows inthin slab continuous casting mold [J]. ISIJ International,2006,46(12):1833-1838.
    [32]李启胜,邓康,雷作胜,等.薄带双辊连铸水口电磁制动的实验模拟[J].金属学报,2006,42(7):751-756.
    [33] Liu X F, Zhang J Y, Du W D, et al. Numerical simulation of coupled moltensteel flow and temperature fields in compact strip production casting [J].Journal of Iron and Steel Research, Internaitonal.2007,14(3):20-25.
    [34] Timmel K, Eckert S, Gerbeth G, et al. Experimental modeling of thecontinuous casting process of steel using low melting point metal alloys-theLIMMCAST program [J]. ISIJ International,2010,50(8):1134-1141.
    [35] Man Y H, Hyun G L, Seung H. S. Numerical simulation of three-dimensionalflow, heat transfer, and solidification of steel in continuous casting moldwith electromagnetic brake [J]. Journal of Materials Processing Technoligy.2003,(133):322-339.
    [36] Cukierski K, Thomas B G. Flow control with local electromagnetic braking incontinuous casting of steel slabs [J]. Metallurgical and MaterialsTransactions B,2008,39B:94-107.
    [37] Tufoi M, Vela I, Marta C, et al. Comparative study of contact stresses andstrains at horizontal continuous casting using conventional and innovativemethods of withdrawing profiles [C]. EMESEG'10Proceedings of the3rdWSEAS international conference on Engineering mechanics, structures,engineering geology, World Scientific and Engineering Academy andSociety (WSEAS) Stevens Point, Wisconsin, USA,2010:478-482.
    [38] Aboutalebi M R, Guthrie R I L, Seyedein S H. Mathematical modeling ofcoupled turbulent flow and solidification in a single belt caster withelectromagnetic brake [J]. Applied Mathematical Modelling,2007,31:1671-1689.
    [39] Fernandes F D C, Defendi G A, Pena J C D S, et al. Analisys of a metaldelivery system for strip casting in single-belt casters by mathematicalmodeling [C]. IAS Steelmaking Conference,4th Ironmaking Conference and5th ISS Argentina Section Meeting, San Nicolas, Argentina,2003:1-8.
    [40] Pedro G Q N, Roderick I L G. The importance of turbulence modeling in thedesign of a novel delivery system for a single belt steel casting process [J].International Journal of Heat and Mass Transfer,2000,43:21-37.
    [41] Jefferies C, Hasan M, Guthrie R I L. Physical and mathematical modelling ofan extended nozzle for metal delivery to high speed, Thin Strip CastingMachines [J]. ISIJ International.1996,36(1):52-60.
    [42] Seuedein S H, Aboutalebi M R. Mathematical modelling of magnetic flowcontrol in a single belt caster [C].14th Australasian Fluid MechanicsConference, Adelaide University, Adelaide, Australia,2001:395-400.
    [43] Aboutalebi M R, Guthrie R I L, Seyedein S H. Mathematical modeling ofcoupled turbulent flow and solidification in a single belt caster withelectromagnetic brake [J]. Applied Mathematical Modelling,2007,31:1671-1689.
    [44] Liu C T, Chen Y M, Hwang C C.3-D Field Path Adjustments of an in-moldelectromagnetic stirrer for steel mill application [J]. IEEE Transactions onMagnetics,2009,45(3):1784-1787.
    [45] Kolesnichenko A, Kolesnichenko A, Buryak V, Magneto-pulse mold stirringand centerline defects by continuous steel casting [C]. The5th InternationalSymposium on Electromagnetic Processing of Materials, Sendai, Japan, ISIJ,2006:57-62.
    [46] Genma N, Soejima T, Saito T, et al. The linear-motor type in-moldelectromagnetic stirring technology for the continuous caster [J]. ISIJInternational,1989,29(12):1056-1062.
    [47]于海岐,朱苗勇.圆坯结晶器电磁搅拌过程三维流场与温度场数值模拟[J].金属学报,2008,44(12):1465-1473.
    [48] Yu H Q, Zhu M Y. Three-dimensional magnetohydrodynamic calculation forcoupling multiphase flow in round billet continuous casting mold withelectromagnetic stirring [J]. IEEE Transactions on Magnetics,2010,46(1):82-86.
    [49] Tani M, Tanaka K, Fukunaga S, et al. Pulsating electromagnetic castingtechnique for slab casting [J]. International Journal of Cast Metals Research,2009,22(1-4):298-301.
    [50] Wang H D, Zhu M Y, Yu H Q. Numerical analysis of electromagnetic fieldand flow field in high casting speed slab continuous casting mold withtraveling magnetic field [J]. Journal of Iron and Steel Research, International,2010,17(9):25-30.
    [51]张琦,李廷举,王同敏,等.连铸空心管坯内置行波磁场对凝固组织的影响[J].稀有金属材料与工程,2007,36(9):1566-1569.
    [52]张琦,王同敏,李廷举,等.行波磁场作用下空心管坯的两相凝固数值模拟[J].金属学报,2007,43(6):668-672.
    [53] Zhang Q, Li T J, Wang T M, et al. Effects of AC magnetic field onsolidification structure of continuously cast hollow billet [J]. Ironmaking andSteelmaking,2009,36(2):115-119.
    [54] Yang J R, Chen R R, Ding H S, et al. Flow field and its effect onmicrostructure in cold crucible directional solidification of Nb containingTiAl alloy [J]. Journal of Materials Processing Technology,2013,213:1355-1363.
    [55]樊江磊.定向凝固Ti-46Al-0.5W-0.5Si合金组织演化及层片取向控制[D].哈尔滨:哈尔滨工业大学博士学位论文,2012年7月,28.
    [56] Fan J L,Li X Z, Su Y Q, et al. Dependency of microstructure parameters andmicrohardness on the temperature gradient for directionally solidifiedTi-49Al alloy [J]. Materials Chemistry and Physics,2011(130):1232-1238.
    [57]尧军平,张磊,李海敏.电渣熔铸钢锭微观组织的模拟研究[J].铸造技术,2009,29(12):1670-1673.
    [58] Nia Z F, Suna Y S, Xuea F, et al. Evaluation of electroslag remelting in TiCparticle reinforced304stainless steel [J]. Materials Science and EngineeringA,2011,528:5664-5669.
    [59] Guo P M, Zhang J W, Li Z B, Development of mathematical model of slagfow field and temperature field in ESR system [J]. J. Iron&Steel Res., Int.2000,7(2):27-31.
    [60]刘福斌,姜周华,臧喜民,等.电渣重熔过程渣池流场的数学模拟[J].东北大学学报(自然科学版),2009,30(7):1013-1017.
    [61] Qiu Y Q, Jia G L, Liu X H, et al. Microstructure and mechanical propertiesof electromagnetic centrifugal cast lCr25Ni20Si2tube blank [J]. Journal ofIron and Steel Research, International,2006,13(1):67-69.
    [62]林刚,杨院生,花福安,等.电磁离心1Cr18Ni9Ti不锈钢的凝固组织与变形性能[J].金属学报,2003,39(12):1233-1237.
    [63]贺幼良,杨院生,于力,等.电磁离心铸件宏观组织的数值模拟[J].金属学报,2000,36(8):874-878.
    [64] Long M J, Zhang L F, Lu F. A simple model to calculate dendrite growth rateduring steel continuous casting process [J]. ISIJ International,2010,50(12):1792-1796.
    [65] Zhang H L, Wang E G, Jia G L, et al. Effects of linear electromaglecticstirring on the solidification structure of billet [J]. ACTA Metallurgica Sinica(English Letters),200l,14(3):227-234.
    [66] Zhang X W, Huang J F, Deng K, et al. Solidification of horizontallycontinuous casting of super-thin slab in stable magnetic field and alternatingcurrent [J]. Trans. Nonferrous Met. Soc. China,2011,21:196-201.
    [67] Li K, Hu W R. Magnetic field design for floating zone crystal growth [J].Journal of Crystal Growth,2001,230:125-134.
    [68] Iwai K, Kohama T. Structure of S45C steel solidified under the simultaneousimposition of a static magnetic field and a direct current [J]. ISIJInternational,2010,50(10):1357-1361.
    [69] Zoqui E J, Paes M, Sadiqi E Es. Macro-and microstructure analysis of SSMA356produced by electromagnetic stirring [J]. Journal of MaterialsProcessing Technology,2002,120:365-373.
    [70] Eckert S, Nikrityuk P A, R biger D, et al. Use of time-modulated ACmagnetic fields for melt flow control during unidirectional solidification [J].International Journal of Cast Metals Research,2009,22(1-4):78-81.
    [71] Yuan L, Lee P D, Djambazov G, et al. Numerical simulation of the effect offluid flow on solute distribution and dendritic morphology [J]. InternationalJournal of Cast Metals Research,2009,22(1-4):204-207.
    [72] Govindaraju N. Li B Q. A Macro/micro model for magnetic stirring andmicrostructure formation during solidification [J]. Energy Conversion andManagement,2002,(43):335-344.
    [73]徐达鸣.铸锭凝固过程宏观偏析计算机模拟的统一模型[D].哈尔滨:哈尔滨工业大学博士学位论文,1989:1-80.
    [74]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001:195.
    [75] Patankar S V, Spalding D B. A calculation procedure for heat, mass andmomentum transfer in three-dimensional flows [J]. Int. J. Heat MassTransfer,1972,15:1787-1806.
    [76] Patankar S V. A calculation procedure for two-dimensional elliptic situation[J]. Numerical Heat Transfer,1981,4(4):409-425.
    [77] Spalding D B. A general purpose computer program for multi-dimensionalone-and-two phase flow [J]. Math Comput Simulation,1981,23:267-276.
    [78] Issa R I. Solutio of the implicit discretized fluid flow equations by operatorsplitting [R]. Mechanical Engineering Rept. Imperial College, London,1982,FS/82/15.
    [79] Issa R I, Gosman A D, Watkins A P. The computation of compressible andimcompressible recirculation flows by a non-iterative implicit scheme [J]. J.Comp. Phys.,1986,62:66-82.
    [80] Jang D S, Jetli R, Acharya S. Comparison of the PISO, SIMPLER, andSIMPLEC algorithms for the treatment of the pressure-velocity coupling insteady flow problems [J]. Numerical Heat Transfer,1986,10:209-228.
    [81] Van Doormaal J. P., Raithby G. D. Enhancement of the SIMPLE method forprediction of incompressible fluid flows [J]. Numerical Heat Transfer,1984,7(2):147-163.
    [82] Date A W. Numerical prediction of natural convection heat transfer inhorizontal annulus [J]. Int J Heat Mass Transfer,1986,29:1457-1464.
    [83] Raithby G D, Schneider G E. Elliptic systems, finite difference methods Ⅱ
    [R]. Handbook of numerical heat transfer, New York: John Wiley&Sons,1988:241-289.
    [84] Wang Y, Komori S. On the improvement of the SIMPLE-like method forflows with complex geometry [J]. Heat and Mass Transfer2000,(36):71-78.
    [85] Darwish M, Sraj I, Moukalled F. A coupled finite volume solver for thesolution of incompressible flows on unstructured grids [J]. Journal ofComputational Physics,2009,228:180-201.
    [86] Rahman M M, Siikonen T. An improved SIMPLE method on a collocatedgrid [J]. Numerical Heat Transfer, Part B,2000,38:177-201
    [87] Liu X L, Tao W Q, He Y L. A simple method for improving the SIMPLERalgorithm for numerical simulations of incompressible fluid flow and heattransfer problems [J]. International Journal for Computer-Aided Engineeringand Software,2005,22(8):921-939.
    [88]佟桂芳,徐德龙,张强,等.一种新改进的SIMPLE算法[J].西安建筑科技大学学报,2001,33(3):221-224.
    [89]郭航,马重芳,陶文铨,等. SIMPLE算法的一个新的改进方案[J].西安交通大学学报,2002,36(1):20-24.
    [90] Xu D M, Li Q C. Gravity and solidification-shrinkage-induced liquid flow ina horizontally solidified alloy ingot [J]. NumericalHeat Transfer, Part A,1991,20:203-221.
    [91] Xu D M, Bai Y F, Guo J J, et al. Numerical simulation of heat, mass andmomentum transport behaviors in directionally solidifying alloy castingsunder electromagnetic fields using an extended Direct-SIMPLE scheme [J].Int. J. Numerical Methods in Fluids,2004,46(7):767-791.
    [92] Xu D M, Ni J. A numerical approach of Direct-SIMPLE deduced pressureequations to simulations of transport phenomena during shaped casting [C].First International Multi-Symposium on Computer and ComputationalSciences,2006:815-821.
    [93] Bai Y F, Xu D M, Mao L H, et al. FEM/FDM-joint simulation for transportphenomena in directionally solidifying shaped TiAl casting underelectromagnetic field [J]. ISIJ International,2004,44(7):1173-1179.
    [94] Xu D M, Bai Y F, Guo J J, et al. Heat mass and momentum transportbehaviors in directionally solidifying blade-like castings in differentelectromagnetic fields described using a continuum model [J]. InternationalJournal of Heat and Mass Tansfer,2005(48):2219-2232.
    [95]屈治国,何雅玲,陶文铨.求解流动和传热问题的一种新的全隐算法-CLEAR(上)[J].工程热物理学报,2005,26(1):125-127.
    [96]屈治国,何雅玲,陶文铨.求解流动和传热问题的一种新的全隐算法-CLEAR(下)[J].工程热物理学报,2005,26(1):128-130.
    [97]徐涛,葛长江,邹鹏,等.基于SIMPLER与PISO的流场改进算法[J].吉林大学学报(工学版),2009,39(3):668-672.
    [98]徐涛,葛长江,左文杰,等.基于非正交同位网格下求解N-S方程的快速算法[J].吉林大学学报(工学版),2009,39(6):1521-1526.
    [99]张常贤,高歌,闫文辉.求解不可压缩流动的一种新算法[J].科学技术与工程,2011,11(31):1671-1815.
    [100] Moukalled F, Darwish M. A unified formulation of the segregated class ofalgorithm for fluid flow at all speeds [J]. Numer Heat Transfer, Part B,2000,37:103-139.
    [101] Van D J P, Raithby G D, Enhancements of the SIMPLE method for predictingincompressible fluid flows [J]. Numerical Heat Transfer,1984,7:147-163.
    [102] Zeng M, Tao W Q, A comparison study of the convergence characteristicsand robustness for four variants of SIMPLE-family at fine grids [J].Engineering Computations,2003,20(3):320-340.
    [103]李斌,陈听宽,崔凝. SIMPLEX算法与其他算法收敛特性的比较[J].华北电力大学学报,2004,31(3):51-55.
    [104]葛长江.基于交错_同位和非正交网格求解流场的半隐式快速算法研究[J].长春:吉林大学博士学位论文,2010,(6):4-5.
    [105] Gong H J, Liu Y, Fan X Y, et al. Development of SIMPLE-like algorithmsfor incompressible Navier-Stokes equations in liquid processing of materials[J]. Applied Mechanics and Materials,2012,184-185:944-948.
    [106] Kozarev N, Ilieva N, Sokolovski E. Full scale plume rise modeling in calmand low wind velocity conditions [J]. Clean Techn Environ Policy,2013,21(3):51-53.
    [107] Eck S, Pfeiler C, Mayer F, et al. Experimental and numerical modelling of theflow field in a CuxSny direct chill caster [J]. International Journal of CastMetals Research,2009,22(4),74-77.
    [108] Bhasker C. Flow simulation in electro-static-precipitator (ESP) ducts withturning vanes [J]. Advances in Engineering Software,2011,42(7):501-512.
    [109] Huang B, Wang G Y, Zhao Y, et al. Physical and numerical investigation ontransient cavitating flows [J]. Science China Technological Sciences,2013,56(9):2207-2218.
    [110] Xiong C, Ma Y C, Chen B, et al. Modeling of filling and solidificationprocess for TiAl exhaust valves during suction casting [J]. ACTAMetallurgica Sinica (English letters),2013,26(1):33-48.
    [111] D um C, Laukli H I, Hopperstad O S, Through-process numericalsimulations of the structural behaviour of Al-Si die-castings [J].Computational Materials Science,2009,46:100-111.
    [112] Kermanpur A, Eskandari M, Purmohamad H, et al. Influence of mould designon the solidification of heavy forging ingots of low alloy steels by mumericalsimulation [J]. Materials and Design,2010,31:1096-1104.
    [113] Zhou J X, Chen L L, Liao D M. High pressure diecasting module ofInteCAST software and its applications [J]. Journal of Materials ProcessingTechnology,2007,249-254.
    [114] Nikrityuk P A., Eckert K, Grundmann R. Rotating magnetic field-drivenflows in conductive inhomogeneous media: part I-numerical study [J].Metallurgical and Materials Transactions B,2006,37B:349-359.
    [115] Tani M, Tanaka K, Fukunaga S. Pulsating electromagnetic casting techniquefor slab casting [J]. International Journal of Cast Metals Research,2009,298-301.
    [116] Tian X Y, Li B W, He J C. Numerical analysis of influences of casting speedson fluid flow in funnel shape mould with new type EMBr [J]. InternationalJournal of Cast Metals Research,2010,23(2):73-80.
    [117]陶文琉,赵升吨,林文捷. A356铝合金半固态浆料电磁搅拌法制备过程的数值模拟[J].机械工程学报,2012,48(14):50-57.
    [118] Nakahashi, Kazuhiro. FDM-FEM zonal approach for computations ofcompressible viscous flows [C], Tenth International Conference onNumerical Methods in Fluid Dynamics, Beijing, China, Lecture Notes inPhysics,1986,264:494-498.
    [119] Baea J W, Kangb C G, Kang S B. Mathematical model for the twin roll typestrip continuous casting of magnesium alloy considering thermal flowphenomena [J]. Journal of Materials Processing Technology,2007,191:251-255.
    [120] Si H M, Cho C D, Kwahk S Y. A hybrid method for casting processsimulation by combining FDM and FEM with an efficient data conversionalgorithm [J]. Journal of Materials Processing Technology,2003,(133):311-321.
    [121] Chang F C, Hull J R. Computer modeling of electromagnetic fields and fluidflows for edge containment in continuous casting [J]. Transactions of theASME,2005,(127):724-730.
    [122]史岩彬.基于CFD/NHT分析技术的高炉炼铁过程建模与仿真研究[D].济南:山东大学博士学位论文,2006:5.
    [123]靳星.板坯连铸结晶器内钢液流动行为与模拟方法研究[D].重庆:重庆大学博士学位论文,2011:18-19.
    [124] Mohamed R, Eric A. A dual-dcale coupled micro/macro segregation modelfor dendritic alloy solidification [J]. Heat Mass Transfer,2006,42:1129-1141.
    [125] Arslan H, Sture S. Finite element analysis of localization and micro-macrostructure relation in granular materials. part I: formulation [J]. Acta Mech2008,197:135–152.
    [126]毛斌,张桂芳,李爱武.连续铸钢用电磁搅拌的理论与技术[M].北京:冶金工业出版社,2012:1-27.
    [127]李明勇.牙与固定修复体的动力学研究——振动分析和疲劳测试[D].西安:中国人民解放军第四军医大学博士学位论文,2003:21-23.
    [128]阎照文. ANSYS10.0工程电磁分析技术与实例详解[M].北京:中国水利水电出版社,2006:13-17.
    [129]饶明忠,谭邦定,黄键.电磁场计算中的棱边有限元法[J].中国电机工程学报,1994,14(5):63-69.
    [130]张秀敏,苑津莎,崔翔.用棱边与节点有限元耦合的E-E-ψ法计算三维涡流场[J].中国电机工程学报,2003,23(5):70-74.
    [131]张秀敏.棱边有限元法的理论研究及其在工程涡流计算中的应用[D].北京:华北电力大学工学博士学位论文,2003:1-3.
    [132]孙明礼,胡仁喜,崔海蓉,等. ANSYS10.0电磁学有限元分析实例指导教程[M].北京:机械工业出版社,2007:4-5.
    [133] Barna M, Javurek M, Reiter J, et al. Numerical simulations of the continuouscasting of steel with electromagnetic braking and stirring [C].1st Conferenceon Multiphysics Simulation-Advanced Methods for Industrial Engineering,Bonn, Germany,2010:25-26.
    [134]茄菊红.电磁场下钢锭连铸凝固传输行为耦合数值模拟[D].哈尔滨:哈尔滨工业大学硕士学位论文,2007:46.
    [135] Gong H J, Li X Z, Fan X Y, et al. Numerical simulation of flow and heattransfer of continous cast steel slab under traveling magnetic field [J]. ChinaFoundry,2013,10(2):92-98.
    [136]张宏丽,王恩刚,贾光霖,等.线性电磁搅拌器电磁场分布的数值模拟[J].东北大学学报(自然科学版),2002,23(4):352-354.
    [137]吕国伟,苏彦庆,毕维生,等.行波磁场发生器上磁场分布及其熔体充型特征[J].特种铸造及有色合金,2007,27(12):957-959.
    [138]于湛.电磁场控制连铸结晶器内流动研究[D].上海:上海大学博士学位论文,2009,32-33.
    [139] Jinsoo Kim. Interfacial heat transfer of a single belt casting process [D]. Athesis for degree of Master of Engineering, McGill University, Canada,2000:11.
    [140] Chen R R, Huang F, Guo J J, et al. Effect of parameters on the grain growthof silicon ingots prepared by electromagnetic cold crucible continuouscasting [J]. Journal of Crystal Growth2011,332:68-74.
    [141]陈瑞润,丁宏升,郭景杰,等.冷坩埚连续熔铸与定向凝固Ti6Al4V合金的温度场计算[J].稀有金属材料与工程,2007,36(10):1722-1727
    [142] Kim T W, Jeong H Y. Hydroplaning simulations for tires using FEM, FVMand an asymptotic method [J]. International Journal of AutomotiveTechnology,2010,11(6):901-908.
    [143]孙逊,安阁英,苏仕方,等.铸件充型凝固过程数值模拟发展现状[J].铸造,2000,49(2):84-89.
    [144]徐达鸣.材料凝固成形多尺度多场量耦合计算机模型化[J].中国基础科学,2004,3:17-24.
    [145]白云峰.钛合金冷坩埚电磁定向凝固传输过程耦合模型与数值计算[D].哈尔滨:哈尔滨工业大学博士学位论文,2006:24.
    [146] Xu D M. A unified micro-scale parameter approach to solidification-transport phenomena-based macrosegregation modeling for dendritic solidi-fication: part I mixture average based analysis [J]. Metallurgical andMaterials Transactions B,2001,32B:1129-1141.
    [147] Xu D M. A Unified Micro-scale parameter approach to solidification-transport process-based macrosegregation modeling for dendritic solidi-fication: part II numerical example computations [J]. Metallurgical andMaterials Transactions B,2002,33B:451-463.
    [148]白云峰.航空发动机叶片定向凝固三维三传数值模拟[D].哈尔滨:哈尔滨工业大学硕士学位论文,2002:12-14.
    [149]郝志强,镍基高温合金凝固过程组织模拟与仿真[D].北京:北京交通大学硕士学位论文,2006:24-28.
    [150]胡仁喜,龙凯,党沙沙,等. ANSYS13.0多物理耦合场有限元分析从入门到精通[J].第二版,北京:机械工业出版社,2012:2-3.
    [151] Yang J R, Chen R R, Ding H S, et al, Numerical calculation of flow fieldinside TiAl melt during rectangular cold crucible directional solidification[J]. Trans. Nonferrous Met. Soc. China2012,(22):157-163.
    [152] Mookum T, Wiwatanapataphee B, Wu Y H. Turbulent flow and heat transferproblem in the electromagnetic continuous casting process [J]. InternationalJournal of Mathematics and Computers in Simulation,2011,5(4):310-317.
    [153]张潇,王延荣,张小伟,等.基于多层动网格技术的流固耦合方法研究[J].船舶工程,2009,31(1):64-66.
    [154]冶运涛,王兴奎,李丹勋.基于纹理图像的流场动态可视化模拟研究[J].水利水电技术,2010,41(4):24-28.
    [155]龚海军,徐达鸣,傅恒志.三维电磁场有限元数据到有限差格式的转换算法[J].哈尔滨工业大学学报,2010,42(9):1418-1423.
    [156]关洋.铸件充型凝固过程数值模拟前后处理技术研究[D].沈阳:沈阳铸造研究所硕士论文,2004:4-5.
    [157]傅永华.有限元分析基础[M].武汉:武汉大学出版社,2003:49.
    [158] Gong H J, Li X Z, Fan X Y, et al. Data-conversion and displaying fornumerical simulation of EMCC with FEM-FVM-joint method [J]. AdvancedMaterials Research,2012,418:563-566.
    [159]宋永恒,荆涛,周舰.三维凝固过程温度场可视化研究[J].新技术新工艺,2001,(12):8-10.
    [160]刘烨,刘瑞祥,周建新,等.凝固模拟的可视化研究[J].铸造,2000,49(6):340-343.
    [161]怀刚,李梅娥,邢建东.基于有限差分网格的凝固模拟后处理研究[J].铸造,2003,52(5):350-352.
    [162] Jun K, Noriko K, Toshio I, et al. Steel flow control in continuous slab castermold by traveling magnetic field [J]. NKK Technical Review2001,(85):1-9.
    [163]毛斌,陶金明,李晋,等.板坯连铸结晶器电磁控制流动技术[J].连铸,2006,(6):32-37.
    [164]毛斌.连铸电磁冶金技术第六讲-板坯连铸结晶器电磁控流技术[J].连铸,2000,(2):41-44.
    [165] Gong H J, LI X Z, Qie J H, et al, Numerical simulation of transportphenomena in continuous casting of steel plates with electromagnetic brake[J]. Journal of Harbin Institute of Technology (New Series),2012,19(6):6-12.
    [166] Zhang L F, Wang Y F, Zuo X G. Flow transport and inclusion motion in steelcontinuous-casting mold under submerged entry nozzle clogging condition[J]. Metallurgical and Materials Transactions B,2008,39B:534-550.
    [167] Zhang L F, Yang S B, Cai K K, et al. Investigation of fluid flow and steelcleanliness in the continuous casting strand [J]. Metallurgical and MaterialsTransactions B,2007,38B (1):63-83.
    [168]赫冀成.电磁场对改善钢材质量的作用[J].钢铁,2005,40(1):24-30.
    [169]壬子平. IF钢中成分及夹杂物的过程控制研究[D].沈阳:东北大学博士学位论文,2006:69.
    [170]战东平,宋景欣,姜周华,等.连铸结晶器电磁制动的使用效果分析[J].中国冶金,2006,16(5):23-25.
    [171] Deep S, Nicholas Z. Control of macrosegregation during the solidification ofalloys using magnetic fields [J]. International Journal of Heat and MassTransfer,2006,49:4850-4866.
    [172] Kim D S, Kim W S, Cho K H. Numerical simulation of the coupled turbulentflow and macroscopic solidification in continuous casting withelectromagnetic brake [J]. ISIJ International,2000,40(7):670–676.
    [173] Guthrie R I L, Isac M, Li D H. Ab-initio predictions of interfacial heat fluxesin horizontal single belt casting (HSBC), Incorporating Surface Texture andAir Gap Evolution [C]. ISIJ International,2010,50(12):1805–1813.
    [174] Frederico D C F, Guilherme A D, Júlio C D S P, et al. Analisys of a metaldelivery system for strip casting in single-belt casters by mathematicalmodeling [C]. IAS Steelmaking Conference,4th Ironmaking Conference and5th ISS Argentina Section Meeting, San Nicolas,2003:10-20.
    [175] Nttto P G Q, Guithrie R I L. Modelling of a novel configuration forsingle-belt caster: The influence of empirical parameters on the solidificationprofile [J]. ISIJ International,2000,40(5):460-468.
    [176] Guthrie R. I. L, Tavares R P. Mathematical and physical modelling of steelflow and solidification in twin-roll/horizontal belt thin-strip castingmachines [J]. Applied Mathematical Modelling1998,22:851-872.
    [177]雷洪,金永丽,朱苗勇.连铸结晶器内电磁制动过程的数值模拟[J].钢铁研究学报,2002,14(3):13-18.
    [178] Liu D M, Li X Z, Su Y Q. Microstructure evolution in directionally solidifiedTi-(50,52) at%Al alloys [J]. Intermetallics2011,(19):175-181.
    [179] Luo W Z, Shen J, Min Z X. A band microstructure in directionally solidifiedhypo-peritectic Ti-45Al alloy [J]. Materials Letters,2009(63):1419-1421.
    [180] Su Y Q, Liu C, Li X Z. Microstructure selection during the directionallyperitectic solidification of Ti-Al binary system [J]. Intermetallics,2005,(13):267-274
    [181]赵光伟.多元多相合金宏微观凝固传输数值模拟及实验研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2011:131-138.
    [182]傅恒志,李新中,刘畅,等. Ti-Al包晶合金定向凝固及组织选择[J].中国有色金属学报,2005,15(4):495-505.
    [183]傅恒志,郭景杰,苏彦庆,等. TiAl金属间化合物的定向凝固和晶向控制[J].中国有色金属学报,2003,13(4):797-810.
    [184] Johnson D R, Inui H, Yamaguichi M. Crystal growth of TiAl alloys [J].Intermetallics,1998,6:647-652.
    [185] Liu D M, Li X Z, Su Y Q. Microstructure evolution in directionally solidifiedTi-(50,52) at%Al alloys [J]. Intermetallics2011,(19):175-181.
    [186] Luo W Z, Shen J, Min Z X. A band microstructure in directionally solidifiedhypo-peritectic Ti–45Al alloy [J]. Materials Letters,2009(63):1419-1421.
    [187] Su Y Q, Liu C, Li X Z. Microstructure selection during the directionallyperitectic solidification of Ti-Al binary system [J]. Intermetallics,2005,(13):267-274
    [188]樊江磊.定向凝固Ti-43Al-3Si合金组织演化规律研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2008:21-22.
    [189]彭鹏. Ti-53at%Al包晶合金定向凝固组织演化规律研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2009:21-22.
    [190]彭桂林. γ-TiAl基金属间化合物电磁成形定向凝固及组织特性研究[D].西安:西北工业大学硕士学位论文,2004:47-59.
    [191] Sobczak R N T L, Novakovic E R D G R, Egry D H M I. Surface tension ofγ-TiAl-based alloys [J]. J Mater Sci2010,45:1993-2001.
    [192] Mullins W W, Sekerka R F. Stability of a planar interface duringsolidification of a dilute binary alloy [J]. J Appl Phys,1964,35(2):444-451.
    [193]刘畅. TiAl二元包晶合金定向凝固组织形成规律研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2007:56-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700