基于异质结和导电聚合物对电极的染料敏化太阳能电池研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染料敏化太阳能电池(DSSC)由于具有制备过程简单、成本低、环境友好和光电转换效率高等优点,成为当前新型太阳能电池领域的研究热点。根据该领域研究中存在的关键科学技术问题,本文开展了基于异质结和导电聚合物对电极的染料敏化太阳能电池研究,以达到提高电池效率和降低成本的效果。主要研究内容和结果如下:
     第一章:较为全面地综述了太阳能电池的国内外研究进展,重点介绍了DSSC的发展、研究现状、基本原理、表征手段和DSSC目前存在的问题,阐述了本论文的研究目的和科学意义。
     第二章:基于掺氟导电玻璃(FTO)制备非典聚3-己基噻吩/6,6-苯基-C61丁酸甲酯(P3HT/PCBM)异质结杂化太阳能电池(HSC)。紫外-可见光谱表明作为电子给体和受体材料的P3HT和PCBM具有良好的光敏化功能;直接以P3HT/PCBM溶液代替染料和I–/I3–氧化还原电解质作为空穴传输介质,制备出高效率的HSC。在P3HT/PCBM质量比为1:2的优化条件下,获得2.97%的光电转换效率。
     第三章:以高导电性的聚3,4-乙基二氧噻吩:聚苯乙烯磺酸盐(PEDOT:PSS)作为电子-空穴传输介质,制备FTO/PEDOT:PSS/TiO_2/PCBM:P3HT/Pt异质结固态杂化太阳能电池。在真空环境下120℃热处理PEDOT:PSS膜及电池器件,在标准太阳光照射下获得1.90%的最佳光电性能。
     第四章:利用P3HT或聚3-辛基噻吩(P3OT)作为空穴传输介质,TiO_2作为紫外光吸收剂和电子导体,首次设计和制备紫外光响应的异质结杂化太阳能电池FTO/TiO_2/P3HT/Pt和FTO/TiO_2/P3OT/Pt。紫外-可见吸收光谱和单色光转换光谱表明TiO_2膜、P3HT/TiO_2膜和P3OT/TiO_2膜在300-400nm都显示了较强的紫外光响应。在100mW·cm~(-2)紫外光照射下,其光电转换效率分别达到1.28%和1.16%。该电池在暗条件下和紫外光辐照下均具有良好的稳定性,并通过添加无机盐在导电聚合物中优化电池的效能。
     第五章:热裂解法制备Pt/C60对电极,化学池沉积制备TiO_2-聚(二烯丙基二甲基氯化铵)-碲化镉(TiO_2-PDDA-(CdTe)n)光阳极,并组装CdTe量子点敏化的异质结杂化太阳能电池。对比基于I–/I3–、S2–/Sx和PCBM/P3HT的不同传输电解质制备的器件性能,发现以空穴传输材料和协助敏化剂的PCBM/P3HT制备的电池效率最高。在100mW·cm–2标准太阳光照射下,获得3.40%的光电转换效率。
     第六章:利用具有高电导率的导电聚合物PEDOT:PSS,制备PEDOT:PSS/C对电极导电浆料,刮涂法制备PEDOT:PSS/C对电极,80℃真空热处理组装的DSSC在100mW·cm~(-2)模拟太阳光辐照下获得7.61%的光电转换效率。扫描电镜表明PEDOT:PSS/C对电极具有大的比表面积;循环伏安测试、电阻率和电导率的实验证明,PEDOT:PSS/C对电极具有很小的电荷传输电阻和优良的电导率,在电解质I–/I3–体系中具有良好的电化学催化性能。
     第七章:循环伏安法制备具有低电化学阻抗和高电导率的导电聚合物PEDOT:PSS/聚吡咯(PPy)复合膜,并作为对电极将其应用于DSSC,在标准太阳光照射下,获得7.60%的光电转换效率。PEDOT:PSS/PPy对电极的电子扫描显微镜测试表明其具有高的电化学活性表面积和较大的粗糙面;各种电化学表征表明PEDOT:PSS/PPy对电极具有良好的电催化活性。
     第八章:采用水热法合成硫化钨(WS2)并成功修饰在多壁碳纳米管(MWCNT),混浆法在导电玻璃基底制备MWCNT-WS2对电极,并首次应用于DSSC。循环伏安和电化学阻抗等广泛的电化学表征表明MWCNT-WS2对电极具有良好的电催化活性和更小的电化学阻抗;研究了MWCNT对对电极电催化活性和DSSC光电性能的影响,发现当MWCNT含量为5wt.%时电催化性能最好。在100mW·cm–2标准太阳光照射下,基于MWCNT-WS2对电极组装的DSSC光电转换效率达到6.41%,开路电压、短路电流和填充因子分别为0.73V、13.51mA·cm~(-2)和0.65。
     第九章:总结本论文的主要研究内容和创新点,并对今后的工作作出展望。
Dye-sensitized solar cell (DSSC) has been one of the hot-spots in the field ofsolar cells, because of its simple fabrication process, low cost, environmentallyfriendly and high efficiency. According to the problems of key scientific andtechnicol in this filed, the research in dye-sensitized solar cell based on theheterojunction and conducting polymer counter electrodes was carried out in thispaper to improve the performance and reduce the cost of device. There are somemajor works and results in the following:
     In chapter1, it demonstrated the research progress of DSSCs at home and abroad.The development process, current study situation, fundamentals, charccterization andproblems of the DSSC were described emphatically, and the research purpose andsignificance of the thesis were also illustrated.
     In chapter2, an iodine/iodide-free and poly (3-hexylthiophene)/6,6-phenyl-C61-butyric acid methyl ester (P3HT/PCBM) heterojunction hybrid solarcell (HSC) was fabricated based on the fluorine-doped tin oxide conductive glasssubstrate (FTO). The UV-vis spetra showed that the P3HT and PCBM as the electrondonor and acceptor materials had excellent sensitization functions. A HSC with highefficient was fabricated by using P3HT/PCBM as charge carrier transferring mediumto replace dye and I/I3redox electrolyte. Under an optimized condition withP3HT/PCBM mass ratio of1:2, the heterojunction hybrid solar cell achieved alight-to-electric energy conversion efficiency of2.97%.
     In chapter3, the poly (3,4-ethylenedioxythiophene):polystyrenesulfonate(PEDOT:PSS) with high conductivity served as electron-hole transporting materialto construct a heterojunction solid-state hybrid solar cell with the structure ofFTO/PEDOT:PSS/TiO_2/PCBM:P3HT/Pt. The PEDOT:PSS film and device wereheated at120℃in vacuum environment, and the heterojunction hybrid solar cellobtained the power conversion efficience of1.90%under a simulated solar light illumination of100mW·cm~(-2).
     In chapter4, an ultraviolet responsive hybrid solar cell based on titaniumdioxide/poly (3-octylthiophene-2,5-diyl)(TiO_2/P3OT) or TiO_2/P3HT heterojunctionwas devised. In the solar cell, TiO_2as an ultraviolet light absorber and electronicconductor, P3OT or P3HT as a hole conductor, the light-to-electric conversion wasrealized by the cooperation between these two components. It could be demonstratedby the UV-vis spectra and IPCE curves that the TiO_2film, the P3HT/TiO_2film, andthe P3OT/TiO_2film all showed wide and strong absorption in300-400nm. UnderUV light irradiation with the intensity of100mW·cm~(-2), the light-to-electric energyconversion efficiency of the heterojunction hybrid solar cells with P3HT and P3OTwere1.28%and1.16%, respectively. The stabilities of solar cells based on P3HTand P3OT polymer were measured in dark and UV light soaking, and optimized theperformance of the heterojunction hybrid solar cell by doping inorganic salt in theconductive polymer solution.
     In chapter5, a novel CdTe quantum dots sensitized heterojunction hybrid solarcell was fabricated with Pt/C60counter electrode and TiO_2–polydimethyldiallylammonium (PDDA)-CdTe photoanode. In this solar cell, the microporous Pt/C60counter electrode was prepared by using a facile thermal decomposition method andthe TiO_2–PDDA–CdTe photoanode was prepared by using chemical bath depositionmethod. When comparing the device with different transferring medium of I/I3,S2/Sx and PCBM/P3HT, significant improvement on the power conservsionefficiency was observed in the device based on PCBM/P3HT, and resulted in a highpower conversion efficiency of3.40%under light irradiation with intensity of100mW·cm–2.
     In chapter6, a novel counter electrode with high conductivity and excellentelectrochemical catalytic activity for dye-sensitized solar cell was prepared bycoating PEDOT:PSS on FTO at low temperature. The experimental results showedthat DSSC obtained the optimal photoelectric performance for PEDOT:PSS/carboncounter electrode annealed at80℃under vacuum condition. The overall energyconversion efficiency of the DSSC with PEDOT:PSS/carbon counter electrode reached7.61%under a simulated solar light illumination of100mW·cm~(-2). Thescanning electron microscopy (SEM) indicated that the PEDOT:PSS/carbon counterelectrode prossessed large specific surface area. It was demonstrated by the cyclicvoltammetry, resistivity and conductivity measurements that the PEDOT:PSS/carboncounter electrode illustrated excellent electrocatalytic activity in the I/I3system.
     In chapter7, a PEDOT:PSS/polypyrrole (PPy) composite film was preparedand employed as counter electrode in dye-sensitized solar cell by cyclicvoltammetry polymerization method. The power conversion efficiency of the DSSCbased on the PEDOT:PSS/PPy counter electrode obtained7.60%under a simulatedsolar light illumination of100mW·cm~(-2). It could be inferred from the SEM that thePEDOT:PSS/PPy film was expected to possess a high effective electrochemicalsurface area and large rough surface. The electrochemical measurements showedthat the PEDOT:PSS/PPy film had a low surface resistance, high conductivity, andexcellent catalytic performance for the I/I3electrolyte.
     In chapter8, multi-wall carbon nanotubes decorated with tungsten sulfide(MWCNT-WS2) were synthesized by using a hydrothermal method and wasincorporated into a Pt-free DSSC system as counter electrode with doctor blademethod for the first time. Cyclic voltammetry and electrochemical impedancespectroscopy characterizations indicated that the counter electrode had a highcatalytic activity for the reduction of triiodide to iodide and a low charge transferresistance at the electrolyte–electrode interface. The influence of MWCNT contentsto the catalytic activity of counter electrode and performance of the dye-sensitizedsolar cell were discussed, and it was found that the device possessed the optimalperformance with MWCNT ratio of5wt.%. A high power conversion efficiency ofDSSC based on the counter electrode achieved6.41%under a simulated solarillumination of100mW·cm–2, and corresponding to the short-circuit current density(Jsc) of13.51mA·cm–2, the open-circuit voltage (Voc) of0.73V and the fill factor(FF) of0.65, respectively.
     In chapter9, it gave a summation for the major research and innovation of thethesis, and offered prospects on the future progress of the work.
引文
[1] Becquerel E. Memoire surles effets electriques produits sousl influence des rayons solaires.Acad C. R. Sci. Paris,1839,9:561~566
    [2] Ghosh A. K., Morel D. L., Feng T., et al. Photovoltaic and rectification properties of Al/Mgphthalocyanine/ag schotty-barrier cells. J Appl. Phys.,1974,45:230~236
    [3] Hastings J. M., Pouget J. P., Shirane G., et al. One-dimensional phonons and“phase-ordering” phase transition in mercury hexafluoro-arsenate Hg3-dAsF6. Phy. Rev.Lett.,1977,39:1484~1487
    [4] Chiang C. K., Fincher C. R., Park Y. W., et al. Electrical conductivity in dopedpolyacetylene. Phy. Rev. Lett.,1977,39:1098~1101
    [5] Weinberger B. R., Ehrenfreund E., Pron A., et al. Electron spin resonance studies ofmagnetic soliton defects in polyacetylene. J Chem. Phy.,1980,72:4749~4755
    [6] Glenis S., Tourillon G., Garnier F. Photoelectrochemical properties of thin films ofpolythiophene and derivatives: doping level and structure effects. Thin Solid Films,1984,122:9~17
    [7] Glenis S., Tourillon G., Garnier F. Influence of the doping on the photovoltaic properties ofthin films of poly-3-methylthiophene. Thin Solid Films,1986,139:221~224
    [8] Sariciftci N. S., Smilowitz L., Heeger A. J., et al. Photoinduced electron transfer from aconducting polymer to Buckminster fullerene. Science,1992,258:1474~1476
    [9] Ma W., Yang C. Y., Gong X., et al. Thermally stable, efficient polymer solar cells withnanoscale control of the interpenetrating network morphology. Adv. Funct. Mater.,2005,15:1617~1619
    [10] Dou L., You J., Yang J., et al. Tandem polymer solar cells featuring a spectrally matchedlow-bandgap polymer. Nat. Photonics,2012,6:180~185
    [11] O’Regan B., Gr tzel M. A Low-cost high-efficiency solar cell based on dye-sensitizedcolloidal TiO2Films. Nature,1991,353:737~740
    [12] Yella A., Lee H. W., Tsao H. N., et al. Porphyrin-sensitized solar cells with cobalt(II/III)–based redox electrolyte exceed12percent efficiency. Science,2011,334:629~634
    [13] Chung I., Lee B., He J., et al. All-solid-state dye-sensitized solar cells with high efficiency.Nature,2012,485:485~450
    [14] Gr tzel M. Photoelectrochemical cells. Nature,2001,414:338~344
    [15] Nazeeruddin M. K., Kay A., Rodicio I., et al. Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X=Cl, Br,I, CN, and SCN) on nanocrystalline titanium dioxide electrodes. J Am. Chem. Soc.,1993:115~124
    [16] Hao S. C., Wu J. H., Fan L. Q., et al. The influence of acid treatment of TiO2porous filmelectrode on photoelectric performance of dye-sensitized solar cell. Sol. Energy,2004,76:745~750
    [17] Spivack J., Siclovan T., Gasaway S., et al. Improved efficiency of dye sensitized solar cellsby treatment of the dyed titania electrode with alkyl (trialkoxy) sllanes. Sol. Energy Mater.Sol. Cells,2006,90:1296~1307
    [18] Murayama M., Mori T. Evaluation of treatment effects for high-performance dye-sensitizedsolar cells using equivalent circuit analysis. Thin Solid Films,2006,509:123~126
    [19] Nazeeruddin M. K., Humphry-Baker R., Liska P., et al. Investigation of sensitizeradsorption and the influence of protons on current and voltage of a dye-sensitizednanocrystalline TiO2solar cell. J Phy. Chem. B,2003,107:8981~8987
    [20] Lewis L. N., Spivack J. L., Gasaway S., et al. A novel UV-mediated low-temperaturesintering of TiO2for dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells,2006,90:1041~1051
    [21] Song M. Y., Kim D. K., Jo S. M., et al. Enhancement of the photocurrent generation indye-sensitized solar cell based on electrospun TiO2electrode by surface treatment. Synth.Met.,2005,155:635~638
    [22] Hart J. N., Cervini R., Cheng Y. B., et al. Formation of anatase TiO2by microwaveprocessing. Sol. Energy Mater. Sol. Cells,2004,84:135~143
    [23] Kim H., Auyeung R. C. Y., Ollinger M., et al. Laser-sintered mesoporous TiO2electrodesfor dye-sensitized solar cells. Appl. Phys. A,2006,83:73~76
    [24] Kavan L., Rathousky J., Gratzel M., et al. Mesoporous thin film TiO2electrodes.Microporous Mesoporous Mater.,2001,44-45:653~659
    [25] Cameron P. J., Peter L. M. Characterization of titanium dioxide blocking layers indye-sensitized nanocrystalline solar cells. J Phys. Chem. B,2003,107:14394~14400
    [26] Palomares E., Clifford J. N., Haque S. A., et al. Control of charge recombination dynamicsin dye sensitized solar cells by the use of conformally deposited metal oxide blockinglayers. J Am. Chem. Soc.,2003,125:475~482
    [27] Wang P., Wang L.-D., Li B., et al. Improved voltage and fill factor by using zinc oxide thinfilm as a barrier layer in dye-sensitized solar cells. Chinese Phys. Lett.,2005,22:2708~2715
    [28] Tennakone K., Senadeera G. K. R., Perera V. P. S., et al. Dye-sensitizedphotoelectrochemical cells based on porous SnO2/ZnO composite and TiO2films with apolymer electrolyte. Chem. Mater.,1999,11:2474~2477
    [29] Tai W.-P., Inoue K. Eosin Y-sensitized nanostructured SnO2/TiO2solar cells. Mater. Lett.,2003,57:1508~1513
    [30] Cameron P. J., Peter L. M. How does back-reaction at the conducting glass substrateinfluence the dynamic photovoltage response of nanocrystalline dye-sensitized solar cells.J Phys. Chem. B,2005,109:7392~7398
    [31] Usami A. Rigorous solutions of light scattering of neighboring TiO2particles innanocrystalline films. Sol. Energy Mater. Sol. Cells,1999,59:163~166
    [32] Usami A. A theoretical simulation of light scattering of nanocrystalline films inphotoelectrochemical solar cells. Sol. Energy Mater. Sol. Cells,2000,62:239~246
    [33] Ferber J., Luther J. Computer simulations of light scattering and absorption indye-sensitized solar cells. Sol. Energy Mater. Sol. Cells,1998,54:265~275
    [34] Wang Z. S., Kawauchi H., Kashima T., et al. Significant influence of TiO2photoelectrodemorphology on the energy conversion efficiency of N719dye-sensitized solar cell. Coord.Chem. Rev.,2004,248:1381~1389
    [35] Hore S., Nitz P., Vetter C., et al. Scattering spherical voids in nanocrystalline TiO2enhancement of efficiency in dye-sensitized solar cells. Chem. Commun.,2005,2011~2013
    [36] Lee S., Jun Y., Kim K.-J., et al. Modification of electrodes in nanocrystalline dye-sensitizedTiO2solar cells. Sol. Energy Mater. Sol. Cells,2001,65:193~200
    [37] Wang J. L., Wu J. H., Lin J. M., et al. Application of Y2O3:Er3+nanorods in dye-sensitizedsolar cells. ChemSusChem,2012,5:1307~1312
    [38] Wu J. H., Wang J. L., Lin J. M., et al. Enhancement of photovoltaic performance ofdye-sensitized solar cells by doping Y0.78Yb0.20Er0.02F3. Adv. Energy Mater.,2012,2:78~81.
    [39] Parkansky N., Alterkop B., Goldsmith S., et al. Nano-organization of thin titanium films byan electrical field during vacuum arc deposition. Thin Solid Films,2000,3,77-378:507~511
    [40] Dong W., Pang G., Shi Z., et al. Oriented organization of shape-controlled nanocrystallineTiO2. Mater. Res. Bull.,2004,39:433~438
    [41] Zukalova M., Zukal A., Kavan L., et al. Organized mesoporous TiO2films exhibitinggreatly enhanced performance in dye-sensitized solar cells. Nano Lett.,2005,5:1789~1792
    [42] Malfatti L., Falcaro P., Amenitsch H., et al. Mesostructured self-assembled titania films forphotovoltaic applications. Microporous Mesoporous Mater.,2006,88:304~311
    [43]倪似愚,张燕飞,倪世容.直径可控阳极氧化铝表面有序纳米孔阵列对脐静脉内皮细胞黏附行为的影响.2012,16(29):5336~5340
    [44]曹艳玲,王艳平,朱永政,等.聚苯乙烯胶体晶体模板制备高质量的二氧化钛孔型材料.科学通报,2006,51(13):1509~1512
    [45] Keis K., Vayssieres L., Lindquist S.-E., et al. Nanostructured ZnO electrodes forphotovoltaic applications. Nanostruct. Mater.,1999,12:487~490
    [46] Fernando C. A. N. Efficient charge separation process in a dye sensitizedp-Cu2O/p-CuCNS photoelectrochemical cell. Sol. Energy Mater. Sol. Cells,1993,28:375~380
    [47] Islam M. R., Masui M., Muranoi T., et al. Photo properties of the dye-sensitized metal oxidepowder thick films. Appl. Surf. Sci.,1997,113-114:485~488
    [48] Guo P., Aegerter M. A. Ru (II) sensitized Nb2O5solar cell made by the sol-gel process.Thin Solid Films,1999,351:290~294
    [49] Turkovic A., Cmjak Orel Z. Dye-sensitized solar cell with CeO2and mixed CeO2/SnO2photoanodes. Sol. Energy Mater. Sol. Cells,1997,45:275~281
    [50] Mane R. S., Pathan H. M., Lokhande C. D., et al. An effective use of nanocrystalline CdOthin films in dye-sensitized solar cells. Sol. Energy,2006,80:185~190
    [51] Nakasa A., Usami H., Sumikura S., et al. A high voltage dye-sensitized solar cell using ananoporous NiO photocathode. Chem. Lett.,2005,34:500~501
    [52] Li L., Yang X. C., Gao J. J., et al. Highly efficient CdS quantum dot-sensitized solar cellsbased on a modified polysulfide electrolyte. J Am. Chem. Soc.,2011,133:8458~8460
    [53] Yang Z. S., Chen C.-Y., Liu C.-W., et al. Electrocatalytic sulfur electrodes for CdS/CdSequantum dot-sensitized solar cells. Chem. Commun.,2010,46:5485~5487
    [54] Tennakone K., Kumara G. R. R. A., Kumarasinghe A. R., et al. A dye-sensitizednano-porous solid-state photovoltaic cell. Semicond Sci. Technol.,1995,10:1689~1693
    [55] O'Regan B., Schwartz D. T. Large enhancement in photocurrent efficiency caused by UVillumination of the dye-sensitized heterojunction TiO2/RuLL'NCS/CuSCN: initiation andpotential mechanisms. Chem. Mater.,1998,10:1501~1509
    [56]武卫兵,靳正国,华缜,等.电化学沉积法制备CuSCN固体电解质薄膜的研究.太阳能学报,2006,27(2):141~145
    [57] Tennakone K., Senadeera G. K. R., De Silva D. B. R. A., et al. Highly stable dye-sensitizedsolid-state solar cell with the semiconductor CuBr3S(C4H9)2as the hole collector. Appl.Phys. Lett.,2000,77:2367~2369
    [58] Bandara J., Weerasinghe H. Solid-state dye-sensitized solar cell with p-type NiO as a holecollector. Sol. Energy Mater. Sol. Cells,2005,85:385~390
    [59] James T. H. The theory of the photographic process,4th ed. Macmillan: New York,1977
    [60] West W. Proceedinds of the vogel centennial symposium. Photogr. Sci. Eng.,1974,18:35~39
    [61] Janssen R. A. J., Sariciftci N. S., Heeger A. J. Photoinduced absorption of conjugatedpolymer/C60solutions: evidence of triplet-state photoexcitations and triplet-energytransfer in poly (3-alkylthiophene). J Chem. Phys.,1994,100:8641~8645
    [62] Ma W., Yang C., Gong X., et al. Thermally stable, efficient polymer solar cells withnanoscale control of the interpenetrating network morphology. Adv. Funct. Mater.,2005,15:1617~1622
    [63] Schilinsky P., Waldauf C., Brabec Christoph J. Performance analysis of printed bulkheterojunction solar cells. Adv. Funct. Mater.,2006,16:1669~1672
    [64] Yu G., Gao J., Hummelen J. C., et al. Polymer photovoltaic cells: enhanced efficiencies via anetwork of internal donor-acceptor heterojunctions. Science,1995,270:1789~1791
    [65] Liang Y., Feng D., Wu Y., et al. Highly efficient solar cell polymers developed viafine-tuning of structural and electronic properties. J Am. Chem. Soc.,2009,131:7792~7799
    [66] Liang Y., Xu Z., Xia J. B., et al. For the bright future—bulk heterojunction polymer solarcells with power conversion efficiency of7.4%. Adv. Eng. Mater.,2010,22: E135~E138
    [67] Li G., Zhu R., Yang Y. Polymer solar cells. Nat. Photonics,2012,6:153~161
    [68] Hou Y. J., Xie P. H., Zhang B. W., et a1. Influence of the attaching group and substitutedposition in the photosensitization behavior of ruthenium polypyridyl complexes. Inorg.Chem.,1999,38:6320~6322
    [69] Lee K. E., Gomez M. A., Elouatik S., et a1. Further understanding of the adsorptionmechanism of N719sensitizer on anatase TiO2films for DSSC applications usingvibrational spectroscopy and confocal raman imaging. Langmuir,2010,26:9575~9583
    [70] Nazeeruddin K. M., Prchy P., Renouard T., et. a1. Engineering of efficient panchromaticsensitizem for nanoerystalline TiO2based solar cells. J Am. Chem. Soc.,2001,123:1613~1624
    [71] Hara K., Sugihara H., Tachibana Y., et al. Dye-sensitized nanocrystalline TiO2solar cellsbased on ruthenium (II) phenanthroline complex photosensitizers. Langmuir,2001,17:5992~5999
    [72] Hara K., Horiuchi H., Katoh R., et al. Effect of the ligandstructure on the efficiency ofelectron injection from excitedru-phenanthroline complexes to nanocrystalline TiO2film.J Phys. Chem. B,2002,106:374~379
    [73] Yanagida M., Singh L. P., Sayama K., et al. A new efficient photosensitizer fornanocrystalline solar cells: synthesis and characterization of cis-bis (4,7-dicarboxy-1,10-phenanthroline) dithiocyanato ruthenium(II). J Chem. Soc., Dalton.Trans.,2000,2817~2822
    [74] Hara K., Sugihara H., Singh L. P., et al. New Ru (II) phenanthroline complex photosensitizers having different number of carboxyl groups for dye-sensitized solar cells. JPhotochem. Photobio. A,2001,145:117~122
    [75] Yanagida M., Islam A., Tachibana Y., et al. Dye-sensitized solar cells based onnanocrystalline TiO2sensitized with a novel pyridylquinoline ruthenium (II) complex.New J Chem.,2002,26:963~965
    [76] Ruile S., Kohle O., Pechy P., et al. Novel sensitisers for photovoltaic cells. Structuralvariations of Ru (II) complexe containing2,6-bis (1-methylbenzimidazol-2-yl) pyridine.Inorg. Chim. Acta,1997,261:129~140
    [77] Hsieh C. P., Lu H. P., Chiu C. L., et a1. Synthesis and characterization of porphyrinsensitizers with various electron-donating substituents for highly efficient dye-sensitizedsolar cells. J Mater. Chem.,2010,20:1127~1134
    [78] Li S. L., Jiang K. J., Shao K. F., et al. Novel organic dyes for efficient dye-sensitized solarcells. Chem. Comm.,2006,2792~2794
    [79] Schmidt M. L., Bach U., Humphry B. R., et al. Organic dye for highly efficient solid-statedye-sensitized solar cells. Adv. Mat.,2005,17:813~815
    [80] Hara K., Sato T., Katoh R., et al. Novel conjugated organic dyes for efficient dye-sensitizedsolar cells. Adv. Funct. Mater.,2005,15:246~252
    [81] Horiuchi T., Miura H., Sumioka K., et al. High efficiency of dye-sensitized solar cells basedon metal-free indoline dyes. J Am. Chem. Soc.,2004,126:12218~12219
    [82] Nishida J., Masuko T., Cui C. Y., et a1. Molecular design of organic dye toward retardationof charge recombination at semiconductor/dye/eleetrolyte interface: introduction oftwisted pi-linker. Phys. Chem. C,2010,114:17920~17925
    [83] Wang Z.-S., Koumura N., Cui Y., et al. Hexylthiophene-functionalized carbazole dyes forefficient molecular photovoltaics: tuning of solar-cell performance by structuralmodification. Chem. Mater.,2008,20:3993~4003
    [84] Chen R, Yang X., Tian H., et a1. Tetrahydroquinoline dyes with different spacers fororganic dye-sensitized solar cells. J Photoch. Photobio. A,2007,189:295~300
    [85] Yue G. T., Wu J. H., Xiao Y. M., et al. An iodine/iodide-free and polymerheterojunction-sensitized hybrid solar cell. Funct. Mater. Lett.,2012,5:1260004-1~4
    [86] Rozenzhak S. M., Kadakia M. P., Caserta T. M. Cellular internalization and targeting ofsemiconductor quantum dots. Chem. Commun.,2005,8:2217~2219
    [87]钱新明,宋庆,白玉白,等. CdS敏化对TiO2纳米薄膜电极光生电荷转移特性的影响.高等学校化学学报,2000,21(2):295~297
    [88] Chang J. A., Rhee J. H., Im S. H., et al. High-performance inorganic-organic heterojunctionsolar cells. Nano Lett.,2010,10:2609~2612
    [89] Imoto K., Suzuki M., Takahashi K., et al. Activated carbon counter electrode fordye-sensitized solar cell. Electrochemistry,2003,71:944~946
    [90] Imoto K., Takahashi K., Yamaguchi T., et al. High-performance carbon counter electrodefor dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells,2003,79:459~469
    [91] Choi H., Kim H., Hwang S., et al. Dye-sensitized solar cells using graphene-based carbonnano composite as counter electrode. Sol. Energy Mater. Sol. Cells,2011,95:323~325
    [92] Gong F., Wang H., Wang Z.-S. Self-assembled monolayer of graphene/Pt as counterelectrode for efficient dye-sensitized solar cell. Phys. Chem. Chem. Phys.,2011,13:17676~17682
    [93] Kavan L., Yum J.-H., Gr tzel M. Graphene nanoplatelets outperforming platinum as theelectrocatalyst in co-bipyridine-mediated dye-sensitized solar cells. Nano Lett.,2011,11:5501~5506
    [94] Li Q., Wu J., Tang, Q., et al. Application of microporous polyaniline counter electrode fordye-sensitized solar cells. J Electrochem. Commun.,2008,10:1299~1302
    [95] Sun H., Luo Y., Zhang Y., et al. In situ preparation of a flexible polyaniline/carboncomposite counter electrode and its application in dye-sensitized solar cells. J Phys. Chem.C,2010,114:11673~11679
    [96] Saito Y., Kitamura T., Wada Y., et al. Application of poly (3,4-ethylenedioxythiophene) tocounter electrode in dye-sensitized solar cells. Chem. Lett.,2002,10:1060~1061
    [97] Saito Y., Kubo W., Kitamura T., et al. I–/I–3redox reaction behavior on poly (3,4-ethylenedioxythiophene) counter electrode in dye-sensitized solar cells. J Photoch.Photobio. A,2004,164:153~157
    [98] Balisa N., Makrisa T., Dracopoulosb V., et al. Quasi-solid-state dye-sensitized solar cellsmade with poly (3,4-ethylenedioxythiophene)-functionalized counter-electrodes. J PowerSources,2012,203:302~307
    [99] Xiao Y., Lin J.-Y., Tai S.-Y., et al. Pulse electropolymerization of high performancePEDOT/MWCNT counter electrodes for Pt-free dye-sensitized solar cells. J Mater. Chem.,2012,22:19919~19925
    [100] Yue G. T., Wu J. H., Xiao Y. M., et al. Application of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate/polypyrrole counter electrode for dye-sensitized solar cells. J Phys.Chem. C,2012,116:18057~18063
    [101] Wu M. X., Wang Y. D., Lin X., et al. Economical and effective sulfide catalysts fordye-sensitized solar cells as counter electrodes. Phys. Chem. Chem. Phys.,2011,13:19298~19301
    [102] Yue G. T., Wu J. H., Lin J.-Y., et al. A counter electrode of multi-wall carbon nanotubesdecorated with tungsten sulfide used in dye-sensitized solar cells. Carbon,2013,55:1~9
    [103] Yue G. T., Wu J. H., Xiao Y. M., et al. High performance platinum-free counter electrodeof molybdenum sulfide–carbon used in dye-sensitized solar cells. J Mater. Chem. A,2013,1:1495~1501
    [104] Li G. R., Song J., Pan G. L., et al. Highly Pt-like electrocatalytic activity of transition metalnitrides for dye-sensitized solar cells. Energy Environ. Sci.,2011,4:1680~1683
    [105] Wu M. X., Bai J., Wang Y. D., et al. High-performance phosphide/carbon counter electrodefor both iodide and organic redox couples in dye-sensitized solar cells. J Mater. Chem.,2012,22:11121~11127
    [106] Burnside S. D., ShNalover V., Barbe C., et al. One-step formation and characterization ofZn(II)-Cr(III) layered double hydroxides, Zn2Cr(OH)6X (X=Cl,1/2SO4). J Chem. Mater.,1998,10:2419~2425
    [107] Cameron P. J., Peter L. M. Characterization of titanium dioxide blocking layers indye-sensitized nanocrystalline solar cells. J Phys. Chem. B,2003,107:14394~14400
    [108]郝三存,吴季怀,林建明,等.铂修饰光阴极及其在纳晶太阳能电池中的应用.感光科学与光化学,2004,22(3):175~181
    [109] Kay A., Gr tzel M. Low cost photovoltaic modules based on dye sensitizednanocrystalline titanium dioxide and carbon powder. Sol. Energy Mater. Sol. Cells,1996,44:99~117
    [110] Hinsch A., Kroon J. M. New photoelectrochromic device. Prog. Photovoltage: Rev. Appl.,2001,9:425~438
    [111] Duren J., Yang X., Janssen R., et al. Relating the morphology of poly (p–phenylenevinylene)/methanofullerene blends to solar cell performance. Adv. Funct. Mater.,2004,14:425~434
    [112] Ferber J., Stangl R., Luther J. On the modeling of the dye-sensitized solar cells. Sol.Energy Mater. Sol. Cells,1998,53:29~54
    [1] O’Regan B., Gr tzel M. Low-cost high-efficiency solar cell based on dye-sensitized colloidalTiO2films. Nature,1991,353:737~740
    [2] Gr tzel M. Photoelectrochemical cells. Nature,2001,414:338~344
    [3] Yella A., Lee H. W., Tsao H. N., et al. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed12percent efficiency. Science,2011,334:629~634
    [4] Wu J. H., Lan Z. H., Hao S. C., et al. Progress on the electrolytes for dye-sensitized solarcells. Pure Appl. Chem.,2008,80:2241~2258
    [5] Barlier V., Leonard D., Boiteux G., et al. New TiO2precursor for TiO2: poly(N-vinylcarbazole)(PVK) thin film: Synthesis and reactivity to hydrolysis of titaniumtetrakis (9H-carbazole-9-yl-ethyl-oxy). J Non-Cryst Solids,2009,355:386~392
    [6] Huang F., Zhang Y., Liu M. S., et al. High-efficiency and color stable blue-light-emittingpolymers and devices. J Adv. Funct. Mater.,2007,17:3808~3815
    [7] Sai H., Ogiku T., Ohmizu H., et al. Synthesis of1,4-diphenylbutadiene derivatives: Novelinducer of tissue-type plasminogen activator (t-PA) in cultured bovine endothelial cells.Chem. Pharm. Bull.,2006,54:1686~1693
    [8]曹镛.用稀土催化剂合成聚乙炔簿膜.科学通报,1984,3:153~155
    [9] Posudievsky O. Y., Telbiz G. M., Rossokhaty V. K. Effect of solvent nature on liquid-phaseself-assembly of MEH-PPV/MCM-41guest-host composites. J Chem. Mater.,2006,16:2485~2489
    [10] Fall M., Diagne A. A., Guene M., et al. Electrochemical properties and electrochemicalimpedance spectroscopy of polypyrrole-coated platinum electrodes. Bull. Chem. Soc. Ethiop.,2006,20:279~293
    [11]陈贻炽,王红山,吴锦屏.聚噻吩导电材料的合成.化工新型材料,1997,25(8):15~18
    [12] Spanggaard H., Krebs F. C. Production of large-area polymer solar cell by industrial silkscreen printing, lifetime considerations and lamina-tion with polyethyleneterephthalate. Sol.Energy Mater Sol. Cells,2004,83:293~300
    [13]董长征,王维波,蓝闽波,等.有机P-N结太阳能电池的研究.感光科学与光化学,1995,13(3):273~276
    [14] Hoppe H, Sariciftci N. S. Organic solar cell: An overview. J Mater. Res.,2004,19:1924~1945
    [15] Savenije T. J., Goossens W. A. Visible light sensitisation of titanium dioxide using aphenylenevinylene polymer. Chem. Phys. Lett.,1998,287:148~153
    [16] Zhou E. J., Tan Z. A., Huo L. J., et al. Effect of branched conjugation structure on theoptical, electrochemical, hole mobility, and photovoltaic properties of polythiophenes. JPhys. Chem. B,2006,110:26062~26067
    [17]郝三存,吴季怀,林建明,等.铂修饰光阴极及其在纳晶太阳能电池中的应用.感光科学与光化学,2004,22(3):175~181
    [18] Al-Ibrahim M., Ambacher O., Sensfuss S., et al. Effects of solvent and annealing on theimproved performance of solar cells based on poly3-hexylthiophene: Fullerene. Appl. Phys.Lett.,2005,86:201120~201123
    [19] Ji J. S., Lin Y. J., Lu H. P., et al. Synthesis and photoluminescence of poly(3-hexylthiophene)/titania nanostructured hybrids. Thin Solid Films,2006,511-512:182~186
    [20] Senadeera G. K. R., Kitamura T., Wada Y., et al. Photosensitization of nanocrystalline TiO2films by a polymer with two carboxylic groups, poly (3-thiophenemalonic acid). Sol. EnergyMater. Sol. Cell,2005,88:315~322
    [21] Ferber J., Stangl R., Luther J. On the modeling of the dye-sensitized solar cell. Sol. EnergyMater. Sol. Cells,1998,53:29~54
    [22]孙世国,徐勇前,时磊.纳米晶体太阳能电池及染料敏化剂.染料与染色,2003,40(6):311~313
    [23] Liang Y. Y., Wu Y., Feng D. Q., et al. Development of new semiconducting polymers forhigh performance solar cells. J Am. Chem. Soc.,2009,131:56~57
    [1] Sariciftci N. S., Smilowitz L., Heeger A. J., et al. Photoinduced electron-transfer from aconducting polymer to buckminsterfullerene. Science,1992,258:1474~1476
    [2] Roman L. S., Andersson M. R., Yohanms T., et al. Photodiode performance andnanostructure of polythiophene/C60blends. Adv. Mater.,1997,9:1164~1168
    [3] Wu J. H., Yue G. T., Xiao Y. M., et al. Application of a polymer heterojunction indye-sensitized solar cells. Electrochim. Acta,2010,55:5798~5802
    [4] Ng S.-C., Lu H.-F., Chan Hardy S. O., et al. Blue electroluminescence from a noveldonor/acceptor polymer structure. Adv. Mater.,2000,12:1122~1125
    [5] Wang E., Wang L., Lan L., et al. High–performance polymer heterojunction solar cells of apolysilafluorene derivative. Appl. Phys. Lett.,2008,92:033307
    [6] Hou J., Tan Z., Yan Y., et al. Synthesis and photovoltaic properties of two–dimensionalconjugated polythiophenes with bi (thienylenevinylene) side chains. J Am. Chem. Soc.,2006,128:4911~4916
    [7] Muhlbacher D., Scharber M., Morana M., et al. High photovoltaic performance of alow–bandgap polymer. Adv. Mater.,2006,18:2884~2889
    [8] Ma W., Yang C., Gong X., et al. Thermally stable, efficient polymer solar cells withnanoscale control of the interpenetrating network morphology. Adv. Funct. Mater.,2005,15:1617~1622
    [9] Li G., Shrotriya V., Huang J. S., et al. High–efficiency solution processable polymerphotovoltaic cells by self–organization of polymer blends. Nat. Mater.,2005,4:864~868
    [10] Alem S., de Bettignies R., Nunzi J., et al. Efficient polymer–based interpenetrated networkphotovoltaic cells. App1. Phys. Lett.,2004,84:2178~2180
    [11] Schilinsky P., Waldauf C., Brabec C. J. Performance analysis of printed bulk heterojunctionsolar cells. Adv. Funct. Mater.,2006,16:1669~1672
    [12] Yu G., Gao J., Hummelen J. C., et al. Polymer photovoltaic cells: enhanced efficiencies via anetwork of internal donor-acceptor heterojunctions. Science,1995,270:1789~1791
    [13] Peet J., Kim J. Y., Coates N. E., et al. Efficiency enhancement in low-bandgap polymer solarcells by processing with alkane dithiols. Nat Mater.,2007,6:497~500
    [14] Liang Y., Feng D., Wu Y., et al. Highly efficient solar cell polymers developed via fine-tuningof structural and electronic properties. J Am. Chem. Soc.,2009,131:7792~7799
    [15] Chen H.-Y., Hou J. H., Zhang S. Q., et al. Polymer solar cells with enhanced open-circuitvoltage and efficiency. Nat. Photonics,2009,3:649~653
    [16] Liang Y., Xu Z., Xia J. et al. For the bright future—bulk heterojunction polymer solar cellswith power conversion efficiency of7.4%. Adv. Eng. Mater.,2010,22: E135~E138
    [17] Li C., Imae T. Electrochemical and optical properties of thepoly(3,4-ethylenedioxythiophene) film electropolymerized in an aqueous sodium dodecylsulfate and lithium tetrafluoroborate medium. Macromolecules,2004,37:2411~2416
    [18] Mathiyarasu J., Senthilkumar S., hani K. L. N. P., et al. PEDOT-Au nanocomposite filmsfor electrochemical sensing of dopamine and uric acid. J Nanosci. Nanotechnol.,2007,7:2206~2210
    [19] Wang Z. S., Sasaki T., Muramatsu M., et al. Self-assembled multilayers of titaniananoparticels and nanosheets. Chem. Mater.,2003,15:807~812
    [20] Kvarnstrom C., Neugebauer H., Blomquist S., et al. In situ ftir spectroelectrochemicalcharacterization of poly (3,4-ethylenedioxythiophene) films. Synth. Met.,1999,101:66~66
    [21] Kratschmer W., Lamb L., Fostiropoulos K., et al. Solid C60: A new form of carbon. Nature,1990,347:354~358
    [22] Li S.-S, Tu K.-H., Lin C.-C., et al. Solution-processable graphene oxide as an efficient holetransport layer in polymer solar cells. ACS Nano.,2010,4:3169~3174
    [23] Huanga J., Millerb P. F., de Mellob J. C., et al. In fluence of thermal treatment on theconductivity and morphology of PEDOT/PSS films. Synth. Met.,2003,139:569~572
    [24] Aasmundtveit K. E., Samuelsen E. J., Pettersson L. A. A., et al. Structure of thin films ofpoly (3,4-ethylenedioxythiophene). Synth. Met.,1999,101:561~564
    [25] Al-Ibrahim M., Ambacher O., Sensfuss S., et al. Effects of solvent and annealing on theimproved performance of solar cells based on poly(3-hexylthiophene):Fullerene. Appl. Phys.Lett.,2005,86:201120~201122
    [26] Ji J.-S., Lin Y.-J., Lu H.-P., et al. Synthesis and photoluminescence of poly(3-hexylthiophene)/titania nanostructured hybrids. Thin Solid Films,2006,511-512:182~186
    [1] Kim J., Lee K., Coates N., et al. Efficient tandem polymer solar cells fabricated byall-solution processing. Science,2007,317:222~225
    [2] Granstr m M., Petritsch K., Arias A., et al. Laminated fabrication of polymeric photovoltaicdiodes. Nature,1998,395:257~260
    [3] Huynh W., Dittmer J., Alivisatos A. Hybrid nanorod–polymer solar cells. Science,2002,295:2425~2427
    [4] Wang Y., Rubbner M. F. Stability studies of the electrical conductivity of various poly(3-alkylthiophenes). Synth. Met.,1990,39:153~175
    [5] Huynh W., Dittmer J., Alivisatos A. Hybrid nanorod–polymer solar cells. Science,2002,295:2425~2427
    [6] Liang Y., Xu Z., Xia J., et al. For the bright future—bulk heterojunction polymer solar cellswith power conversion efficiency of7.4%. Adv. Eng. Mater.,2010,22: E135~E138
    [7] Senadeera G., Kitamura T., Wada Y., et al. Photosensitization of nanocrystalline TiO2filmsby a polymer with two carboxylic groups, poly (3-thiophenemalonic acid). Sol. EnergyMater. Sol. Cells,2005,88:315~322
    [8] Gao F., Wang Y., Shi D., et al. Enhance the optical absorptivity of nanocrystalline TiO2film with high molar extinction coefficientruthenium sensitizers for high performancedye-sensitized solar cells. J Am. Chem. Soc.,2008,130:10720~10728
    [9] Liu J., Kadnikova E., Liu Y., et al. Polythiophene containing thermally removablesolubilizing groups enhances the interface and the performance of polymer-titania hybridsolar cell. J Am. Chem. Soc.,2004,126:9486~9487
    [10] Krebs F., Spanggaard H. Significant improvement of polymer solar cell stability. Chem.Mater.,2005,17:5235~5237
    [11] McCullough R. D., Tristramnagle S., Williams S. P., et al. Self-orienting head-to-tailpoly(3-alkylthiophenes): new insights on structure-property relationships in conductingpolymers. J Am. Chem. Soc.,1993,115:4910~4911
    [12] Kubo W., Kambe S., Nakade S. Photocurrent-determining processes in quasi-solid-statedye-sensitized solar cells using ionic gel electrolytes. Inorg. Chem.,2003,107:4374~4381
    [13] Bianting S., Jones J. J., Burford R. P., et al. Stability and mechanical properties ofelectrochemically prepared conducting polypyrrole films. J Electrochem. Soc.,1989,136:698~701
    [1] Kamat P. V. Meeting the clean energy demand: nanostructure architectures for solarenergy conversion. J Phys. Chem. C,2007,111:2834~2860
    [2] Kongkanand A., Tvrdy K., Takechi K., et al. Quantum dot solar cells. tuning photoresponsethrough size and shape control of CdSe TiO2Architecture. J Am. Chem. Soc.,2008,130:4007~4015
    [3] Ginger D. S., Greenham N. C. Charge separation in conjugated-polymer/nanocrystal blends.Synth. Met.,1999,101:425~428
    [4] Leschkies K. S., Divakar R., Basu J., et al. Photosensitization of ZnO nanowires with CdSequantum dots for photovoltaic devices. Nano. Lett.,2007,7:1793~1798
    [5] Diguna L. J., Shen Q., Kobayashi J., et al. High efficiency of CdSe quantum-dot-sensitizedTiO2inverse opal solar cells. Appl. Phys. Lett.,2007,91:023116
    [6] Niitsoo O., Sarkar S. K., Pejoux C., et al. Chemical bath deposited CdS/CdSe-sensitizedporous TiO2solar cells. J Photoch. Photobio. A,2006,181:306~311
    [7] Lee H. J., Yum J. H., Leventis H. C., et al. CdSe quantum dot-sensitized solar cellsexceeding efficiency1%at full-sun intensity. J Phys. Chem. C,2008,112:11600~11608
    [8] Liu D., Kamat P. V. Photoelectrochemical behavior of thin cadmium selenide and coupledtitania/cadmium selenide semiconductor films. J Phys. Chem.,1993,97:10769~10773
    [9] Vogel R., Hoyer P., Weller H. Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3particles assensitizers for various nanoporous wide-bandgap semiconductors. J Phys. Chem.,1994,98:3183~3188
    [10] Gerischer H., Lubke M. A particle size effect in the sensitization of TiO2electrodes by aCdS deposit. J Electroanal. Chem.,1986,204:225~227
    [11] Hyun B. R., Zhong Y. W., Bartnik A. C., et al. Electron injection from colloidal PbSquantum dots into titanium dioxide nanoparticles. ACS Nano.,2008,2:2206~2212
    [12] Gunes S., Neugebauer H., Sariciftci N. S., et al. Hybrid solar cells using HgTe nanocrystalsand nanoporous TiO2electrodes. Adv. Funct. Mater.,2006,16:1095~1099
    [13] Diamant Y., Chen S. G., Melamed O., et al. Core-shell nanoporous electrode for dyesenxitized solar cells: the effect of the SrTiO3shell on the electronic properties of the TiO2core. J Phys. Chem. B,2003,107:1977~1981
    [14] Qiu Y. C., Chen W., Yang S. H. Double-layered photoanodes from variable-size anataseTiO2nanospindles:a candidate for high-efficiency dye-sensitized solar cells. Angew. Chem.Int. Edit.,2010,49:3675~3679
    [15] Kang S. H., Kim J. Y., Kim H. S., et al. Influence of light scattering particles in the TiO2photoelectrode for solid-state dye-sensitized solar cell. J Photoch. Photobio. A,2008,200:294~300
    [16] González-Pedro V., Xu X. Q., Mora-Sero I., et al. Modeling high-efficiency quantum dotsensitized solar cells. J ACS Nano.,2010,4:5783~5790
    [17] Lee Y. L., Chang C. H. Efficient polysulfide electrolyte for CdS quantum dot-sensitizedsolar cells. J Power Sources,2008,185:584~588
    [18] Wu J. H., Lan Z., Hao S. C., et al. Progress on the electrolytes for dye-sensitized solar cells.Pure Appl. Chem.,2008,80:2241~2258
    [19] Wu J. H., Hao S. C., Lan Z., et al. An all-solid-state dye-sensitized solar cell-based poly(N-alkyl-4-vinyl-pyridine iodide) electrolyte with efficiency of5.64%. J Am. Chem. Soc.,2008,130:11568~11569
    [20] Gr tzel M. Photoelectrochemical cells. Nature,2001,414:338~344
    [21] Yuan Q., Hein S., Misra R. D. New generation of chitosan-encapsulated ZnO quantum dotsloaded with drug:synthesis, characterization and in vitro drug delivery response. ActaBiomater.,2010,6:2732~2739
    [22] Sun W., Zhong J. H., Zhang C. Y., et al. Synthesis and characterization of ZnS nanoparticlesmodified with mercaptoacetic acid in aqueous solution. The Chinese Journal of ProcessEngineering,2007,7:984~988
    [23] Saito Y., Kubo W., Kitamura T., et al. I–/I–3redox reaction behavior on poly (3,4-ethylenedioxythiophene) counter electrode in dye-sensitized solar cells. J Photoch.Photobio. A,2004,164:153~157
    [1] Nazeeruddin M. K., Kay A., Rodicio I., et al. Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate) ruthe-nium(II) charge-transfer sensitizers (X=Cl, Br,I, CN, and SCN) on nanocrystalline TiO2electrodes. J Am. Chem. Soc.,1993,115:6382~6390
    [2] Gr tzel M. Dye-sensitized solar cells. J Photoch. Photobio. C,2003,4:145~153
    [3] Winder C., Matt G., Hummelen C., et al. Sensitization of low band gap polymer bulkheterojunction solar cells. Thin Solid Films,2002,404:373~379
    [4] Giuseppe C., Gatetabo D. M. Red sicilian orange and purple eggplant fruits as naturalsensitizers for dye-sensitized solar cells. So1. Energy Mater. So1. Cells,2008,92:1341~1346
    [5] Tennakone K., Bandaranayake P. K. M., Jayaweera P. V. V., et al. Dye-sensitized compositesemiconductor nanostructures. Physica. E,2002,14:190~196
    [6]王丽伟,骆泳铭,黄仕华. TiO2薄膜的优化及其对染料敏化太阳能电池性能的影响.科学通报,2011,56(17):1354~1359
    [7] Rani S., Suri P., Shishodia P. K., et al. Synthesis of nanocrystalline ZnO powder via sol–gelroute for dye-sensitized solar cells. So1. Energy Mater. Sol. Cells,2008,92:1639~1645
    [8] Geens W., Poortmans J., Suresh C., et al. Analytical study of PPV-oligomer and C60-baseddevices for optimizing organic solar cells. So1. Energy Mater. So1. Cells,2000,6:43~45
    [9] Ganesan S., Muthuraaman B., Mathew V., et al. Performance of a new polymer electrolyteincorporated with diphenylamine in nanocrystalline dye-sensitized solar cell. So1. EnergyMater. So1. Cells,2008,92:1718~1722
    [10]史成武,葛茜,李兵,等.添加剂对染料敏化太阳电池电解质性能的影响.物理化学学报,2008,24(12):2327~2330
    [11] Wu M., Lin X., Hagfeldt A., et al. A novel catalyst of WO2nanorod for the counter electrodeof dye-sensitized solar cells. Chem. Commun.,2011,47:4535~4537
    [12] Wu M., Lin X., Hagfeldt A., et al. Low-cost molybdenum carbide and tungsten carbidecounter electrodes for dye-sensitized solar cells. Angew. Chem. Int. Ed.,2011,50:3520~3524
    [13] Jeon S., Kim C., Ko J., et al. Spherical polypyrrole nanoparticles as a highly efficientcounter electrode for dye-sensitized solar cells. J Mater. Chem.,2011,21:8146~8151
    [14] Popov A., Geske D. Voltammetric evaluation of the stability of trichloride, tribromide, andtriiodide ions in nitromethane, acetone, and acetonitrile. J Am. Chem. Soc.,1958,80:1340~1352
    [15] Wu J., Li Q., Fan L., et al. High-performance polypyrrole nanoparticles counter electrodefor dye-sensitized solar cells. J Power Sources,2008,181:172~176
    [16] Guo H., Li Y., Fan L., et al. Voltammetric behavior study of folic acid atphosphomolybdic-polypyrrole film modified electrode. Electrochim. Acta,2006,51:6230~6237
    [17] Li Q., Wu J., Tang Q., et al. Application of microporous polyaniline counter electrode fordye-sensitized solar cells. Electrochem. Commun.,2008,10:1299~1302
    [18] Huang J., Millerb P. F., de Mellob J. C., et al. Influence of thermal treatment on theconductivity and morphology of PEDOT/PSS films. Synth. Met.,2003,139:569~572
    [19] Aasmundtveit K. E., Samuelsen E. J., Pettersson L. A., et al. Structure of thin films of poly(3,4-ethylenedioxythiophene). Synth. Met.,1999,101:561~564
    [20] Senadeera R., Fukuri N., Saito Y., et al. Volatile solvent-free solid-state polymer-sensitizedTiO2solar cells wit poly (3,4-ethylenedioxythiophene) as a hole-transporting medium.Chem. Commun.,2005,7:2259~2261
    [21] Papageorgiou N., Moser W. F., Gr tzel M. An iodine/triiodide reduction electrocatalyst foraqueous and organic media. J Electrochem. Soc.,1997,144:876~884
    [1] Gr tzel M. Photoelectrochemical cells. Nature,2001,414:338~344
    [2] Gr tzel M. Recent advances in sensitized mesoscopic solar cells. Acc. Chem. Res.,2009,42:1788~1798
    [3] Papageorgiou N., Maier W. F., Gr tzel M. An iodine/triiodide reduction electrocatalyst foraqueous and organic media. J Electrochem. Soc.,1997,144:876~884
    [4] Kay A., Gr tzel M. Low cost photovoltaic modules based on dye sensitized nanocrystallinetitanium dioxide and carbon powder. Sol. Energy Mater. Sol. Cells,1996,44:99~117
    [5] Imoto K., Takahashi K., Yamaguchi T., et al. High-performance carbon counter electrodefor dye-sensitized solar cells. Solar Energy Materials and Solar Cells. Sol. Energy Mater.Sol. Cells,2003,79:459~469
    [6] Han J., Kim H., Kim D. Y., et al. Water-soluble polyelectrolyte-grafted multiwalled carbonnanotube thin films for efficient counter electrode of dye-sensitized solar cells. ACS Nano.,2010,4:3503~3509
    [7] Roy-Mayhew J. D., Bozym D. J., Punckt C., et al. Functionalized graphene as a catalyticcounter electrode in dye-sensitized solar cells. ACS Nano.,2010,4:6203~6211
    [8] Wu M. X., Lin X., Hagfeldt A., et al. Low-cost molybdenum carbide and tungsten carbidecounter electrodes for dye-sensitized solar cells. Angew. Chem. Int. Ed.,2011,50:3520~3524
    [9] Wu M. X., Lin X., Wang T. H., et al. Low-cost dye-sensitized solar cell based on nine kindsof carbon counter electrodes. Energy Environ. Sci.,2011,4:2308~2315
    [10] Li Q. H., Wu J. H., Tang Q. W., et al. Application of microporous polyaniline counterelectrode for dye-sensitized solar cells. Electrochem. Commun.,2008,10:1299~1302
    [11] Sun H., Luo Y., Zhang Y., et al. In situ preparation of a flexible polyaniline/carboncomposite counter electrode and its application in dye-sensitized solar cell. J Phys. Chem.C,2010,114:11673~11679
    [12] Jeon S. S., Kim C., Ko J., et al. Spherical polypyrrole nanoparticles as a highly efficientcounter electrode for dye-sensitized solar cells. J Mater. Chem.,2010,21:8146~8151
    [13] Wang M. K., Anghel A. M., Marsan B., et al. CoS supersedes Pt as efficient electrocatalystfor triiodide reduction in dye-sensitized solar cells. J Am. Chem. Soc.,2009,131:15976~15977
    [14] Lin J. Y., Liao J. H., Chou S. W. Cathodic electrodeposition of highly porous cobalt sulfidecounter electrodes for dye-sensitized solar cells. Electrochim. Acta,2011,56:8818~8826
    [15] Sun H. C., Qin D., Huang S. Q., et al. Dye-sensitized solar cells with NiS counter electrodeselectrodeposited by a potential reversal technique. Energy Environ. Sci.,2011,4:2630~2737
    [16] Ahmad S., Yum J. H., Xianxi Z., et al. Dye-sensitized solar cells based on poly (3,4-ethylenedioxythiophene) counter electrode derived from ionic liquids. J Mater. Chem.,2010,20:1654~1658
    [17] Ahmad S., Yum J. H., Butt H. J., et al. Efficient platinum-free counter electrodes fordye-sensitized solar cell applications. Chem. Phys. Chem.,2010,11:2814~2819
    [20] Wu J. H., Li Q. H., Fan L. Q., et al. High-performance polypyrrole nanoparticles counterelectrode for dye-sensitized solar cells. J Power Sources,2008,181:172~176
    [26] Peng S. J., Liang J., Mhaisalkar S. G., et al. In situ synthesis of platinum/polyanilinecomposite counter electrodes for flexible dye-sensitized solar cells. J Mater. Chem.,2012,22:5308~5311
    [20] Li C., Imae T. Electrochemical and opticalproperties of the poly (3,4-ethylenedioxythiophene) film elect ropolymerized in an aqueous sodium dodecyl sulfate and lit hium tetrafluoroborate medium. Macromolecules,2004,37:2411~2416
    [21] Mathiyarasu J., Senthilkumar S., Phani K. L. N. P., et al. PEDOT–Au nanocomposite filmsfor electrochemical sensing of dopamine and uric acid. J Nanotechnol.,2007,7:2206~2210
    [22] Wang Z. S., Sasaki T., Muramatsu M., et al. Self-Assembled Multilayers of TitaniaNanoparticels and Nanosheets. Chem. Mater.,2003,15:807~812
    [23] Zhang J., Wu M. Z., Pu T. S., et al. Investigation of the plasma polymer deposited frompyrrole. Thin Solid Films,1997,307:14~20
    [24] John R. K., Kumar D. S. Structural, electrical, and optical studies of plasmapolymerizedand iodine-doped polypyrrole. J Appl. Polym. Sci.,2002,83:1856~1859
    [25] Kvarnstrom C., Neugebauer H., Blomquist S., et al. In situ FTIR spectroelectrochemicalcharacterization of poly (3,4-ethylenedioxythiophene) films. Synth. Met.,1999,101:66~66
    [26] Guo H. F., Zhu H., Lin H. Y., et al. Polypyrrole–multi-walled carbon nanotubenanocomposites synthesized in oil–water microemulsion. Polym. Sci.,2008,286:587~591
    [27] Ham H., Choi Y., Jeong N., et al. Singlewall carbon nanotubes covered with polypyrrolenanoparticles by the miniemulsion polymerization. Polymer,2005,46:6308~6315
    [28] Fabregat-Santiago F., Bisquert J., Palomares E., et al. Correlation between photovoltaicperformance and impedance spectroscopy of dye-sensitized solar cells based on ionicliquids. J Phys. Chem. C,2007,111:6550~6560
    [29] Gagliardi S., Giorgi L., Giorgi R., et al. Impedance analysis of nanocarbon DSSC electrodes.Superlattices Microstruct.,2009,46:205~208
    [30] Wei T. C., Wan C. C., Wang Y. Y., et al. Method for preparing an electrode comprising anelectrochemical catalyst layer thereon. J Phys. Chem. C,2007,111:4847~4853
    [31] Huang J., Millerb P. F., de Mellob J. C., et al. Influence of thermal treatment on theconductivity and morphology of PEDOT/PSS films. Synth. Met.,2003,139:569~572
    [32] Aasmundtveit K. E., Samuelsen E. J., Pettersson L. A. A., et al. Structure of thin films ofpoly (3,4-ethylenedioxythiophene). Synth. Met.,1999,101:561~564
    [1] O’Regan B., Gr tzel M. A low–cost, high–efficiency solar cell based on dye–sensitizedcolloidal TiO2films. Nature,1991,353:737~740
    [2] Gr tzel M. Photoelectrochemical cells. Nature,2001,414:338~344
    [3] Yella A., Lee H. W., Tsao H. N., et al. Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed12percent efficiency. Science,2011,334:629~634
    [4] Olsen E., Hagen G., Lindquist S. E. Dissolution of platinum in methoxy propionitrilecontaining LiI/I2. Sol. Energy Mater. Sol. Cells,2000,63:267~273
    [5] Kay A., Gr tzel M. Low cost photovoltaic modules based on dye sensitized nanocrystallinetitanium dioxide and carbon powder. Sol. Energy Mater. Sol. Cells,1996,44:99~117
    [6] Hino T., Ogawa Y., Kuramoto N. Preparation of functionalized and non-functionalizedfullerene thin films on ITO glasses and the application to a counter electrode in adye-sensitized solar cell. Carbon,2006,44:880~887
    [7] Choi H., Kim H., Hwang S., et al. Dye-sensitized solar cells using graphene-based carbonnanocomposite as counter electrode. Sol. Energy Mater. Sol. Cells,2011,95:323~325
    [8] Li Q. H., Wu J. H., Tang Q. W., et al. Application of microporous polyaniline counterelectrode for dye-sensitized solar cells. Electrochem. Commun.,2008,10:1299~1302
    [9] Sun H., Luo Y., Zhang Y., et al. In situ preparation of a flexible polyaniline/carboncomposite counter electrode and its application in dye-sensitized solar cell. J Phys. Chem.C,2010,114:11673~11679
    [10] Wang M. K., Anghel A. M., Marsan B., et al. CoS supersedes Pt as efficient electrocatalystfor triiodide reduction in dye-sensitized solar cells. J Am. Chem. Soc.,2009,131:15976~15977
    [11] Sun H. C., Qin D., Huang S. Q., et al. Dye-sensitized solar cells with NiS counter electrodeselectrodeposited by a potential reversal technique. Energy Environ. Sci.,2011,4:2630~2637
    [12] Li G. R., Song J., Pan G. L., et al. Highly Pt-like electrocatalytic activity of transition metalnitrides for dye-sensitized solar cells. Energy Environ. Sci.,2011,4:1680~1683
    [13] Wu M. X., Lin X., Wang T. H., et al. Low-cost dye-sensitized solar cell based on nine kindsof carbon counter electrodes. Energy Environ. Sci.,2011,4:2308~2315
    [14] Nugent J. M., Santhanam K. S. V., Rubio A., et al. Fast electron transfer kinetics onmultiwalled carbon nanotube microbundle electrodes. Nano. Lett.,2001,1:87~91
    [15] Tributsch H., Bunsen-Ges Ber. Layer-type transition metal dichalcogenides-a new class ofelectrodes for electrochemical solar cells. Phys. Chem.,1977,81:361~369
    [16] Novoselov K. S., Jiang D., Schedin F., et al. Two-dimensional atomic crystals. Natl. Acad.Sci. U S A,2005,102:10451~10453
    [17] Li S. J., Chen Z., Zhang W. F. Dye-sensitized solar cells based on WS2counter electrodes.Mater. Lett.,2012,72:22~24
    [18] Wu M. X., Wang Y. D., Lin X., et al. Economical and effective sulfide catalysts fordye-sensitized solar cells as counter electrodes. Phys. Chem. Chem. Phys.,2011,13:19298~19301
    [19] Li G. R., Wang F., Song J., et al. TiN-conductive carbon black composite as counter electrodefor dye-sensitized solar cells. Electrochim. Acta,2012,65:216~220
    [20] Wu M. X., Lin X., Hagfeldt A., et al. Low-cost molybdenum carbide and tungsten carbidecounter electrodes for dye-sensitized solar cells. Angew. Chem. Int. Ed.,2011,50:3520~3524
    [21] Ding K. Q., Yang G. K. Using RTILs of EMIBF4as “water” to prepare palladiumnanoparticles onto MWCNTs by pyrolysis of PdCl2. Electrochim. Acta,2010,55:2319~2324
    [22] Wu J. F., Zhai W. S., Jie G. F. Preparation and tribological properties of tungsten disulfidehollow spheres assisted by methyltrioctylammonium chloride. Tribol. Int.,2010,43:1650~1658
    [23] Banks C. E., Davies T. J., Wildgoose G. G., et al. Electrocatalysis at graphite and carbonnanotube modified electrodes:edge-plane sites and tube ends are the reactive sites. Chem.Commun.,2005,18:829~841
    [24] Bajpai R., Roy S., Kumar P., et al. Graphene supported platinum nanoparticlecounter-electrode for enhanced performance of dye-sensitized solar cells. ACS Appl. Mater.Interfaces,2011,3:3884~3889
    [25] Lan Z., Wu J. H., Lin J. M., et al. Morphology controllable fabrication of Pt counterelectrodes for highly efficient dye-sensitized solar cells. J Mater. Chem.,2012,22:3948~3954
    [26] Li G., Wang F., Jiang Q., et al. Carbon nanotubes with titanium nitride as a low-costcounter-electrode material for dye-sensitized solar cells. Angew. Chem. Int. Ed.,2010,49:3653~3656
    [27] Imoto K., Takahashi K., Yamaguchi T., et al. High-performance carbon counter electrodefor dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells,2003,79:459~469
    [28] Jeon S. S., Kim C., Ko J., et al. Pt nanoparticles supported on polypyrrole nanospheres as acatalytic counter electrode for dye-sensitized solar cells. J Phys. Chem. C,2011,115:22035~22039

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700