肠球菌抗生素抗性指纹图谱库的建立及其准确性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗生素抗性分析法(Antibiotic Resistance Analysis, ARA)作为经济有效的的粪便污染源示踪工具,在欧美等国已开展并得到了应用。本文在研究肠球菌具有ARA方法示踪因子可行性的基础上,检测了来自人、狗、鸡、牛、猪五个物种源粪便中500株肠球菌的抗生素抗性,并对其应用判别分析法构建了抗生素抗性指纹图谱库,得出了指纹图谱库的准确性并对其影响因素展开讨论。目的在于合理有效地构建抗生素抗性指纹图谱库,促进我国利用ARA法在识别粪便源技术中的应用。主要结果如下:
     (1)不同物种源粪便中的肠球菌与肠球菌标准菌株在模拟的自然海水环境下,存活量随时间逐渐衰减,生存天数为18~20天,但不同物种来源的肠球菌与肠球菌标准菌株的存活规律之间略有差异;肠球菌的抗生素抗性在始终未发生变化,并且与其原始的抗生素抗性保持一致。因此选择肠球菌作为ARA的示踪因子。
     (2)对500株肠球菌抗生素抗性特征进行耐药率及多重耐药性分析,结果表明五个物种源之间的抗生素抗性具有差异显著性,可以用于抗生素抗性指纹图谱库的构建;对五个物种源具有的耐药表型重叠情况统计分析发现人源与其他物种表型重叠数较多,可能导致指纹图谱库中人源的准确性相对其他物种源低。
     (3)应用判别分析法构建的抗生素抗性指纹图谱库,在任何一种判别模式下稳定性良好,在金州湾vs星海湾、人源vs非人源判别模式下得到的准确性最高,分别为71.0%与69.0%,应用验证组合得出本数据库最适的判别模式为人源vs非人源。
     (4)随机抽取的样本量≥80%时指纹图谱库的准确性基本一致,ARCC在57.8%~58.2%之间,样本量不是影响本指纹图谱库的主要影响因素;在日后工作过程中可以考虑增加抗生素种类,并去掉万古霉素,氯霉素与磷霉素可能会提高抗生素抗性指纹图谱库的准确性。
As a cost-effective for fecal contamination sources tracking tool, Antibiotic resistance analysis (ARA) has been applied in Europe and the United States successfully. The principle is that using the same tracer with host specificity of antibiotic resistance from the feces of different source to identify fecal contamination sources. Based on the feasibility study of Enterococcus as tracing factor of ARA, it is detected 500 strains of Enterococci antibiotic resistance from five species as people, dogs, chickens, cows, and pigs. Then we used discriminant analysis to construct fingerprint database of antibiotic resistance, and obtained fingerprint database accuracy. Finally it is discussed the factors of the accuracy and promoted the application of ARA in faecel source tracking in our country.
     The main results as followed:
     (1)Enterococci of different sources fecal and strains of Enterococci standard in simulated natural water environment survival decreases with time gradually, survival time was from 18 to 20 days, but there was little difference in the survival of law; Enterococci antibiotic resistance had no change and consisted with the original condition. Therefore Enterococcus is chosen as the ARA tracing factor.
     (2)Analyzing the resistance rate and the multi-resistance characteristics of 500 strains of Enterococci, it is showed that antibiotic resistance had significant differences among the five species, and the antibiotic resistance can be used for constructing the Fingerprint Database. According to the resistance phenotypes of five species source with overlapping statistical, it is found that human have more chance to get overlapped phenotypic than the other species,and this may cause lower accuracy of human sources in fingerprint database.
     (3)Fingerprint database of antibiotic resistance was stable in any kind of discrimination mode with discriminant analysis. Under discrimination mode of Jinzhou Bay vs Xinghai Bay and human vs nonhuman, we got highest accuracy, respectively the ARCC was 71.0% and 69.0%. Validated-sets came to determine the optimal mode of the database was source vs non-human sources of man.
     (4)The accuracy of fingerprint database remains the same when the random sampling is large than 80%, with ARCC between 57.8% and 58.2%, sample size will not affect this fingerprint database. In the future, we will consider to use more the types of antibiotics, and remove Vancomycin, Chloramphenicol and Fosfomycin, it will increase the accuracy of the fingerprint database.
引文
[1]Baudart J, Grabulos J, Barusseau J P et al. Salmonella spp. and fecal coliform loads in coastal waters from a point vs nonpoint source of pollution. Environ. Qual.,2000,29:241-250.
    [2]朱立安,王继增.畜禽养殖非点源污染及其生态控制,2005,水土保持通报,40-43
    [3]Wiggins B A. Discriminant analysis of antibiotic resistance patterns in fecal Streptococci, a method to differentiate human and animal sources of fecal pollution in natural waters. Applied and Environmental Microbiology,1996,62(11),3997-4002.
    [4]Hagedorn C, Robinson S L, Filtz J R. Determining sources of fecal pollution in a rural Virginia watershed with antibiotic resistance patterns in fecal Streptococci. Applied and Environmental Microbiology,1999,65(12),5522-5531
    [5]Harwood V J, Wiggins B, Hagedorn C et al. Phenotyping library based microbial source tracking methods:efficacy in theCalifornia collaborative study. Journal of Water andHealth,1999 1(4),153-166.
    [6]http://gb. chinabroad2 cast.cn/1827/2004/10/19/405 @332963. htm.2004210219.
    [7]http://www.china.org.cn/chinese/PI2c/73943.htm.2001211208.
    [8]http://www.ce.cn/cysc/hb/gdxw/t20040603-992473.btk,2004206203.
    [9]林英.尽快开展农村农业污染治理—关于我国水污染防治的思考.中国水报,2001204225
    [10]冠明科.畜禽规模养殖场粪便污染综合治理措施研究.农业科技与息,2005,9:332-342.
    [11]冠明科.畜禽规模养殖场粪便污染现状调查与环境污染监测评价.农业科技与信息,2005,10:282-300.
    [12]吴淑杭.禽畜粪便污染现状与发展趋势.上海农业科技,2002,1:92-101
    [13]杨朝飞.加强禽畜粪便污染防治迫在眉睫.生态与自然保护,2001,2:32235.
    [14]敖明.规模化养猪场粪便污染及其治理对策.内蒙古畜牧科学,2002.06:38239.
    [15]洪大用.二元社会结构的再生产—中国农村面源污染的社会学分析.社会学研究,2004,4:127.
    [16]王凯军.禽养殖污染防治技术与政策,北京:化学工业出版社,200411265.
    [17]张维理等.中国农业面源污染形势估计及控制对策Ⅰ-21世纪初期中国农业面源污染的形势估计.中国农业科学.2004,Vol.37(7):1008-1017
    [18]刘昕.畜禽养殖产业可持续发展.饲料广角.2005,Vol.(1):31-34
    [19]荻继芳.呼和浩特地区畜禽粪便污染分析研究,中国优秀硕士学位论文全文数据库,2009.
    [20]辛春林.禽畜粪便污染的现状及对策,中国牧业通讯,2008,16.
    [21]张克强,高怀友.畜禽养值业污染物处理与处置[M].北京:化学工业出版社,2004
    [22]马立珊,汪祖强,张水铭等.苏南太湖水系农业面源污染及其控制对策研究.环境科学学报,1997,17(1):39-47
    [23]周元军.畜禽粪便对环境的污染及治理对策[J].医学动物防制.2003,19(6):58-61
    [24]刘凤,王华东,刘培桐.地理学报,1988,43(4):329-339
    [25]Novotny V, Chesters G. Journal of Soil and Water Conservation,1989 (11-12):568-576.
    [26]王凯雄.孟范平农业环境与发展,(1995),44(2)18-21
    [27]崔崇威,张月红.水体受粪便污染的分子示踪物(粪醇)的研究.哈尔滨工业大学学报,2004,1187-1190.
    [28]王雪艳.粪甾醇作为海岸排污口监测指标的研究.中国优秀硕士学位论文全文数据库,2007.
    [29]朱铁群.我国水环境农业非点源污染防治研究简述.农村生态环境 .2000,16(3):55—57.
    [30]Norma J Ruecker, Norma J Ruecker. Tracking Host Sources of Cryptosporidium spp. in Raw Water for Improved Health Risk Assessment[J]. Applied and environmental microbiology.2007.73(12):3945-3957.
    [31]Brandon R Litzner, Todd M Caton, Mark A Schneegurt. Carbon substrate utilization, antibiotic sensitivity, and numerical taxonomy of bacterial isolates from the Great Salt Plains of Oklahoma. Arch Microbiol,2006,185:286-296.
    [32]Whitlock JE, Jones D T, Harwood V J. Identification of sources of fecal coliforms in an urban watershed using antibiotic resistance analysis[J]. Water Research, 2002,36:4273-4282.
    [33]Sunny C Jiang, Weiping Chu, Betty H Olson. Microbial source tracking in a small southern California urban watershed indicates wild animals and growth as the source of fecal bacteria. Environmental microbiology. Appl Microbiol Biotechnol,2007,76: 927-934.
    [34]Anderson MA, Whitlock JE, Harwood VJ. Diversity and distribution of Escherichia coli genotypes and antibiotic resistance phenotypes in feces of humans, cattle, and horses. Appl Environ Microbiol,2006,72:6914-6922.
    [35]Wiggins B A, Cash P W, Creamer W S et al. (2003). Use ofantibiotic resistance analysis for representativeness testing of multiwatershed libraries. Applied and EnvironmentalMicrobiology,69(6),3399-3405.
    [36]Harwood V J, B Wiggins, C Hagedorn et al.2003. Phenotypic library-based microbial source tracking methods:Efficacy in the California collaborative study. J. Water Health 1:153-166.
    [37]Whitlock, J. E., D. T. Jones and V. J. Harwood.2002. Identification of the sources of fecal coliforms in an urban watershed using antibiotic resistance analysis. Water Res.36:4273-4282.
    [38]Kuntz, R.L., P. G. Hartel, D.G. Godfrey, J. L. McDonald, K.W. Gates, and W.I. Segars (2003). Targeted sampling protocol as prelude to bacterial source tracking with Enterococcus faecalis. J Environ Qual.32:2311-8.
    [39]U. S. Environmental Protection Agency, 2001, Protocol for developing pathogen TMDLs (1st ed.):Washington, D. C., Office of Water (4503F), EPA 841-R-00-002 [variously paginated].
    [40]U. S. Environmental Protection Agency,2002, National beach guidance and required performance criteria for grants; Appendix G—Conducting a sanitary survey:Washington, D. C., Office of Water (4305 T), EPA-823-B-02-004, p. G1-G7.
    [41]http://www.cfsan.fda.gov/~ear/nss2-toc.html
    [42]李金钟.肠球菌分类与鉴定新进展[J].临床检验杂志,2006,24(3):228-230
    [43]BorchardtM A, Bertz P D, Spencer S K et al. Incidence of enteric viruses in groundwater from household wells inWisconsi. App l. Environ. Microbiol.2003,69 (2):1172-1180
    [44]Kinzelman J,Ng C, Jackson E, Gradus S et al. Enterococci as indicators of Lake Michigan recreational water quality:Comparison of two methodologies and their impacts on public health regulatory events. App l. Environ. Microbiol.,2003,69 (1):92-96
    [45]Vinje J, Oudejans S, Stewart J R et al. Molecular detection and genotyping of male-specific coliphages by RT-PCR and reverse line blot hybridization. Applied and Environmental Microbiology, 2004,70(10):5996-6004.
    [46 杜蓉,肠球菌的耐药机制研究进展,华西医学,2006,002—0179(2006)02—0395—0
    [47]胡志东,王金良.肠球菌耐药性的研究进展[J].国际流行病学传染病学杂志,2007,34(4):281-284.
    [48]Paulsen IT, Banerjei L, Myers GS, et al. Role of mobile DNA in the evolution of vancomucin-resistantEnterococcus faecal is. Science,2003,299(5615):2017-2074.
    [49]Barbolla R, Catalano M, Orman BE, et al. Class 1 integrons increase trimethoprim-sulfamethoxazole MICs against epidemiologically unrelated Stenotrophomonas maltophiliaisolates[J]. Antimicrob Agents Chemother,2004,48(2):666-669.
    [50]尹兵,动物源和水源肠球菌万古霉素耐药表型、基因型检测及同源性研究,中国优秀硕士学位论文全文数据库,2009.
    [51]Valerie J Harwood, John Whtilock. Classification of Antibiotic Resistance Patterns of Indicator Bacteria by Discriminant Analysis:Use in Predicting the Source of Fecal Contamination in Subtropical Waters. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Sept.2000, p.3698-3704
    [52]Graves A K, C Hagedorn, A Teetor.2002. Antibiotic resistance profiles to determine sources of fecal contamination in a rural Virginia watershed. J. Environ. Qual.31:1300-1308.
    [53]W Ahmed, J Tucker, J Harper, R Neller, M Katouli. Comparison of the efficacy of an existing versus a locally developed metabolic fingerprint database to identify non-point sources of faecal contamination in a coastal lake Water Research 40 (2006) 2339-2348.
    [54]Levy S B, G B FitzGerald, and A B Macone. 1976. Changes in intestinal flora of farm personnel after introduction of a tetracycline-supplemented feed on a farm. N. Engl. J. Med.295:583-588.
    [55]Kaspar C W, J L Burgess, I T Knight et al.1990. Antibiotic resistance indexing of Escherichia coli to identify sources of fecal contamination in water. Can. J. Microbiol.36:891-894.
    [56]Seurinck S, W Verstraete, and S Siciliano. Microbial source tracking for identification of fecal pollution[J]. Rev. Environ. Sci. BioTech,2005,4:19-37.
    [57]Scott T M, Parveen S, Portier K M, et al. Geographical variation in ribotype profiles of Escherichia coli isolates from humans, swine, poultry, beef, and dairy cattle in Florida[J]. Applied and Environmental Microbiology,2003, 69 (2):1089-1092.
    [58]Simpson J M, Santo Domingo J W, Reasoner D J. Microbial source tracking:state of the science[J]. Environmental Science and Technology, 2002,36(24):5279-5288.
    [59]Carrie J Evenson, KA Strevett. Discriminant analysis of fecal bacterial species composition for use as a phenotypic microbial source tracking method Research in Microbiology 157 (2006) 437-444
    [60]Krumperman C W, J L Burgess, I. T. Knight, et al. Antibiotic resistance indexing of Escherichia coli to identify sources of fecal contamination in water. Can. J. Microbiol.1990.36:397-399.
    [61]Kearns L E, B A Wiggins. 1995. Chemical and microbiological characterization of the North River watershed in Rockingham County, Virginia, p. A-6-6-1-A-6-6-112. In C. G. Luebben (ed.), Lower Dry River water quality improvement project:final report. Shenandoah Valley Soil and Water Conservation District of Virginia, Harrisonburg, Va.
    [62]BorchardtM A, Bertz P D, Spencer S K et al. Incidence of enteric viruses in groundwater from household wells in Wisconsi. App 1. Environ. Microbiol.,2003,69 (2):1172~1180
    [63]Kuntz R L, P G Hartel, D G Godfrey, et al. Targeted sampling protocol as prelude to bacterial source tracking with Enterococcus faecalis. J Environ Qual. (2003)32:2311-8.
    [64]U.S. Environmental Protection Agency,2001, Protocol for developing pathogen TMDLs (1st ed.):Washington, D. C., Office of Water (4503F), EPA 841-R-00-002.
    [65]Anne E. B., Katharine G. F. Identification of nonpoint sources of fecal pollution in coastal waters by using host specific 16S ribosomal DNA genetic markers from fecal anaerobes[J]. App 1. Environ. Microbiol,2000,66 (4):1587-1594.
    [66]Vinje J, Sjon J G 0, Jill R S, et al. Molecular detection and genotyping of male-specific coliphages by reverse transcription PCR and reverse line blot hybridization. App. Environ. Microbiol,2004,70 (10):5996-6004.
    [67]Devriese L A, A Van De Kerckhove, R Kilpper-Balz, et al. Characterization and identification of Enterococcus species isolated from the intestines of animals. Int. J. Syst. Bacteriol.1987.37:257-259.
    [68]Rutkowski A A, and R. E. Sjogren. 1987. Streptococcal population profiles as indicators of water quality. Water Air Soil Pollut.34:273-284.
    [69]Parveen S, N C Hodge, R E Stall, et al. Genotypic and phenotypic characterization of human and nonhuman Escherichia coli[J]. Water Res,2001,35:379-386.
    [70]A Vantarakis, D Venieri, G Komninou. et al. Differentiation of faecal Escherichia coli from humans and animals by multiple antibiotic resistance analysis, The Society for Applied Microbiology,42 (2006) 71-77.
    [71]J W Dickerson, C Hagedorn, A Hassall. Detection and remediation of human-origin pollution at two public beaches in Virginia using multiple source tracking methods. Water Reserch 41 (2007) 3758-3770.
    [72]王耀兵,苏洁,杨玉敏.一种粪便污染源识别新技术--微生物源示踪(Microbial Source Tracking, MST)海洋环境科学.2008,27(2):122-128.
    [73]汪华,叶殉.细菌源追踪技术及进展.江苏卫生保健,2008,10(2),12-14
    [74]林萍,胡晓抒.细菌源追踪方法的选择,江苏预防医学.2007,18(3),83-86
    [75]顾玲,丁震,汪华等人.应用不同微生物源追踪方法追踪水库中粪便污染来源,中国卫生检验杂志,2010,20(2),249-252
    [76]叶殉,顾玲,李伟伟.抗生素敏感性微生物源追踪方法建立.中国公共卫生,2009,25(4),495-496
    [77]刘晶,赵金辉,赵娟.粪肠球菌和屎肠球菌耐药特点分析.中国实验诊断学2007年8月第11卷第8期.
    [78]张松乐,陈梅玲,张朝隆,童泳仪,车凤翔大肠杆菌基因工程菌在湖水中稳定性的初步研究中国卫生检验杂志1999年第2期:120~122.
    [79]许能锋,李长春,王珊珊,叶涌 大肠杆菌0157:H7在8种水质中存活力观察,中国公共卫生,2001年第17卷,第4期:312~314.
    [80]Slutsker L, Ries AA,Maloney K, et al. A nationwide case-control study of Escherichia coli 0157:H7 infection in the United States. J Infect Dis,1998,177 (4):962-966.
    [81]曹小红,杨政,鲁梅芳,韩朝龙.两种卫生指标菌在瓶装水中“活的非可培养状态”的研究.食品科学,2009,30(11),197-201.
    [82]Xu HS, Roberts N, Singleton FL, et al. Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb Ecol,1982,8:313-323.
    [83]Lleo MM, Tafi MC, Signoretto C, et al. Competitive polymerase chain reaction for quantification of nonculturable Enterococcus faecalis cells in lake water. FEMS Microbiology Ecology,1999,30(4):345-353.
    [84]Bass L, Liebert C A, Lee M D et al. The incidence and characterization of integrons, genetic elements associated with multiple drug resistance, in avian Escherichia coli. Antimicrob. Agents Chemother.1999.43 (12),2925-2929.
    [85]Kruse H, S(?)rum H,1994. Transfer of multiple drug resistant plasmids between bacteria of diverse origins in natural microenvironments. Appl. Environ. Microbiol. 60 (11),4015-4021.
    [86]Ohlsen K, Ternes T, Werner G et al. Impact of antibiotics on conjugational resistance gene transfer in Staphylococcus aureus in sewage. Environ. Microbiol. 2003.5 (8),711-716.
    [87]Smalla K, Wieland G, Buchner A, et al. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis:plant-dependent enrichment and seasonal shifts revealed. Appl. Environ. Microbiol.2001.67 (10), 4742-4751.
    [88]A K Graves, C Hagedorn, A Brooksb, et al. Microbial source tracking in a rural watershed dominatedby cattle. Water Research 41 (2007) 3729-3739.
    [89]郭绪平.110株粪肠球菌的分布及耐药性分析.检验医学与临床2006年2月第3卷第1期,7-8.
    [90]Hagedorn S C, Robinson S L, Filtz J R et al. Determining sources of fecal pollutionina rural Virginia watershed withantibiotic resistance patterns in fecal streptococci. Appl. Environ. Microbiol.1999.65 (12),5522-5531.
    [91]Hartel P, Gates K, Payne K, et al.2005. Targeted samplingto determine sources of fecal contamination. Stormwater 6,46-53.
    [92]Parveen S, Hodge N C, Stall R E, Phenotypic and genotypic characterization of human and nonhuman Escherichia coli. Water Res (2001)2,379-386.
    [93]Guan S, Xu R, Odumeru J et al. Development of a procedure for discriminating among Escherichia coli isolates from animals and human sources. ApplEnviron Microbiol 2002,68,2690-2698.
    [94]LeeAnn K J, Mary B B, Ethan A C. Sample Size, Library Composition, and Genotypic Diversity among Natural Populations of Escherichia coli from Different Animals Influence Accuracy of Determining Sources of Fecal Pollution. Applied and encironmental microbiology, Aug.2004, p.4478-4485.
    [95]Burnes B S.2003. Antibiotic resistance analysis of fecal coliforms to determine fecal pollution sources in a mixed-use watershed. Environ. Monit. Assess.85:87-98.
    [96]Guan S, R Xu, S Chen et al.2002. Development of a procedure for discriminating among Escherichia coli isolates from animal and human sources. Appl. Environ. Microbiol.68:2690-2698.
    [97]Wheeler A L, P G Hartel, D G Godfrey et al. Potential of Enterococcus faecalis as a human fecal indicator for microbial source tracking. J. Environ. Qual. (2002) 31:1286-1293.
    [98]Fred J Genthner, Joseph B James, Diane F Yates et al. Use of composite data sets for source-tracking enterococci in the water column and shoreline interstitial waters on Pensacola Beach, Florida. Marine Pollution Bulletin 50 (2005) 724-732.
    [99]W Ahmed, M Hargreaves, A Goonetilleke. Population similarity analysis of indicator bacteria for source prediction of faecal pollution in a coastal lake. Marine Pollution Bulletin 50 (2005) 724-732.
    [100]John E Whitlocka, David T Jonesb, Valerie J Harwood. Identification of the sources of fecal coliforms in an urban watershed usingantibiotic resistance analysis. Water Research 36 (2002) 4273-4282.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700