复合材料点阵夹芯结构的弯曲、屈曲和振动特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
点阵夹芯结构是一类具有优异力学性能的新型轻质多功能结构,其在航空、航天、船舶和交通领域具有广阔的应用前景。与传统的金属材料相比,碳纤维增强复合材料具有密度低、强度高、模量大的特性,采用复合材料制备点阵夹芯结构,将使材料和结构的优势相得益彰。由于复合材料点阵夹芯结构具有高孔隙率、周期性有序及各向异性的特点,其在刚度、强度、稳定性和振动特性等方面都体现出新的特征,但目前还缺乏该方面的研究成果。本文采用理论分析、数值模拟和实验测量相结合的方法,对复合材料点阵夹芯结构的三点弯曲、整体屈曲、自由振动及缺陷敏感性问题进行了研究,主要包括以下内容:
     首先研究了复合材料点阵夹芯结构在三点弯曲载荷作用下的刚度和强度问题。将离散的点阵芯子等效为连续均匀材料,考虑面板的弯曲和芯子的横向剪切,推导了挠度的表达式。将点阵夹芯结构看作由多跨薄板和一维杆单元构成的复合结构,分析了面板和杆件的应力状态,推导了多种失效模式所对应的临界载荷。在此基础上绘制失效机制图,揭示了失效模式与结构几何尺寸之间的关系。以承载效率最大化为目标,对复合材料点阵夹芯结构进行了优化设计,并与金属点阵夹芯结构和复合材料层合结构进行比较,指出了这种新型轻质结构的优势所在。
     其次研究了复合材料点阵夹芯结构在面内压缩载荷作用下的整体屈曲问题。延用Allen提出的“折线”位移模型(该模型假设面板与芯子具有不同的转角,且芯子的转角是结构横向位移的函数),在其基础上考虑了面板的层合属性,采用能量变分方法推导了横向位移的通解表达式,通过边界条件确定通解中的未知系数,计算了多种典型边界条件下夹芯结构的屈曲模态和临界屈曲载荷。本文提出的方法解决了Euler理论和Timoshenko理论在夹芯结构屈曲长度较短的情况下计算误差偏大的问题。
     然后对复合材料点阵夹芯结构的振动特性进行了理论和数值研究。Allen模型仅适用于简支边界条件下夹芯结构的自由振动问题研究,为了使研究的问题更加具有普适性,本文对Allen模型加以改进,假设芯子的转角与结构的横向位移是两个独立的函数,求解了多种典型边界条件下夹芯结构固有频率和固有振型的解析解。建立了模拟点阵夹芯结构自由振动特性的有限元模型,并讨论了材料性能和几何参数对复合材料点阵夹芯结构固有频率的影响。
     最后通过实验模态分析和数值模拟方法研究了芯体材料的局部损伤对复合材料点阵夹芯结构振动特性的影响。讨论了损伤程度、损伤位置、损伤形式和边界条件对点阵夹芯结构固有频率和固有振型的影响,研究结果表明局部损伤将会降低结构的固有频率,并导致结构的固有振型出现明显的局部变形。该研究为复合材料点阵夹芯结构的工程应用提供了有益的指导。
Lattice sandwich structure, as a novel kind of multifunctional lightweightstructure, has widely potential application in the fields of astronautics, aeronautics,ship-building and transportation. They have been traditionally made of metallicmaterials such as aluminium alloy or304stainless steel. There are many advantagesof carbon fiber reinforced composite materials over traditional metallic materials,such as low density, high strength, and high modulus. Therefore, composite latticesandwich structures have been paid more attention in recent years. Due to somefeatures of composite lattice sandwich structures, such as high porosity, periodicity,and anisotropy, their stiffness, strength, stability and vibration properties will shownew characteristics. However, there is little research in this area. In this dissertation,three-point bending problem, global buckling problem, and free vibration problemof composite lattice truss core sandwich structures are studied by the methods oftheoretical prediction, numerical simulation and experimental measurement. Themain contents are as follows:
     The stiffness and strength behaviors of composite lattice truss core sandwichstructure under three-point bending load are investigated firstly. Converted discretelattice truss core to continuum homogenized material, the expression for thedeflection is derived by considering bending of the face sheets and transverseshearing of the core. The stress states within the face sheets and the truss membersare analyzed respectively by taking the lattice truss core sandwich structure as acomposite structure composed of multi-span thin plates and one-dimensional strutelements, and the critical loads for various failure modes are predicted. Collapsemechanism map is constructed on that basis, and the relations between failuremodes and structural geometric dimensions are revealed. Optimized design ofcomposite lattice truss core sandwich structure is carried out with the goal of load-carrying efficiency maximization. The advantage of this new type of lightweightstructure is reported by comparing the performances of composite lattice sandwichstructure, metallic lattice sandwich structure and composite laminates.
     Secondly, the global buckling problem of composite lattice truss coresandwich structure under in-plane compressive load is investigated. On the basis ofAllen's displacement model (which assumes that the face sheets and the core havedifferent rotation angles, and the rotation angle of the core is a function of thetransverse displacement of the sandwich structure), considering a sandwichstructure with laminated face sheets, the expression of general solution for transverse displacement is derived using the energy-variational method, theunknown coefficients in the general solution are determined by the correspondingboundary conditions, and the buckling modes as well as critical buckling loadsunder various typical boundary conditions are calculated. The errors of both Eulertheory and Timoshenko theory increase with the shortening of the buckling lengthof the sandwich structure, while the present method overcomes this problem.
     Then, the free vibration problem of composite lattice truss core sandwichstructure is studied by theoretical and numerical methods. An improved zig-zagmodel, which is suitable for free vibration problem of sandwich structure not onlyunder simply-supported boundary conditions, but also under other boundaryconditions, is constructed on the basis of Allen's model, and the natural frequenciesand corresponding vibration modes of sandwich structure under various boundaryconditions are calculated. Besides, a finite element model is set up to simulate thefree vibration characteristics of lattice truss core sandwich structure, and the effectsof material properties and geometric parameters on the natural frequencies of latticetruss core sandwich structure are also discussed.
     Finally, the effects of local damage of the core on the vibration characteristicsof composite lattice truss core sandwich structure are studied by experimentalmodal analysis and numerical simulation method, and the effects of damage extents,damage locations, damage forms, and boundary conditions on the naturalfrequencies and natural vibration modes of lattice truss core sandwich structures areinvestigated. It is found that local damage will decrease the natural frequencies andresult in obvious local deformations appearing in the natural vibration modes. Thepresent study provides useful guidance for engineering application of compositelattice truss core sandwich structure.
引文
[1] Zenkert D. The Handbook of Sandwich Construction[M]. London, UK:Chameleon Press Ltd.,1997.
    [2]罗忠,朱锡,梅志远,李永清.夹芯复合材料结构阻尼特性研究[J].振动与冲击.2008,27(11):134-136.
    [3] Wadee M A, Yiatros S, Theofanous M. Comparative Studies of LocalizedBuckling in Sandwich Struts with Different Core Bending Modes[J].International Journal of Non-Linear Mechanics.2010,45(2):111-120.
    [4] Allen H G. Analysis and Design of Structural Sandwich Panels[M]. Oxford:Pergamon Press,1969.
    [5] Evans A G. Lightweight Materials and Structures[J]. Materials ResearchSociety Bulletin.2001,10:790-797.
    [6] Mohr D, Straza G. Development of Formable All-metal Sandwich Sheets forAutomotive Application[J]. Advanced Engineering Materials.2005,7(4):243-246.
    [7] Rabczuk T, Kim J Y, Samaniego E, Belytschko T. Homogenization ofSandwich Structures[J]. International Journal for Numerical Methods inEngineering.2004,61(7):1009-1027.
    [8] Sharma N, Gibson R F, Ayorinde E O. Fatigue of Foam and Honeycomb CoreComposite Sandwich Structures: a Tutorial[J]. Journal of Sandwich Structuresand Materials.2006,8(4):263-319.
    [9]吴林志,泮世东.夹芯结构的设计及制备现状[J].中国材料进展.2009,28(4):40-45.
    [10] Vinson J R. Sandwich Structures[J]. Applied Mechanics Reviews.2001,54(3):201-214.
    [11] Wadley H N G. Multifunctional Periodic Cellular Metals[J]. PhilosophicalTransactions of the Royal Society A: Mathmatical, Physical and EngineeringSciences.2006,364(1838):31-68.
    [12] Evans A G, Hutchinson J W, Fleck N A, Ashby M F, Wadley H N G. TheTopological Design of Multifunctional Cellular Metals[J]. Progress inMaterials Science.2001,46(3-4):309-327.
    [13] Cote F, Deshpande V S, Fleck N A, Evans A G. The Compressive and ShearResponses of Corrugated and Diamond Lattice Materials[J]. InternationalJournal of Solids and Structures.2006,43(20):6220-6242.
    [14] Bele E, Bouwhuis B A, Hibbard G D. Microstructural Design in WorkHardenable Perforation Stretch Formed Micro-truss Cores[J]. CompositesPart A: Applied Science and Manufacturing.2009,40(8):1158-1166.
    [15] Deshpande V S, Fleck N A, Ashby M F. Effective Properties of the Octet-truss Lattice Material[J]. Journal of the Mechanics and Physics of Solids.2001,49(8):1747-1769.
    [16] Wadley H N G, Fleck N A, Evans A G. Fabrication and Structural Performanceof Periodic Metal Sandwich Structures[J]. Composites Sciences andTechnology.2003,63(16):2331-2343.
    [17] Zok F W, Waltner S A, Wei Z, Rathbun H J, McMeeking R M, Evans A G. AProtocol for Characterizing the Structural Performance of Metallic SandwichPanels: Application to Pyramidal Truss Cores[J]. International Journal ofSolids and Structures.2004,41(22-23):6249-6271.
    [18] Kooistra G W, Wadley H N G. Lattice Truss Structures from Expanded MetalSheet[J]. Materials and Design.2007,28(2):507-514.
    [19] Queheillalt D T, Murty Y, Wadley H N G. Mechanical Properties of anExtruded Pyramidal Lattice Truss Sandwich Structure[J]. Scripta Materialia.2008,58(1):76-79.
    [20] Han D Y, Tsai S W. Interlocked Composite Grids Design andManufacturing[J]. Journal of Composite Materials.2003,37(4):287-316.
    [21] Fan H L, Meng F H, Yang W. Sandwich Panels with Kagome Lattice CoresReinforced by Carbon Fibers[J]. Composite Structures.2007,81(4):533-539.
    [22] Fan H L, Yang W, Wang B. Design and Manufacturing of a Composite LatticeSandwich Structure Reinforced by Continuous Carbon Fibers[J]. TsinghuaScience and Technology.2006,11(5):515-522.
    [23] Finnegan K, Kooistra G, Wadley H N G, Deshpande V S. The CompressiveResponse of Carbon Fiber Composite Pyramidal Truss Sandwich Cores[J].International Journal of Materials Research.2007,98(12):1264-1272.
    [24] Wang B, Wu L Z, Ma L. Fabrication and Testing of Carbon Fiber ReinforcedTruss Core Sandwich Panels[J]. Journal of Materials Science and Technology.2009,25(4):547-550.
    [25]王兵,吴林志,杜善义,孙雨果,马力.碳纤维增强金字塔点阵夹芯结构的抗压缩性能[J].复合材料学报.2010,27(1):133-138.
    [26] Xiong J, Ma L, Wu L Z. Fabrication and Crushing Behavior of Low DensityCarbon Fiber Composite Pyramidal Truss Structures[J]. Composite Structures.2010,92(11):2695-2702.
    [27] Deshpande V S, Ashby M F, Fleck N A. Foam Topology Bending VersusStretching Dominated Architectures[J]. Acta Materialia.2001,49(6):1035-1040.
    [28] Schaedler T A, Jacobsen A J, Torrents A, Sorensen A E, Lian L, Greer J R,Valdevit L, Carter W B. Ultralight Metallic Microlattices[J]. Science.2011,334(6058):962-965.
    [29]范华林,方岱宁.胞元材料拓扑构型与力学性能的相关性[J].清华大学学报(自然科学版).2007,47(11):2072-2075.
    [30] Elsayed M S A, Pasini D. Multiscale Structural Design of Columns Made ofRegular Octet-truss Lattice Material[J]. International Journal of Solids andStructures.2010,47(14-15):1764-1774.
    [31] Lee Y H, Lee B K, Jeon I, Kang K J. Wire-woven Bulk Kagome TrussCores[J]. Acta Materialia.2007,55(18):6084-6094.
    [32] Lee B C, Lee K W, Byun J H, Kang K J. The Compressive Response of NewComposite Truss Cores[J]. Composites Part B: Engineering.2012,43(2):317-324.
    [33] Lee B K, Kang K J. A Parametric Study on Compressive Characteristics ofWire-woven Bulk Kagome Truss Cores[J]. Composite Structures.2010,92(2):445-453.
    [34] Queheillalt D T, Wadley H N G. Pyramidal Lattice Truss Structures withHollow Trusses[J]. Materials Science and Engineering: A.2005,397(1-2):132-137.
    [35] Li M, Wu L Z, Ma L, Wang B, Guan Z X. Mechanical Response of AllComposite Pyramidal Lattice Truss Core Sandwich Panels[J]. Journal ofMaterials Science and Technology.2011,27(6):570-576.
    [36] Lee B K, Kang K J. Compressive Strength of Tube-woven Kagome TrussCores[J]. Scripta Materialia.2009,60(6):391-394.
    [37] Park J S, Joo J H, Lee B C, Kang K J. Mechanical Behaviour of Tube-wovenKagome Truss Cores under Compression[J]. International Journal ofMechanical Sciences.2011,53(1):65-73.
    [38] Yin S, Wu L, Ma L, Nutt S. Pyramidal Lattice Sandwich Structures withHollow Composite Trusses[J]. Composite Structures.2011,93(12):3104-3111.
    [39] Zhang G Q, Ma L, Wang B, Wu L Z. Mechanical Behaviour of CFRPSandwich Structures with Tetrahedral Lattice Truss Cores[J]. Composites PartB: Engineering.2011,43(2):471-476.
    [40] Wang B, Wu L Z, Ma L, Sun Y G, Du S Y. Mechanical Behavior of theSandwich Structures with Carbon Fiber Reinforced Pyramidal Lattice TrussCores[J]. Materials and Design.2010,31(5):2659-2663.
    [41] Hutchinson J W, Xue Z. Metal Sandwich Plates Optimized for PressureImpulses[J]. International Journal of Mechanical Sciences.2005,47(4-5):545-569.
    [42] Xue Z, Hutchinson J W. Preliminary Assessment of Sandwich Plates Subjectto Blast Loads[J]. International Journal of Mechanical Sciences.2003,45(4):687-705.
    [43] Xue Z, Hutchinson J W. A Comparative Study of Impulse-resistant MetalSandwich Plates[J]. International Journal of Impact Engineering.2004,30(10):1283-1305.
    [44] Yungwirth C J, Wadley H N G, O'Connor J H, Zakraysek A J, Deshpande V S.Impact Response of Sandwich Plates with a Pyramidal Lattice Core[J].International Journal of Impact Engineering.2008,35(8):920-936.
    [45] Yungwirth C J, Radford D D, Aronson M, Wadley H N G. ExperimentAssessment of the Ballistic Response of Composite Pyramidal Lattice TrussLattice Structures[J]. Composites Part B: Engineering.2008,39(3):556-559.
    [46] Liu T, Deng Z C, Lu T J. Bi-functional Optimization of Actively Cooled,Pressurized Hollow Sandwich Cylinders with Prismatic Cores[J]. Journal ofthe Mechanics and Physics of Solids.2007,55(12):2565-2602.
    [47] Kim T. Fluid-flow and Endwall Heat-transfer Characteristics of an UltralightLattice-frame Material[J]. International Journal of Heat and Mass Transfer.2004,47(6-7):1129-1140.
    [48] Tian J, Kim T, Lu T J. The Effects of Topology upon Fluid-flow and Heat-transfer within Cellular Copper Structures[J]. International Journal of Heatand Mass Transfer.2004,47(14-16):3171-3186.
    [49] Kim T, Hodson H P, Lu T J. Contribution of Vortex Structures and FlowSeparation to Local and Overall Pressure and Heat Transfer Characteristics inan Ultralightweight Lattice Material[J]. International Journal of Heat andMass Transfer.2005,48(19-20):4243-4264.
    [50] Hoffman F. Heat Transfer Performance and Pressure Drop of Kagome CoreMetal Truss Panels[D]. Cambridge: University of Cambridge,2002.
    [51] Roper C S. Multiobjective Optimization for Design of MultifunctionalSandwich Panel with Pipes with Micro-architected Truss Cores[J].International Journal of Heat and Fluid Flow.2011,32(1):239-248.
    [52] Kim T, Zhao C Y, Lu T J, Hodson H P. Convective Heat Dissipation withLattice-frame Materials[J]. Mechanics of Materials.2004,36(8):767-780.
    [53]石勇,刘宇,刘鑫,王志鹏.夹层复合材料在潜艇声隐身结构中的应用及其相关技术研究[J].材料开发与应用.2008,23(6):21-25.
    [54]朱锡,石勇,梅志远.夹芯复合材料在潜艇声隐身结构中的应用及相关技术研究[J].中国舰船研究.2007,2(3):34-39.
    [55] Chen M J, Pei Y M, Fang D N. Computational Method for Radar AbsorbingComposite Lattice Grids[J]. Computational Materials Science.2009,46(3):591-594.
    [56]石勇,朱锡,李永清,李海涛.水下目标吸声材料和结构的研究[J].声学技术.2006,25(5):505-512.
    [57] Wang J, Lu T J, Woodhouse J. Sound Transmission Through LightweightDouble-leaf Partitions: Theoretical Modeling[J]. Journal of Sound andVibration.2005,286(4-5):817-847.
    [58] Fan H L, Fang D N. Enhancement of Mechanical Properties of Hollow-strutFoams: Analysis[J]. Materials and Design.2009,30(5):1659-1666.
    [59] Fan H L, Jin F N, Fang D N. Mechanical Properties of Hierarchical CellularMaterials. Part Ⅰ: Analysis[J]. Composites Sciences and Technology.2008,68(15-16):3380-3387.
    [60] Liu H R, Yang J L. Optimal Control of Sandwich Panels with Pyramidal TrussCores Based on Energy Criterion[J]. Advanced Materials Research.2008,33-37:1419-1424.
    [61] Wang B, Guo H C, Fang D N. A Protocol for Characterizing the Performanceof Light-weight Truss-core Actuators[J]. Computers and Mathematics withApplications.2009,58(11-12):2365-2372.
    [62] Wicks N, Hutchinson J W. Optimal Truss Plates[J]. International Journal ofSolids and Structures.2001,38(30-31):5165-5183.
    [63]卢天健,何德坪,陈常青,赵长颖,方岱宁,范华林.超轻多孔金属材料的多功能特性及应用[J].力学进展.2006,36(4):517-535.
    [64] Arikoglu A, Qzkol I. Vibration Analysis of Composite Sandwich Beams withViscoelastic Core by Using Different Transform Method[J]. CompositeStructures.2010,92(12):3031-3039.
    [65] Bazant Z P, Beghini A. Sandwich Buckling Formulas and Applicability ofStandard Computational Algorithm for Finite Strain[J]. Composites Part B:Engineering.2004,35(6-8):573-581.
    [66] Borg R, Nilsson L, Simonsson K. Simulation of Low Velocity Impact onFiber Laminates Using a Cohesive Zone Based Delamination Model[J].Composites Sciences and Technology.2004,64(2):279-288.
    [67] Cicala G, Recca G, Oliveri L, Perikleous Y, Scarpa F, Lira C, Lorato A, GrubeD J, Ziegmann G. Hexachiral Truss-core with Twisted Hemp Varns: Out-of-plane Shear Properties[J]. Composite Structures.2012,94(12):3556-3562.
    [68] Fleck N A, Sridhar I. End Compression of Sandwich Columns[J]. CompositesPart A: Applied Science and Manufacturing.2002,33(3):353-359.
    [69] Jones R M. Mechanics of Composite Materials[M]. Washington: Scripta BookCompany,1975.
    [70] Sun Y G, Gao L. Structural Responses of All-composite Improved-pyramidalTruss Sandwich Cores[J]. Materials and Design.2013,43:50-58.
    [71] Xiong J, Ma L, Wu L Z, Liu J Y, Vaziri A. Mechanical Behavior and Failureof Composite Pyramidal Truss Core Sandwich Column[J]. Composites Part B:Engineering.2011,42(4):938-945.
    [72]沈观林,胡更开.复合材料力学[M].北京:清华大学出版社,2006.
    [73]王兵.纤维柱增强复合材料夹芯结构的制备工艺及力学性能研究[D].哈尔滨:哈尔滨工业大学,2010.
    [74] Liu J Y, Zhou Z G, Ma L, Xiong J, Wu L Z. Temperature Effects on theStrength and Crushing Behavior of Carbon Fiber Composite Truss SandwichCores[J]. Composites Part B: Engineering.2011,42(7):1860-1866.
    [75] Liu J Y, Zhou Z G, Wu L Z, Ma L, Pan S D. Shear Response of Carbon FiberComposite Pyramidal Truss Structures after High-temperature Exposure[J].Journal of Reinforced Plastics and Composites.2012,31(18):1216-1225.
    [76] Liu J Y, Zhou Z G, Wu L Z, Ma L. A Study on Mechanical Behavior ofCarbon Fiber Composite Sandwich Panel with Pyramidal Truss Cores atDifferent Temperatures[J]. Science China: Physics, Mechanics&Astronomy.2012,55(11):2135-2142.
    [77]王世勋.复合材料夹芯结构的力学性能[D].哈尔滨:哈尔滨工业大学,2010.
    [78] Noor A K, Burton W S, Bert C W. Computational Models for SandwichPanels and Shells[J]. Applied Mechanics Reviews.1996,49(3):155-199.
    [79] Frostig Y. Classical and High-order Computational Models in the Analysis ofModern Sandwich Panels[J]. Composites Part B: Engineering.2003,34(1):83-100.
    [80] Libove C, Hubka R E. Elastic Constants for Corrugated Core SandwichPlates[J]. Journal of Structural Engineering.1951,122:958-966.
    [81] Fung T C, Tan K H, Lok T S. Elastic Constants for Z-core Sandwich Panels[J].Journal of Structural Engineering.1994,120:3046-3055.
    [82] Romanoff J, Varsta P. Bending Response of Web-core Sandwich Beams[J].Composite Structures.2006,73(4):478-487.
    [83] Romanoff J, Varsta P. Bending Response of Web-core Sandwich Plates[J].Composite Structures.2007,81(2):292-302.
    [84] Buannic N, Cartraud P, Quesnel T. Homogenization of Corrugated CoreSandwich Panels[J]. Composite Structures.2003,59(3):299-312.
    [85] Xue Z Y, Hutchinson J W. Constitutive Model for Quasi-static Deformation ofMetallic Sandwich Cores[J]. International Journal for Numerical Methods inEngineering.2004,61:2205-2238.
    [86] Xue Z Y, Vaziri A, Hutchinson J W. Non-uniform Hardening ConstitutiveModel for Compressible Orthotropic Materials with Application to SandwichPlate Cores[J]. Computer Modeling in Engineering&Sciences.2005,10(1):79-95.
    [87] Zok F W, Rathbun H, He M, Ferri E, Mercer C, McMeeking R M, Evans A G.Structural Performance of Metallic Sandwich Panels with Square HoneycombCores[C]. Embury Symposium. McMaster Univ, Hamilton, Canada,2004.
    [88] Isaksson P, Krusper A, Gradin P A. Shear Correction Factors for CorrugatedCore Structures[J]. Composite Structures.2007,80(1):123-130.
    [89] He L, Cheng Y S, Liu J. Precise Bending Stress Analysis of Corrugated-core,Honeycomb-core and X-core Sandwich Panels [J]. Composite Structures.2012,94(5):1656-1668.
    [90] Steeves C A, Fleck N A. Collapse Mechanisms of Sandwich Beams withComposite Faces and a Foam Core, Loaded in Three-point Bending. Part I:Analytical Models and Minimum Weight Design[J]. International Journal ofMechanical Sciences.2004,46(4):561-583.
    [91] Gibson L J, Ashby M F. Cellular Solids[M]. Cambridge University Press,1988.
    [92] Steeves C A, Fleck N A. Collapse Mechanisms of Sandwich Beams withComposite Faces and a Foam Core, Loaded in Three-point Bending. Part II:Experimental Investigation and Numerical Modelling[J]. International Journalof Mechanical Sciences.2004,46(4):585-608.
    [93] Deshpande V S, Fleck N A. Collapse of Truss Core Sandwich Beams in3-point Bending[J]. International Journal of Solids and Structures.2001,38(36-37):6275-6305.
    [94] Xiong J, Ma L, Wu L Z, Papadopoulos J, Vaziri A. Shear and BendingPerformance of Carbon Fiber Composite Sandwich Panels with PyramidalTruss Cores[J]. Acta Materialia.2012,60(4):1455-1466.
    [95] Li M, Wu L Z, Ma L, Wang B, Guan Z X. Structural design of pyramidal trusscore sandwich beams loaded in3-point bending[J]. Journal of mechanics ofmaterials and structures.2011,6(9-10):1255-1266.
    [96] Engesser F. Ueber die Knickfestigkeit gerader Stabe[J]. Zeitschrift desArchitekten-und Ingenieur-Vereins zu Hannover.1889,35(4):455-462.
    [97] Engesser F. Die Knickfestigkeit gerader Stabe[J]. Zentralblatt derBauverwaltung.1891,11(49):483-486.
    [98] Haringx J A. On the Buckling and Lateral Rigidity of Helical Springs[J].Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen.1942,45:533.
    [99] Haringx J A. On Highly Compressible Helical Springs and Rubber Rods, andTheir Application for Vibration-Free Mountings, Ⅰ [J]. Philips ResearchReports.1948,3(6):401-449.
    [100] Haringx J A. On Highly Compressible Helical Springs and Rubber Rods, andTheir Application for Vibration-Free Mountings, Ⅲ [J]. Philips ResearchReports.1949,4:206-220.
    [101] Bazant Z P. Discussion of "Stability of Built-up Columns"[J]. Journal ofEngineering Mechanics.1992,118(6):1279-1281.
    [102] Bazant Z P. Discussion of "Use of Engineering Strain and Trefftz Theory inBuckling of Columns"[J]. Journal of Engineering Mechanics.1993,119(12):2536-2537.
    [103] Ziegler H. Arguments for and against Engesser's Buckling Formulas[J].Ingenieur-Archiv.1982,52:105-113.
    [104] Reissner E. On One-dimensional Finite-strain Beam Theory: the PlaneProblem[J]. Journal of Applied Mathematics and Physics.1972,23(5):795-804.
    [105] Reissner E. Some Remarks on the Problem of Column Buckling[J].Ingenieur-Archiv.1982,52:115-119.
    [106] Bazant Z P. Shear Buckling of Sandwich, Fiber Composite and LatticeColumns, Bearings, and Helical Springs: Paradox Resolved[J]. Journal ofApplied Mechanics.2003,70:75-83.
    [107] Li M, Wu L Z, Ma L, Wang B, Guan Z X. Structural Response of All-composite Pyramidal Truss Core Sandwich Columns in End Compression[J].Composite Structures.2011,93(8):1964-1972.
    [108] Cote F, Biagi R, Bart-Smith H, Deshpande V S. Structural Response ofPyramidal Core Sandwich Columns[J]. International Journal of Solids andStructures.2007,44(10):3533-3556.
    [109] Ostergaard R C. Buckling Driven Debonding in Sandwich Column[J].International Journal of Solids and Structures.2008,45(5):1264-1282.
    [110] Attard M M, Hunt G W. Sandwich Column Buckling-A HyperelasticFormulation[J]. International Journal of Solids and Structures.2008,45(21):5540-5555.
    [111] Kardomateas G A. An Elasticity Solution for the Global Buckling ofSandwich Beams/Wide Panels with Orthotropic Phases[J]. Journal of AppliedMechanics.2010,77(2):0210151-0210157.
    [112] Kardomateas G A, Simitses G J. Comparative Studies on the Buckling ofIsotropic, Orthotropic, and Sandwich Columns[J]. Mechanics of AdvancedMaterials and Structures.2004,11(4):309-324.
    [113] Kardomateas G A, Simitses G J, Shen L, Li R. Buckling of Sandwich WideColumns[J]. International Journal of Non-Linear Mechanics.2002,37(7):1239-1247.
    [114] Veedu V P, Carlsson L A. Finite-element Buckling Analysis of SandwichColumns Containing a Face/Core Debond[J]. Composite Structures.2005,69(2):143-148.
    [115] Wang C M. Vibration Frequencies of Simply Supported Polygonal SandwichPlates via Kirchhoff Solutions[J]. Journal of Sound and Vibration.1996,190(2):255-260.
    [116] Lok T S, Cheng Q H. Free and Forced Vibration of Simply Supported,Orthotropic Sandwich Panel[J]. Computers and Structures.2001,79(3):301-312.
    [117] Hwu C, Chang W C, Gai S S. Forced Vibration of Composite SandwichBeams with Piezoelectric Sensors and Actuators[C].4th Pacific InternationalConference on Aerospace Science and Technology. Kaohsiung, Taiwan,2001.
    [118] Hwu C, Chang W C, Gai H S. Vibration Suppression of Composite SandwichBeams[J]. Journal of Sound and Vibration.2004,272(1-2):1-20.
    [119]王展光,单建,何德坪.金字塔格栅夹心夹层板动力响应分析[J].力学季刊.2006,27(4):707-713.
    [120] Mead D J, Markus S. The Forced Vibration of a Three-layer, DampedSandwich Beams with Arbitrary Boundary Conditions[J]. Journal of Soundand Vibration.1969,10(2):163-175.
    [121] Thomas T B, Richard A M, Carlos E O. A Finite Element Model forHarmonically Excited Viscoelastic Sandwich Beams[J]. Computers andStructures.1998,66(1):105-113.
    [122] Chen Q, Chan Y W. Integral Finite Element Method for Dynamical Analysisof Elastic–Viscoelastic Composite Structures[J]. Computers and Structures.2000,74(1):51-64.
    [123] Arvin H, Sadighi M, Ohadi A R. A Numerical Study of Free and ForcedVibration of Composite Sandwich Beam with Viscoelastic Core[J]. CompositeStructures.2010,92(4):996-1008.
    [124] Banerjee J R. Free Vibration of Sandwich Beams Using the DynamicStiffness Method[J]. Computers and Structures.2003,81(18-19):1915-1922.
    [125] Banerjee J R, Cheung C W, Morishima R, Perera M, Njuguna J. FreeVibration of a Three-layered Sandwich Beam Using the Dynamic StiffnessMethod and Experiment[J]. International Journal of Solids and Structures.2007,44(22-23):7543-7563.
    [126] Banerjee J R, Sobey A J. Dynamic Stiffness Formulation and Free VibrationAnalysis of a Three-layered Sandwich Beam[J]. International Journal ofSolids and Structures.2005,42(8):2181-2197.
    [127] Khalili S M R, Nemati N, Malekzadeh K, Damanpack A R. Free VibrationAnalysis of Sandwich Beams Using Improved Dynamic Stiffness Method[J].Composite Structures.2010,92(2):387-394.
    [128] Damanpacka A R, Khalilia S M R. High-order freevibration analysis ofsandwich beams with a flexible core using dynamic stiffness method[J].Composite Structures.2012,94(5):1503~1514.
    [129] Kulkarni S V, Frederick D. Frequency as a parameter in delaminationproblems-a preliminary investigation[J]. Journal of Composite Materials.1971,5:112-119.
    [130] Cawley P, Adams R D. A vibration technique for non-destructive testing offiber composite structures[J]. Journal of Composite Materials.1979,13:161-175.
    [131] Kim H Y, Hwang W. Effect of Debonding on Natural Frequencies andFrequency Response Functions of Honeycomb Beams[J]. CompositeStructures.2002,55(1):51-62.
    [132] Burlayenko V N, Sadowski T. Influence of Skin/Core Debonding on FreeVibration Behavior Foam and Honeycomb Cored Sandwich Plates[J].International Journal of Non-Linear Mechanics.2010,45(10):959-968.
    [133] Shahdin A, Mezeix L, Bouvet C, Morlier J, Gourinat Y. Monitoring theEffects of Impact Damages on Modal Parameters in Carbon Fiber EntangledSandwich Beams[J]. Engineering Structures.2009,31(12):2833-2841.
    [134] Shahdin A, Morlier J, Niemann H, Gourinat Y. Correlating Low EnergyImpact Damage with Changes in Modal Parameters: Diagnosis Tools and FEValidation[J]. Structural Health Monitoring.2010,10(2):199-217.
    [135] Tian S, Chen Z, Chen L, Zhang D. Numerical Analyses on Influence ofDamage Configuration on Vibration Parameters for Lattice Sandwich Plate[J].International Journal of Applied Electromagnetics and Mechanics.2010,33:1565-1572.
    [136] Sokolinsky V S, Bremen H F, Lesko J J, Nutt S R. Higher-order FreeVibrations of Sandwich Beams with a Locally Damaged Core[J]. InternationalJournal of Solids and Structures.2004,41(22-23):6529-6547.
    [137] Hu J S, Hwu C. Free Vibration of Delaminated Composite SandwichBeams[J]. AIAA Journal.1995,33(10):1911-1918.
    [138] Baba B O, Thoppul S. Experimental Evaluation of the Vibration Behavior ofFlat and Curved Sandwich Composite Beams with Face/Core Debond[J].Composite Structures.2009,91(1):110-119.
    [139] Baba B O, Thoppul S. An Experimental Investigation of Free VibrationResponse of Curved Sandwich Beam with Face/core Debond[J]. Journal ofReinforced Plastics.2010,29(21):3208-3218.
    [140] Hyun S, Karlsson A M, Torquato S, Evans A G. Simulated Properties ofKagomé and Tetragonal Truss Core Panels[J]. International Journal of Solidsand Structures.2003,40(25):6989-6998.
    [141] Zok F W, Rathbun H J, Wei Z, Evans A G. Design of Metallic Textile CoreSandwich Panels[J]. International Journal of Solids and Structures.2003,40(21):5707-5722.
    [142] Hoff N J, Mautner S E. Bending and Buckling of Sandwich Beams[J]. Journalof the Aeronautical Science.1948,15(12):707-720.
    [143] Ahmed K M. Dynamic Analysis of Sandwich Beams[J]. Journal of Sound andVibration.1972,21(3):263-276.
    [144] Meirovitch L. Element of Vibration Analysis[M]. New York: McGraw-Hill,1986.
    [145] Bishop R, Johnson D. The Mechanics of Vibration[M]. Cambridge:Cambridge University Press,1960.
    [146]李明.碳纤维复合材料金字塔点阵夹芯结构力学性能研究[D].西安:第二炮兵工程学院,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700