基于分等级结构氧化铟的气体传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,持续雾霾天气已经严重地影响了国民健康,如何对污染源进行实时监控和对大气环境质量进行在线监测是迫切需要解决的难题。高灵敏、高选择和高可靠的气体传感器研究开发变得非常重要。
     NO2和O3是典型的大气污染物,对大气中NO2和O3的实时在线监测是空气质量预报和大气科学研究的紧迫需求。本论文主要面向上述两种典型大气污染气体的实时监测,从改善敏感材料微纳结构入手,对ppb量级NO2和O3灵敏度、检测下限和选择性进行检测。在进行大量文献调研和预研的基础上,发现氧化铟与其它半导体氧化物相比,对NO2和O3具有更加优异的传感特性。氧化铟电导率较大,有利于构建简单的传感系统。本论文旨在研究氧化铟分等级结构的设计、制备以及气体传感特性。通过调节水热合成条件对氧化铟的形貌进行调控,主要通过改变反应温度、选择沉淀剂、优化沉淀剂浓度、筛选表面活性剂来调控氧化铟的形貌和微纳结构,进而研究气体传感特性与形貌和微纳结构的关联规律。论文主要工作包括:
     1.利用简易水热/溶剂热方法,得到结构均匀、分散性好的纳米片、多层次花状、花状微球、星型花状及海胆花状等不同形貌分等级结构氧化铟。通过XRD、SEM、TEM、BET等对材料的结构、组成和形貌进行了表征。
     2.通过静态配气法对不同分等级结构氧化铟进行气敏性能测试。气敏测试结果表明,与纳米片相比,多层次花状氧化铟对NO2具有较好的气敏特性。
     3.星型花状结构氧化铟可以在室温下对NO2进行检测,且具有较高灵敏度。海胆状结构氧化铟对O3具有快速响应恢复特性。
     4.气体传感性能测试的结果表明,氧化铟传感器具有较低的功耗和工作温度。
     本论文对不同微纳结构氧化铟生长机理和敏感机理进行了初步研究,发现氧化铟的形貌和微纳结构会因其制备温度、表面活性剂种类、沉淀剂种类及加入量还有溶剂种类的不同发生改变。微纳结构的增感效应可归因于其较大的比表面积和良好的通透性,因为这些结构特征能够显著提高传感器的识别功能和敏感体利用效率。
In recent years, the fog and haze of our country continues have seriously affected the health ofpeople. How to perform real-time monitoring of pollution sources and on-line monitoring of thequality of atmospheric environment is an urgent problem need to address. The research anddevelopment of high sensitivity, high selectivity, and high reliable gas sensor becomes veryimportant.
     NO2and O3is a typical atmospheric pollutants, NO2and O3real-time online monitoring of airquality forecasting and atmospheric research in the atmosphere is an urgent problem to address.This paper mainly for the two typical real-time monitoring of air pollution gases, improve thesensitive material from the micro-nano structures start on the order of NO2and O3ppb sensitivity,detection limit and selective detection. After making a lot of basic research and pre-researchliterature, we discover that compared to several other common semiconductor oxide, In2O3hasexcellent gas sensing characteristics to NO2and O3. In2O3has greater conductivity, is conducive tobuilding simple sensing system.
     This paper aims to study the structure of In2O3hierarchical design, fabrication and gas sensingcharacteristics. By adjusting the hydrothermal synthesis conditions to regulate the morphology ofindium oxide. Mainly by change the reaction temperature, select the precipitating agent, optimizedprecipitant concentration of surfactant screening. Adjustment indium oxide's morphology andmicro-nano structure by the above method, and then study the gas sensing characteristics associatedwith the law of the morphology and micro-nano structures. The main work includes the followingaspects:
     1. Hierarchieal In2O3nanomaterials included nanosheets, multi-level, flowerlike microspheres,star-shaped flowers and urchin-like with structure Uniform and high dispersity were synthesied bysimple hydrothermal and solvothermal methods.The as-synthesized samples were characterizedusing X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electronmicroscopy (TEM), Brunauer-Emmett-Teller (BET).
     2. The gas sensing properties of In2O3with different structure and morphology were measuredby mixing detected gas and air in static state. The test results showed that multi-level flowerlikeIn2O3have higher gas sensitivity than In2O3nanosheets.
     3. The star-shaped flower-like In2O3has high sensitivity and best stability to NO2at roomtemperature. Urchin-like In2O3has high sensitivity and fast response/recovery characteristics to O3.
     4. The results of testing gas sensing properties showed that In2O3gas sensor has lower power consumption or operation temperature.
     In this paper, micro-and nano-structures for different indium oxide growth mechanism andsensitive mechanisms were studied. Found that the morphology and micro-/nano-structure ismainly determined by the In2O3preparation temperature, surfactant type, amount and type ofprecipitant and solvent species. Sensitizing effect of micro-and nano-structures can be attributed toits large specific surface area and good permeability, because these structural features cansignificantly improve the recognition sensors and sensitive body efficiency.
引文
[1] Smatt J H, Linden M, Wagner T, Kohl C D, Tiemann M, Micrometer-sized nanoporous tindioxide spheres for gas sensing [J]. Sens. Actuators B: Chem.,2011,155:483-488.
    [2] Park K S, Heo J, Park J G, Kim D W, Choi K J, Lee J H, Hong S H, Gas sensing properties ofdefect-controlled ZnO-nanowire gas sensor [J]. Appl. Phys. Lett.,2008,6:263103.
    [3] Xu C N, Tamaki J, Miura N, Yamazoe N, Promotion of tin oxide gas sensor by aluminumdoping [J]. Talanta,1991,38:1169-1175.
    [4]尤路.基于三氧化钨和钨酸锌纳米结构的高性能化学传感器研究.吉林大学硕士论文,2013,04.
    [5]许婧.基于半导体氧化物复合材料的紫外光增强型气体传感器的研究.吉林大学硕士论文,2013,04.
    [6]徐甲强.氧化物纳米材料的合成、结构与气敏特性研究.上海大学博士学位论文,2005,07。
    [7]程知萱.不同形貌纳米In2O3的可控制备及气敏性能研究.上海大学博士学位论文,2008,06。
    [8]刁泉.基于稳定氧化锆和氧化物电极的混成电位型车载气体传感器的研究,.吉林大学博士论文,2013,04.
    [9] Yamazoe N, Kurokawa Y, Seiyama T, Effects of additives on semiconductor gas sensors [J].Sens. Actuators.,1983,4:283-289.错误!未找到引用源。[11] Wang S.H, Chou T.Ch, Liu Ch.Ch,Nano-crystalline tungsten oxide NO2sensor, Sens. Actuators B: Chem.,2003,94:343-351.
    [12] Yao S, Shimizu Y, Miura N and Yamazoe N, Use of sodium nitrite auxiliary electrode for solidelectrolyte sensor to detect nitrogen oxides, Chemistry Letters.,1992,21:587-590.
    [13] Miura N, Yao S, Shimizu Y, Yamazoe N, Development of high-performance solid-electrolytesensors for NO and NO2, Sens. Actuators B: Chem.,1993,13:387-390.
    [14] Miura N, Ono M, Shimanoe K, Yamazoe N, A compact solid-state amperometric sensor fordetection of NO2in ppb range, Sens. Actuators B: Chem.,1998,49:101-109.
    [15] Lu G Y, Xu J, Sun J B, Yu Y S, Zhang Y Q, Liu F M, UV-enhanced room temperature NO2sensor using ZnO nanorods modified with SnO2nanoparticles, Sens. Actuators B: Chem.,2012,162:82-88.
    [16] Azad A M, Akbar S A, Mhaisalkar S G, Birkefeld L D, Goto K S, Solid-State Gas Sensors: A[J]. J. Electrochem. Soc.,1992,139:3690-3704.
    [17]全宝富,邱法斌,电子功能材料及元器件,长春:吉林大学出版社,2001.9.ISBN7-5601-2566-2/O.271
    [18] Waitz T, Wagner T, Sauerwald T, Kohl C D, Tiemann M, Ordered Mesoporous In2O3: Synthesisby Structure Replication and Application as a Methane Gas Sensor [J]. Adv. Funct. Mater.,2009,19:653-661.
    [19] Kolmakov A, Zhang Y X, Cheng G S, Moskovits M, Detection of CO and O2Using Tin OxideNanowire Sensors [J]. Adv.Mataer.,2003,15:997-998.
    [20] Maekawa T, Tamaki J, Miura N, Yamazoe N, Sensing behavior of CuO-loaded SnO2elementfor H2S detection[J]. Chemical Letters.,1991,575.
    [21] Maekawa T, Tamaki J, Miura N, Yamazoe N, Gold-loaded tungsten oxide sensor for detectionof ammonia in air[J]. Chemical Letters.,1992,639.
    [22] Xu C N, Tamaki J, Miura N, Yamazoe N, Correlation between gas sensitivity and crystallitesize in porous SnO2-based sensors[J]. Chemical Letters.,1990,3:441.
    [23] He L H, Jia Y, Meng F L, Li M Q, Liu J H, Development of sensors based on CuO-doped SnO2hollow spheres for ppb level H2S gas sensing [J]. J Mater Sci.,2009,44:4326-4333.
    [24] Garzella C, Comini E, Tempesti E, Frigeri C, Sberveglieri G, TiO2thin films by a novel sol-gelprocessing for gassensor applications [J]. Sens. Actuators B: Chem.,2000,68:189-196.
    [25] Dirksen J A, Duval K, Ringa T A, NiO thin-film formaldehyde gas sensor [J], Sens. ActuatorsB: Chem.,2001,80:106-115.
    [26] Sears W M, The gas-sensing properties of sintered bismuth iron molybdate catalyst [J]. Sens.Actuators B: Chem.,1989,19:351-370.
    [27] Yu J H, Choi G M, Selective CO Gas Detection of Zn2SnO4Gas Sensor [J]. J. Electroceramics.,2001,8:249-255.
    [28] Srivastava A K, Detection of volatile organic compounds (VOCs) using SnO2gas-sensor arrayand artificial neural network [J]. Sens. Actuators B: Chem.,2003,96:24-37.
    [29] Shimizu Y, Hyodo T, Egashira M, Mesoporous semiconducting oxides for gassensorapplication [J]. J.Euro. Ceram. Soc.,2004,24:1389-1398.
    [30]清山哲郎,化学传感器[M],化学工业出版社,1990.4;田口尚义.特许公报[P].昭和45-38200.
    [31]松冈道雄,中谷吉彦,中谷城一.电气学会电子装置研究会资料[P].1978, EDD-78-22.
    [32] Morrison S R, Selectivity in semiconductor gas sensors [J]. Sens. Actuators.,1987,12:425-440.
    [33] Yamazoe N. Toward innovations of gas sensor technology [J]. Sensors and Actuators B,2005,108:2-14.
    [34] Meixner H, Lampe U. Metal oxide sensors [J]. Sens. Actuators B,1993,33:198-202.
    [35] Yamazoe N, Sakai G, Shimanoe K, Oxide semiconductor gas sensor, Catalysis SurveysFrom Asia.,2003,7:63-75.
    [36]田敬民,李守智,金属氧化物半导体气敏机理分析[J].西安理工大学学报,2002,18(2):144-147.
    [37] Brus L. Electron-electron and electron-hole interactions in small semiconductor crystallites: thesize dependence of the lowest excited electronic state [J]. J. Phys. Chem.,1984,80:4403-4409.
    [38] Rothschild A, Komem Y. The effect of grain size on the sensitivity of nanocrystallinemetal-oxide gas sensors. Journal of Applied Physics.,2004,95:6374
    [39] J Tamaki, Z Zhang, K Fujimori, M Akiyama. Grain-size effects in tungsten oxide-based sensorfor nitrogen oxides. J. Electrochem. Soc.,1994,141:2207-2210
    [40] Xu C N, Tamaki J, Miura N, Yamazoe N,et al. Grain size effects on gas sensitivity of porousSnO2-based elements. Sensors and Actuators B,1991,3(2):147-155.
    [41] Yamazoe N, New approaches for improving semiconductor gas sensor, Sensors and ActuatorsB.,1991,5:7-19.
    [42] Havancsak, K. Nanotechnology at Present and its Promise for the Future, Mater. Sci. Forum,2003,414-415,85-94.
    [43] Roco, M.C. Nanotechnology: convergence with modern biology and medicine, Curr. Opin.Biotechnol.,2003,14,337-346.
    [44] Hochella, M. F. Nanoscience and technology: the next revolution in the Earth sciences, EarthPlanet. Sci. Lett.,2002,203,593-605.
    [45] Lieber, C M. Nanoscale Science and Technology; Building a Big Future from Small Things,MRS Bull.2003,28,486-491.
    [46] Alivisatos, A. P. Semiconductor Clusters, Nanocrystals, and Quantum Dots, Science,1996,271,933-937.
    [47]张立德,牟季美.纳米材料和纳米机构.,[M].科学出版社,2001.
    [48]殷好勇.低维(Via族化合物)半导体纳米材料的制备及表征.,[D].浙江大学博士论文,2005.
    [49] Chatterjee A, Chakravorty. Electrical-conductivity of sol-gel derived metal nanoparticles [J]. J.Mater. Sci.,1992,27:4115-4119.
    [50] Conde O, Deus A M, Ferreira M L G, Silvestre A C, Vilar R. Versatile reactor for LVCD largefilms production [J]. Vacuum,1989,39:861.
    [51] Anders A. Approaches to rid cathodic arc plasmas of macroand nanoparticles: a review [J]. Sur.Coat. Techn.,1999,120-121:319-330.
    [52] Sea D, Deb P, Mazumder S, Basumallick A. Microstructural investigations of ferritenanoparticles prepared by nonaqueous precipitation route [J]. Mater. Res. Bull.,2000,35:1243-1250.
    [53] Kim J H, Germer T A, Mulhooland G W, Ehrman S H. Size-monodisperse metal nanoparticlesvia hydrogen-free spray pyrolysis [J]. Adv. Mater.,2002,14:518-521.
    [54] Kolmakov A, Moskovits M. Chemical sensing and catalysis by one-dimensional metal-oxidenanostructures [J]. Annu. Rev. Mater. Res.,2004,34:151-180.
    [55] Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides [J]. Science,2001,291:1947-1949.
    [56] Suenaga K, Colliex C, Demoncy N, Loiseau A, Pascard H, Willaime F. Synthesis ofnanoparticles and nanotubes with well-separated layers of boron nitride and carbon [J]. Science,1997,278:653-655.
    [57] Zhang Y, Suenaga K, Colliex C, Iijima S. Coaxial nanocable: silicon carbide and silicon oxidesheathed with boron nitride and carbon [J]. Science,1998,281:973-975.
    [58] Park W I, Yi G C, Kim M Y, Pennycook S J. Quantum confinement observed in ZnO/ZnMgOnanorod heterostructures [J]. Adv. Mater.,2003,15:526-529.
    [59] WU Y, FAN R, YANG P D. Block-by-block growth of single-crystalline Si/SiGe superlatticenanowires [J]. Nano Lett.,2002,2:83-86.
    [60] Lao J Y, Huang J Y, Wang D Z, Ren Z F. ZnO nanobridges and nanonails [J]. Nano Lett.,2003,2:235-238.
    [61] Xia Y N, Yang P D, Sun Y G, Wu Y Y, Mayeas B, Gates B, Yin Y D, Kim F, Yan H Q.One-dimensional nanostructures: synthesis, characterization, and applications [J]. Adv. Mater.,2003,15:353-389.
    [62] Yang P D, Yan H Q, Mao S, Russo R, Johnson J, Saykally R, Morris N, Pham J, He R, Choi HJ. Controlled growth of ZnO nanowires and their potical properties [J]. Adv. Funct. Mater.,2002,12:323-331.
    [63] Wu Y, Yang P D. Direct observation of vapor-liquid-solid nanowire growth [J]. J. Am. Chem.Soc.,2001,123:3165-3166.
    [64] Chen J, Deng S Z, Xu N S, Zhang W X, Wen X G, Yang S H. Temperature dependence of fieldemission from cupric oxide nanobelt films [J]. Appl. Phys. Lett.,2003,83:746-748
    [65] Wu Q, Hu Z, Wang X Z, Lu Y N, Chen Y. Synthesis and optical characterization of aluminumnitride nanobelts [J]. J. Phys. Chem. B,2003,107:9726-9279.
    [66] Hu P A, Liu Y Q, Cao L C, Zhu D B. Self-assembled growth of ZnS nanobelt networks [J]. J.Phys. Chem. B,108(2004)936-938.
    [67] Wang Z K, Shimizu Y, Sasaki T, Kawaguchi K, Kimura K, Koshizaki N. Catalyst-freefabrication of single crystalline boron nanobelts by laser ablation [J]. Chem. Phys. Lett.,2003,368:663667.
    [68] Lee S T, Wang N, Zhang Y F, Tang Y H. Novel methods of nanoscale wire formation [J]. MRSBulletin,1999,24:13-19.
    [69] Lee S T, Wang N, Lee C S. Semiconductor nanowires: synthesis, structure and properties,Mater. Sci. Eng. A,2000,286:16-23.
    [70] Wang N, Tang Y H, Zhang Y F, Lee C S, Bello I, Lee S T. Si nanowires grown from siliconoxide [J]. Chem. Phys. Lett.,1999,299:237-242.
    [71] Lourie O R, Jones C R, Bartlet B M, Gibbons P C, Ruo R S, Buhro W E. CVD growth of boronnitride nanotubes [J]. Chem. Mater.,2000,12:1808-1810.
    [72] Dingman S D, Rath N P, Markowitz P D, Gibbons P C, Buhro W E. Low-temperature,catalyzed growth of indium nitride fibers from azido-indium precursors [J]. Angew. Chem. Int. Ed.,2000,39:1470-1472.
    [73] Qian Y T. Handbook of Nanostructured Materials and Nanotechnology [M]. Edited by Nalwa,volume1: synthesis and processing, A.,424-437.
    [74] Jiang Y, Wu Y, Zhang S Y, Xu C Y, Yu W C, Xie Y, Qian Y T. A catalytic-assemblysolvothermal route to multiwall carbon nanotubes at a moderate temperature [J]. J. Am. Chem. Soc.,2000,122:12383-12384.
    [75] Liu X Y, Zeng J H, Zhang S Y, Zheng R B, Liu X M, Qian Y T. Novel bismuth nanotube arrayssynthesized by solvothermal method [J]. Chem. Phys. Lett.,2003,374:348-352.
    [76] Tang K B, Qian Y T, Zeng J H, Yang X G. Solvothermal route to semiconductor nanowires [J].Adv. Mater.,2003,15:448-450.
    [77] Xie Y, Li B, Su H L, Liu X M, Qian Y T. Solvothermal route to CoTe2nanorods [J]. Nanostruct.Mater.,1999,11:539-544.
    [78] Xie Y, Su H L, Li B, Qian Y T. Solvothermal preparation of tin phosphide nanorods [J]. Mater.Res. Bull.,2000,35:675-680.
    [79]漆奇.低维纳米金属氧化物半导体敏感特性的研究.吉林大学博士学位论文,2009,6.
    [80] J. H. Lee. Gas sensors using hierarchical and hollow oxide nanostructures: Overview. Sens.Actuators B.,2009,140:319-336.
    [81] Waitz T, Wagner T, Sauerwald T, Kohl C D, Tiemann M, Ordered mesoporous In2O3: synthesisby structure replication and application as a methane gas sensor, Adv. Funct. Mater.,2009,19:653-661.
    [82] Lou X W, Archer L A, Yang Z, Hollow micro-/nanostructures: synthesis and applications, Adv.Mater.,2008,20:3987-4019.
    [83] Hyodo T, Sasahara K, Shimizu Y, Egashira M, Preparation of macroporous SnO2films usingPMMA microspheres and their sensing properties to NOxand H2, Sens. Actuators B.,2005,106:580-590.
    [84] Zhong Z, Yin Y, Gates B, Xia Y, Preparation of mesoscale hollow spheres of TiO2and SnO2bytemplating against crystalline arrays of polystyrene beads, Adv. Mater.,2000,12:206-209.
    [85] Martinez C J, Hockey B, Montgomery C B, Semancik S, Porous tin oxide nanostructuredmicrospheres for sensor applications, Langmuir.,2005,21:7937-7944.
    [86] Wang D, Fu Y, Xu J, Pan Q, Gas sensing properties of hollow SnO2micropheres prepared by atemplate process, Sensor Letters.,2011,9:184-187.
    [87] Zhang H, Wu J, Zhai C, Du N, Ma X, Yang D, From ZnO nanorods to3D hollowmircohemispheres: solvothermal synthesis, photoluminescence and gas sensor properties,Nanotechnology.,2007,18:455604.
    [88] Chen D, Ye J, Hierarchical WO3hollow shells: dendrite, sphere, dumbbell, and theirphotocatalytic properties, Adv. Funct. Mater.,2008,18:1922-1928.
    [89] Li G, Liu C, Liu Y, Facile fabrication of hollow mono-dispersed TiO2spheres in an aqueoussolution, J. Am. Ceram. Soc.,2007,90:2667-2669
    [90] Li B, Xie Y, Jing M, Rong G, Tang Y, Zhang G, In2O3hollow microspheres: synthesis fromdesigned In(OH)3precursors and applications in gas sensors and photocatalysts, Langmuir.,2006,22:9380-9385.
    [91] Caruso F, Spasova M, Susha A, Giersig M, Caruso R A, Magnetic nanocomposite particles andhollow spheres constructed by a sequential layering approach, Chem. Mater.,2001,13:109-116.
    [92] Jia B, Gao L,Morphological transformation of Fe3O4spherical aggregates from solid to hollowand their self-assembly under an external magnetic field, J. Phys. Chem. C.,2008,112:666-671.
    [93] Choi W S, Koo Y, Zhongbin Z, Li Y, Kim D Y, Template synthesis of porous capsules with acontrollable surface morphology and their application as gas sensors, Adv. Funct. Mater.,2007,17:1743-1749.
    [94] Zhang H, Zhu Q, Zhang Y, Wang Y, Zhao L, Yu B, One-pot synthesis and hierarchicalassembly of hollow Cu2O microspheres with nanocrystals-composed porous multishell and theirgas-sensing properties, Adv. Funct. Mater.,2007,17:2766-2771.
    [95] Zhang Y, He X, Li J, Zhang H, Gao X, Gas-sensing properties of hollow and hierarchicalcopper oxide microspheres, Sens. Actuators B.,2007,128:293-298.
    [96] Gao S, Yang S, Shu J, Zhang S, Li Z, Jiang K, Green fabrication of hierarchical CuO hollowmicro/nanostructures and enhanced performance as electrode materials for lithium-ion batteries,J. Phys. Chem. C112(2008)19324-19328.
    [97] Cao A M, Ju J S, Liang H P, Song W G, Wan L J, He X L, Gao X G, Xia S H, Hierarchicallystructured cobalt oxide (Co3O4): the morphology control and its potential in sensors, J. Phys. Chem.B.,2006,110:15858-15863.
    [98] Zhang L, Wang W, Chen Z, Zhou L, Xu H, Zhu W, Fabrication of flower-like Bi2WO6superstructures as high performance visible-light driven photocatalysts, J. Mater. Chem.,2007,17:2526-2532.
    [99] Xu H, Zheng Z, Zhang L, Zhang H, Deng F, Hierarchical chlorine-doped rutile TiO2sphericalclusters of nanorods: large-scale synthesis and high photocatalytic activity, J. Solid State Chem.,2008,181:2516-2522.
    [100] Sun S, Wang W, Xu H, Zhou L, Shang M, Zhang L, Bi5FeTi3O15hierarchical microflowers:hydrothermal synthesis, growth mechanism, and associated visible-light-driven photocatalysts, J.Phys. Chem. C.,2008,112:17835-17843.
    [101] Hosono E, Fujihara S, Honma I, Ichihara M, Zhou H S, Fabrication of nano/microhierarchical Fe2O3/Ni micrometer-wire structure and characteristics for high rate Li rechargeablebattery, J. Electrochem. Soc.,2006,153: A1273-A1278.
    [102] Sun S, Meng G, Zhang G, Masse J P, Zhang L, Controlled growth of SnO2hierarchicalnanostructures by amultistep thermal vapor deposition process, J. Eur. Chem.,2007,13:9087-9092.
    [103] Lou X W, Yuan C L, Archer L A, Shell-by-Shell Synthesis of Tin Oxide Hollow Colloids withNanoarchitectured Walls: Cavity Size Tuning and Functionalization [J]. Small.,2007,3:261-265.
    [104] Lou X W, Yuan C, Archer L A, Double-Walled SnO2Nano-Cocoons with Movable MagneticCores [J]. Adv. Mater.,2007,19:3328-3332.
    [105] Martinez C J, Hockey B, Montgomery C B, Semancik S, Porous Tin Oxide NanostructuredMicrospheres for Sensor Applications [J]. Langmuir.,2005,21:7937-7944.
    [106] Yang H X, Qian J F, Chen Z X, Ai X P, Cao Y L, Multilayered Nanocrystalline SnO2HollowMicrospheres Synthesized by Chemically Induced Self-Assembly in the Hydrothermal Environment[J]. J. Phys. Chem. C.,2007,111:14067-14071.
    [107] Qian J F, Liu P, Xiao Y, Jiang Y, Cao Y L, Ai X P, H X Yang, TiO2-Coated Multilayered SnO2Hollow Microspheres for Dye-Sensitized Solar Cells [J]. Adv. Mater.,2009,21:3663-3667.
    [108] Hyodo T, Nishida N, Shimizu Y, Egashira M, Preparation and gas-sensing properties ofthermally stable mesoporous SnO2, Sens. Actuators B: Chem.,2002,83:209-215.
    [109] Hyodo T, Abe S, Shimizu Y, Egashira M, Gas-sensing properties of ordered mesoporous SnO2and effects of coatings thereof, Sens. Actuators B.,2003,93:590-600.
    [110] Wang Y L, Jiang X C, Xia Y N, A solution phase precursor route to polycrystalline SnO2nanowires that can be used for gas sensing under ambient conditions, J. Am. Chem. Soc.,2003,125:16176-16177.
    [111] Faglia G, Baratto C, Sberveglieri G, Zha M, Zappettini A, Adsorption effects of NO2at ppmlevel on visible photoluminescence response of SnO2nanobelts, Appl. Phys. Lett.,2005,86:011923.
    [112] Kolmakov A, Zhang Y, Cheng G, Moskovits M, Detection of CO and O2using tin oxidenanowire sensors, Advanced Materials.,2003,15:997-999.
    [113] Kay A, Gr tzel M, Dye-sensitized core-shell nanocrystals: improved efficiency of mesoporoustin oxide electrodes coated with a thin layer of an insulating oxide, Chemistry of Materials.,2002,14:2930.
    [114] Gubbala S, Chakrapani V, Kumar V, Sunkara M K, Band-edge engineered hybrid structuresdye-sensitized solar cells based on SnO2nanowires, Advanced Functional Materials.,2008,18:2411-2418.
    [115] Lin Y S, Duh J G, Huang M H, Shell-by-shell synthesis and applications of carbon-coatedSnO2hollow nanospheres in lithium-ion battery, Journal of Physical Chemistry., C.,2010,114:13136-13141.
    [116] Sun S, Meng G, Zhang G, Masse J P, Zhang L, Controlled growth of SnO2hierarchicalnanostructures by a multistep thermal vapor deposition process, Journal of European Chemistry.,2007,13:9087-9092.
    [117] Ohgi H, Maeda T, Hosono E, Fujihara S, Imai H, Evolution of nanoscale SnO2grains, flakes,and plates into versatile particles and films through crystal growth in aqueous solutions, CrystalGrowth and Design.,2005,5:1079-1083.
    [118] Cheng G, Wu K, Zhao P, Cheng Y, He X, Huang K, Controlled growth of oxygen deficient tinoxide nanostructures via a solvothermal approach in mixed solvents and their optical properties,Nanotechnology.,2007,18:355604.
    [119] Lou X W, Wang Y, Yuan C L, Yang J, Archer L A, Template-free synthesis of SnO2hollownanostructures with high lithium storage capacity, Advanced Materials.,2006,18:2325-2329.
    [120] Dong Q, Su H, Zhang D, Zhang F, Fabrication and gas sensitivity of SnO2hierarchical filmswith interwoven tubular conformation by a biotemplate-directed sol-gel technique, Nanotechnology.,2006,17:3968-3972.
    [121] Dong Q, Su H, Xu J, Zhang D, Influence of hierarchical nanostructures on the gas sensingproperties of SnO2biomorphic films, Sensors and Actuators B.,2007,123:420-428.
    [122] Meǐnini P, Parret F, Guerrero M, Soulantica K, Erades L, Maisonnat A, Chaudret B, COresponse of nanostructured SnO2gas sensor loaded with palladium and platinum, Sens.Actuators B.,2004,103:111-114.
    [123] Wang J Z, Du N, Zhang H, Yu J X, Yang D R, Large-scale synthesis of SnO2nanotube arraysas high-performance anode materials of Li-ion batteries, Journal of Physical Chemistry C.,2011,115:11302-11305
    [124] Wang Y, Lee J Y, Zeng H C, Polycrystalline SnO2Nanotubes Prepared via Infiltration Castingof Nanocrystallites and Their Electrochemical Application[J]. Chem. Mater..2005.17:3899-3903"
    [125] Hu J, Bando Y, Liu Q et al. Laser-ablation growth and optical properties of wide and longsingle-crystal SnO2ribbons[J]. Adv. Funct. Mater.,2003,13(6):493-496
    [126] Cheng B, Russell J M, Shi W S, et al. Large-scale, solution-phase growth of single-crystallineSnO2nanorods[J]. J. Am. Chem. Soc.,2004,126(19):5972-5973
    [127] Wang W Z, Xu C K, Wang X S, et al. Preparation of SnO2nanorods by annealing SnO2powder in NaCI flux[J]. J. Mater. Chem.,2002.12(6):1922-1925
    [128] Deng D, Lee J Y, Hollow Core-Shell Mesospheres of Crystalline SnO2NanoparticleAggregates for High Capacity Li+Ion Storage. Chemistry of Materials.,2008,20:1841-1846
    [129] Zhao Q R, Xie Y. Dong T, et al. Oxidation-Crystallization Process of Colloids: An EffectiveApproach for the Morphology Controllable Synthesis of SnO2Hollow Spheres and Rod Bundles[J].J. Phys. Chem. C.,2007,111(31):11598-11603
    [130] Wu H B, Chen J S, Lou X W (David), et al. Synthesis of SnO2Hierarchical StructuresAssembled from Nanosheets and Their Lithium Storage Properties[J]. J. Phys. Chem. C.,2011,115:24605-24610.
    [131] Dolbec R, El KhakaniM A, Sub-ppm sensitivity towards carbon monoxide by means ofpulsed laser deposited SnO2:Pt based sensors, Appl. Phys. Lett.,2007,90:173114.
    [132] Esfandyarpour B, Mohajerzadeh S, Famini S, Khodadadi A, Soleimani E A, High sensitivityPt-loaded SnO2gas sensor fabricated using sol-gel solution on micromachined (100) Si substrates,Sens. Actuators B.,2004,100:190-194.
    [133] Sun Y F, Guan Y, Liang X H, Ma J, Liu F M, Du Y, Zhong T G, Ma Y G, Lu G Y, Synthesisand sensing properties of SnO2hollow nanospheres, Sensors Letters.,2011,9:124-127.
    [134] Sun P, Cao Y, Liu J, Sun Y F, Ma J, Lu G Y, Dispersive SnO2nanosheets: hydrothermalsynthesis and gas-sensing properties, Sens. Actuators B: Chem.,2011,156:779-783.
    [135] Sun P, Yu Y S, Xu J, Sun Y F, Ma J, Lu G Y, One-step synthesis and gas sensingcharacteristics of hierarchical SnO2nanorods modified by Pd loading, Sens. Actuators B:Chem.,2011,160:244-250.
    [136] Sun P, You L, Sun Y F, Chen N, Li X B, Sun H B, Ma J, Lu G Y, Novel Zn-doped SnO2hierarchical architectures: synthesis, characterization, and gas sensing properties, Cryst Eng Comm.,2012,14:1701-1708.
    [137] Sun P, Zhou X, Wang C, Wang B, Cheng P F, Guan Y, Lu G Y. One-step synthesisand gassensing properties of hierarchical Cd-doped SnO2nanostructures, Sensors and Actuators B.,2014,190:32-39
    [138] Kruefu V, Liewhiran C, Wisitsoraat A, Phanichphant S, Selectivity of flame-spray-madeNb/ZnO thick films towards NO2gas, Sens. Actuators B: Chem.,2011,156:360-367.
    [139] Qurashi A, Tabet N, Faiz M, Yamzaki T, Ultra-fast Microwave Synthesis of ZnO Nanowiresand their Dynamic Response Toward Hydrogen Gas, Nanoscale Res Lett.,2009,4:948-954.
    [140] Krishnakumar T, Jayaprakash R, Pinna N, Donato N, Bonavita A, Micali G, et al, CO gassensing of ZnO nanostructures synthesized by an assisted microwave wet chemical route, Sens.Actuators B: Chem.,2009,143:198-204.
    [141] Law J B, Thong J T, Improving the NH3gas sensitivity of ZnO nanowire sensors by reducingthe carrier concentration, Nanotechnology.,2008,19:205502.
    [142] Wang D W, Du S S, Zhou X, Wang B, Ma J, Sun P, Sun Y F and Lu G Y, Template-freesynthesis and gas sensing properties of hierarchical hollow ZnO microspheres, Cryst Eng Comm.,2013,15:7438-7442.
    [143] Wang Z L, Song J, Piezoelectric nanogenerators based on zinc oxide nanowire arrays,Science.,2006,312:242-246.
    [144] Liu X H, Zhang J, Guo X Z, Wu S H, Wang S R, Amino acid-assisted one-pot assembly of Au,Pt nanoparticles onto one-dimensional ZnO microrods, Nanoscale.,2010,2:1178-1184.
    [145] Zhang Y, Xiang Q, Xu J, Xu P, Pan Q, Li F, Self-assemblies of Pd nanoparticles on thesurfaces of single crystal ZnO nanowires for chemical sensors with enhanced performances, J MaterChem.,2009,19:4701.
    [146] Ahmad M, Shi Y Y, Nisar A, Sun H Y, Shen W C, Wei M, et al., Synthesis of hierarchicalflower-like ZnO nanostructures and their functionalization by Au nanoparticles for improvedphotocatalytic and high performance Li-ion battery anodes, J Mater Chem.,2011,21:7723-7729.
    [147] Vayssieres L, Growth of arrayed nanorods and nanowires of ZnO from aqueous olutions.,2003,15(5):464-466
    [148]骆英民,支壮志,葛贝尔,李百芳.水热合成法制备杯状氧化锌微晶及其光学性质研究.功能材料.2011,2(42):302-304
    [149] Wang M S, Zhou Y J, Zhang Y P, Kim E J, Hahn S H, Seong S G, Near-infraredphotoluminescence from ZnO. Appl. Phys. Lett.,2012,100(10):101906
    [150] Chen M T, Ting J M, Sputter deposition of ZnO nanorods/thin-film structures on Si. ThinSolid Films,2006,494(1-2):250-254
    [151] Chou T L, Ting J M, Deposition and characterization of a novel integrated ZnO nanorods/thinfilm structure. Thin Solid Films,2006,494(1-2):291-295
    [152] Hongsith N, Viriyaworasakul C, Mangkorntong P, Mangkorntong N, Choopun S, Ethanolsensor based on ZnO and Au-doped ZnO nanowires. Ceramics International,2008,34(4):823-826
    [153] Xiang Q, Meng G F, Zhang Y, Xu J Q, Xu P C, Pan Q Y, Yu W J, Ag nanoparticleembedded-ZnO nanorods synthesized via a photochemical method and its gas-sensing properties.Sensors and Actuators B,2010,143(2):635-640
    [154] Ren C L, Yang B F, Wu M, Xu J, Fu Z P, lv Y, Guo T, Zhao Y X, Zhu C Q, Synthesis ofAg/ZnO nanorods array with enhanced photocatalytic performance. Journal of Hazardous Materials,2010,182(1-3):123-129
    [155] Li F, Yuan Y L, Luo J Y, Qin Q H, Wu J F, Li Z, Huang X T, Synthesis and characterization ofZnO-Ag core-shell nanocomposites with uniform thin silver layers. Applied Surface Science,2010,256(20):6076-6082
    [156] Lu W W, Gao S Y, Wang J J, One-pot synthesis of Ag/ZnO self-assembled3D hollowmicrospheres with enhanced photocatalytic performance. J. Phys. Chem. C,2008,112(43):16792-16800
    [157] Xu J, Yu Y S, He X X, Sun J B, Liu F M, Lu G Y, Synthesis of hierarchical ZnOorientation-ordered film by chemical bath deposition and its gas sensing properties, MaterialsLetters.,2012,81:145-147
    [158] Wang D W, Du S S, Zhou X, Wang B, Ma J, Sun P, Sun Y F, Lu GY. Template-free synthesisand gas sensing properties of hierarchical hollow ZnO microspheres. Cryst Eng Comm.,2013,15:7438-7442
    [159] Li X W, Sun P, Yang T L, Zhao J, Wang Z Y, Wang W N, Liu Y P, Lu G Y, Du Y,Template-free microwave-assisted synthesis of ZnO hollow microspheres and their application ingas sensing, CrystEngComm.,2013,15:2949-2955.
    [160] Wang D W, Wang W B, Zhu Z, Sun P, Ma J, Lu G Y, Phase investigation on zinc tincomposite crystallites, RSC Advances.,2013,3:12084-12087.
    [161] Cai Y X, Li X W, Sun P, Wang B, Liu F M, Cheng P F, Du S S, Lu G Y. Ordered ZnONanorod Array Film Driven by Ultrasonic Spray Pyrolysis and Its Optical Properties, materialsletters.,2013,112:36-38.
    [162] Y Cao, X L Hu, D W Wang, Y F Sun, P Sun, J Zheng, J Ma, Lu G Y. Flower-like hierarchicalzinc oxide architectures: synthesis and gas sensing properties, Mater Lett.,2012,69:45-47.
    [163] Kida T, Nishiyama A, Yuasa M, Shimanoe K, Yamazoe N, Highly sensitive NO2sensors usinglamellar-structured WO3particles prepared by an acidification method, Sens. Actuators B.,2009,135:568-574.
    [164] Xiang Q, Meng G F, Zhao H B, Zhang Y, Li H, Ma W J, Au nanoparticle modified WO3nanorods with their enhanced properties for photocatalysis and gas sensing, J. Phys. Chem. C.,2010,114:2049-2055.
    [165] Chan C C, Hsu W C, Chang C C, Hsu C S, Hydrogen incorporation in gasochromic colorationof sol-gel WO3thin films, Sens. Actuators B.,2011,157:504-509.
    [166] Liu F, Li L, Mo F, Chen J, Deng S, Xu N, A catalyzed-growth route to directly formmicropatterned WO2and WO3nanowire arrays with excellent field emission behaviors at lowtemperature, Cryst. Growth Des.,2010,10:5193-5199.
    [167] Zheng H, Tachibana Y, Kalantar-zadeh K, Dye-sensitized solar cells based on WO3,Langmuir.,2010,26:19148-19152.
    [168] Zheng H, Ou JZ, Strano MS, Kaner RB, Mitchell A, Kalantar-zadeh K. Nanostructuredtungsten oxide-properties, synthesis, and applications. Adv Funct Mater.,2011,21(12):2175-2196.
    [169] Le Houx N, Pourroy G, Camerel F, Comet M, Spitzer D. WO3nanoparticles in the530nmrange by solvothermal synthesis under microwave or resistive heating. J Phys Chem C.2009.114(1):155-161.
    [170] Lee C Y, Kim S J, Hwang I S, Lee J H. Glucose-mediated hydrothermal synthesis and gassensing characteristics of WO3hollow microspheres. Sens Actuators, B.2009.142(1):236-242
    [171] Gu Z, Ma Y, Yang W, Zhang G, Yao J. Self-assembly of highly oriented one-dimensionalH-WO3nanostructures. Chem Commun.2005.(28):3597-3599.
    [172] Wang J, Khoo E, Lee PS, Ma J. Synthesis, assembly, and electrochromic properties ofuniform crystalline WO3nanorods. J Phys Chem C.2008.112(37):14306-14312.
    [173] Ma J, Zhang J, Wang S, Wang T, Lian J, Duan X, Zheng W. Topochemical preparation ofWO3nanoplates through precursor H2WO4and their gas-sensing performances. J Phys Chem C.,2011,115(37):18157-18163
    [174] Liu Z, Miyauchi M, Yamazaki T, Shen Y. Facile synthesis and NO2gas sensing of tungstenoxide nanorods assembled microspheres. Sens Actuators, B.2009.140(2):514-519.
    [175] Jeon S, Yong K. A novel composite hierarchical hollow structure: one-pot synthesis andmagnetic properties of W18O49-WO2hollow nanourchins. Chem Commun.2009.(45):7042-7044.
    [176] You L, Sun Y F, Guan Y, Sun J M, Du Y, Lu G Y, Highly sensitive NO2sensor based onsquare-like tungsten oxide prepared with hydrothermal treatment, Sens. Actuators B: Chem.,2011,157:401-407.
    [177] You L, He X X, Wang D W, Sun P, Sun Y F, Liang X S, Du Y, Lu G Y, Ultrasensitive and lowoperating temperature NO2gas sensor using nanosheets assembled hierarchical, Sensors andActuators B.,2012,173:426-432.
    [178] Wang Z Y, Sun P, Yang T L, Gao Y, Li X W, Lu G Y, Du Y, Flower-like WO3architecturessynthesized via a microwave-assisted method and their gas sensing properties, Sensors andActuators B.,2013,186:734-740.
    [179] Zhang D H, Li C, Han S, Liu X L, Tang T, Jin W, Zhou C W, Electronic transport studies ofsingle-crystalline In2O3nanowires, Applied Physics Letters.,2003,82:112-114.
    [180] Granqvist C G, Transparent conductive electrodes for electrochromic devices: a review,Applied Physics A: Solids and Surfaces.,1993,57:19-24.
    [181] Shigesato Y, Takaki S, Haranoh T, Electrical and structural properties of low resistivitytin-doped indium oxide films, Journal of Applied Physics.,1992,71:3356-3364.
    [182] Gurlo A, Ivanovskaya M, Barsan N, Schweizer-Berberich M, Weimar U, G pel W, A Diéguez,Grain size control in nanocrystalline In2O3semiconductor gas sensors, Sens. Actuators B: Chem.,1997,44:327-333.
    [183] Singh N, Yan C Y, Lee P S, Room temperature CO gas sensing using Zn-doped In2O3singlenanowire field effect transistors, Sens. Actuators B: Chem.,2010,150:19-24.
    [184] Korotcenkova G, Cerneavschia A, Brinzaria V, Vasilieva A, Ivanova M, Cornetb A, MorantebJ, Cabotb A, Arbiolb J, In2O3films deposited by spray pyrolysis as a material for ozone gas sensors,Sens. Actuators B: Chem.,2004,99:297-303.
    [185] Tamaki J, Naruo C, Yamamoto Y, Matsuoka M, Sensing properties to dilute chlorine gas ofindium oxide based thin film sensors prepared by electron beam evaporation, Sens. Actuators B:Chem.,2002,83:190-194.
    [186] Obata K, Kumazawa S, Shimanoe K, Miura N, Yamazoe N, Potentiometric sensor based onNASICON and In2O3for detection of CO2at room temperature-modification with foreignsubstances, Sens. Actuators B: Chem.,2001,76:639-643.
    [187] Hyodo T, Inoue H, Motomur H, Matsuo K, Hashishin T, Tamaki J, Shimizu Y, Egashira M,NO2sensing properties of macroporous In2O3-based powders fabricated by utilizing ultrasonicspray pyrolysis employing polymethylmethacrylate microspheres as a template, Sens. Actuators B:Chem.,2010,151265-273.
    [188] Zheng J, Yang R, Lou Y, Li W, Li X G, Low temperature growth of nanoblade In2O3thin filmsby plasma enhanced chemical vapor deposition: Morphology control and lithium storage properties.Thin Solid Films.,2012,521:137-140.
    [189] Chang W C, Kuo C H, Lee P J, Chueh Y L and Lin S J, Synthesis of single crystal Sn-dopedIn2O3nanowires: size-dependent conductive characteristics. Phys. Chem. Chem. Phys.,2012,14,13041-13045.
    [190] Dong H X, Liu Y, Li G H, Wang X W, Xu D, Chen Z H, Zhang T, Wang J, Zhang L.Hierarchically rosette-like In2O3microspheres for volatile organic compounds gas sensors. Sensorsand Actuators B.,2013,178:302-309.
    [191] Chen L Y, Liang Y, Zhang Z D,Corundum-Type In2O3Urchin-Like Nanostructures: SynthesisDerived from Orthorhombic InOOH and Application in Photocatalysis. Eur. J. Inorg. Chem.2009,903-909.
    [192] Li Z P, Yan H, Yuan S L, Fan Y J, Zhan J H. In2O3microbundles constructed withwell-aligned single-crystalline nanorods: F127-directed self-assembly and enhanced gas sensingperformance. Journal of Colloid and Interface Science.,2011,354:89-93.
    [193] Du H Y, Wang J, Su M Y, Yao P J, Zheng Y G, Naisen Y, Formaldehyde gas sensor based onSnO2/In2O3hetero-nanofibers by a modified double jets electrospinning process. Sensors andActuators B.,2012,166-167:746-752.
    [194] Song P, Han D, Zhang H H, Li J, Yang Z X, Wang Q, Hydrothermal synthesis of porous In2O3nanospheres with superior ethanol sensing Properties. Sensors and Actuators B.,2014,196434-439.
    [195] Sberveglieri G, Groppelli S, Coccoli G, Radio frequency magnetron sputtering growth andcharacterization of indium-tin oxide (ITO) thin films for NO2gas sensors[J]. Sensors and ActuatorsB.,1988,15:235-242.
    [196]孙良彦,刘正绣,常温振荡式CO气敏元件的研制[J].传感器技术,1994,1:10-13.
    [197] Gurlo A, Ivanovskaya M, Barsan N, Sehweizer--Berberieh M, Weimar U, Gopel W, DieguezA. Grain size control in nanocrystalline In2O3semiconductor gas sensors [J]. Sensors and ActuatorsB.,1997,44:327-333.
    [198] Li C, Zhang D H, Liu X L, Han S, Tang T, Han J, Zhou C W, In2O3nanowires as chemicalsensors [J]. Appl Phys Lett,2003,82(10):1613-1615.
    [199] Zhang D H, Li C, Liu X L, Han S, Tang T, Han J, Zhou C W, Doping dependent NH3sensingof Indiurn oxide nanowiresf [J]..Appl Phys Lett,2003,82(10):1845-1847.
    [200] Li C, Zhang D H, Lei B, Han S, Lin X L, Zhou C W, Surface treatment and dopingdependence of In2O3nanowires as an ammonia sensors [J]. J Phys Chem B,2003,107:12451-12455.
    [201] Zhang D H, Liu Z Q, Li C, Tang T, Liu X L, Han S, Lei B, Zhou C W, Detection of NO2down to ppb levels using individual and multiple In2O3nanowire devices [J]. Nano Lett2004,4:1919-1924.
    [202] Ryu K, Zhang D, Zhou C. High-performance metal oxide nanowire chemical sensors withintegrated micromachined hotplates [J]. Appl. Phys. Lett.,2008,92:093111.
    [203] Xu J Q,Wang X H, Shen J N. Hydrothermal synthesis of In2O3for detecting H2S in air[J]..Sensors and Actuators B.,2006,115:642-646.
    [204] Xu J Q,Wang X H, Wang G Q, Han J J, Sun Y A, Solvothermal synthesis of In2O3nanocrystal and its ethanol sensing mechanism [J].Electrochem Solid State Lett,2006,9:H103-H107.
    [205] Cheng Z X, Dong X B, Pan Q Y, Dong X W, Zhang J C. Preparation and characterization ofIn2O3nanorods[J]. Materials Letters,2006,60:3137-3140.
    [206]董向兵,程知萱,潘庆谊,郭冬梅,周蕴倩,氧化铟纳米棒的气敏特性[J].硅酸盐学报,2006,34:1191-1194.
    [207]程知萱,潘庆谊,张剑平等.溶胶-凝胶法制备纳米In2O3粉末[J].硅酸盐通报,2003,5:3-6.
    [208]施尔畏,陈之战,元如林,郑燕青,水热结晶学,科学出版社,2004,ISBN7-03-013827-9
    [209] Morey G W, Niggli P, The hydrothermal formation of Silicates, A Review, J. Am Chem. Soc.,1913,35:1086-1130
    [210] Laudise R A, The growth of single crystals, Prentice-Hall, Englewood Cliffs, N J,1970,278-281.
    [211] Rabenau A,The role of hydrothermal synthesis in preparative chemistry. Angew. Chem.(English Ed.)1985,24,1026-1040
    [212] Lobachev A N(ed.), Crystallization processes under hydrothemrmal conditions, ConsultantsBureau, New York,1973,1-255
    [212] Qian Y T, Hand book of Nanostructured Materials and Nanotechnology [M]. Edited by Nalwa,volume1: synthesis and processing, A.,424-437.
    [213] Tang K B, Qing Y T, Zeng J H, Yang X G, Solvothermal route to semiconductor nanowires [J].Adv. Mater.,2003,15:448-450.
    [214] Jiang Y, Qu Y, Yuan S W, Xie Y, Qian Y T,Preparation and characterization of CuInS. J.Mater. Res.,2001,16:2805-2809.
    [215] Jiang Y, Wu Y, Zhang S Y, Xu C Y, Yu W C, Xie Y, Qian Y T. A catalytic-assemblysolvothermal route to multiwall carbon nanotubes at a moderate temperature [J]. J. Am. Chem. Soc.,2000,122:12383-12384.
    [216] Zhu H, Wang X L, Wang Z.J, Yang C, Yang F, and Yang X.R, Self-Assembled3DMicroflowery In(OH)3Architecture and Its Conversion to In2O3, J. Phys. Chem. C.,2008,112:15285-15292.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700