V_2O_5/Pd薄膜的制备及氢气敏感特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢能是可再生而又洁净的新能源,氢能大规模应用的瓶颈之一是缺乏可靠、廉价的探测氢气泄漏的氢气传感器。研制氢气传感器的关键问题之一是氢气敏感材料的选择及其敏感元件的制备。V2O5薄膜是一种重要的气体敏感材料,但有关V2O5/Pd薄膜氢气敏感性质的研究不多,为此,本文采用磁控溅射法在玻璃基片上和多模光纤端面上制备了不同厚度的V2O5/Pd薄膜,对V2O5/Pd薄膜结构进行了表征,利用紫外-可见光分光光度计原位检测V2O5/Pd薄膜的氢气敏感特性,采用端面反射型光纤传感系统研究了V2O5/Pd薄膜的氢敏特性,分析了V2O5/Pd薄膜对氢气的敏感机理,论文的主要内容和研究结果如下:
     (1)XRD分析结果表明,磁控溅射法制备的V2O5薄膜及V2O5/Pd薄膜为非晶态。AFM观察表面形貌结果表明,V2O5/Pd薄膜的粗糙度较小;
     (2)在玻璃衬底上制备了不同厚度的V2O5/Pd薄膜,采用紫外-可见光分光光度计原位测试V2O5薄膜及V2O5/Pd薄膜的氢敏性能。发现V2O5薄膜在室温下对氢气几乎不具敏感性,室温下V2O5/Pd薄膜对氢气具有敏感特性,且不同厚度的薄膜在通氢气前后光的透过率的变化有较大差别。当Pd膜厚度一定时,随着V2O5膜厚的增加,V2O5/Pd薄膜的相对透过率的变化值逐渐增大,当V2O5膜厚度一定时,随着Pd膜厚度的增加,V2O5/Pd薄膜的相对透过率的变化值也逐渐增大。所制备的薄膜样品中,V2O5 (280 nm)/Pd (30nm)薄膜的相对透过率的变化值较大。V2O5 (280 nm)/Pd (30nm)薄膜在4%的氢气浓度下,在波长560 nm处,相对透过率的变化值达到25%左右,且该薄膜对0.01%的氢气也有响应。实验还发现,V2O5/Pd薄膜的相对透过率的变化值与氢气浓度在一定范围内存在着较好的线性关系;
     (3)在光纤端面上制备了不同厚度的V2O5/Pd薄膜,利用端面反射型光纤传感系统研究了V2O5/Pd薄膜的氢敏特性。结果表明,对于V2O5/Pd薄膜,当Pd膜厚度为20 nm时,V2O5薄膜的厚度对V2O5/Pd薄膜在通氢气前后反射光强的变化值有很大影响。V2O5薄膜厚度越大,其传感器的响应时间变长,但光纤端面相对反射光强变化值增大。当V2O5膜厚为280 nm时,相对反射光强的变化达到约20%,而40 nm的V2O5薄膜,相对反射光强的变化仅为3%。实验结果还显示,在V2O5薄膜表面溅射不同的催化层,对薄膜的氢敏特性有明显影响,Pd-Pt双层催化膜比单一的Pd催化膜效果好;
     (4)采用拉曼光谱仪原位测试V205和V2O5/Pd薄膜在氢气环境中的拉曼光谱,并分析了薄膜的氢敏机理。结果表明,V2O5/Pd薄膜在与氢气作用过程中,Pd膜主要起催化作用,氢原子扩散到V205层,V5+转变为V4+,导致V2O5/Pd薄膜的透过率发生变化。
Hydrogen is renewable and clean new energy. However, one of the major bottlenecks in the applications of hydrogen energy is a lack of reliable and inexpensive hydrogen sensors that can detect possible hydrogen leakage. One of the key issues in developing hydrogen sensors is the synthesis of hydrogen sensitive materials and the preparation of sensitive components. V2O5 thin film is an important gas sensitive material. But hydrogen sensing properties of V2O5/Pd thin films were rarely studied. In this thesis, V2O5/Pd films with different thickness were prepared on glass substrates and the end faces of multimode optic fibers with magnetron sputtering method. V2O5/Pd films were characterized with XRD, AFM, SEM and so on. Hydrogen sensing properties of V2O5/Pd films were tested using a UV-Vis spectrophotometer, the sensitivity of V2O5/Pd films to hydrogen gas was also studied through an optical fiber sensing system, and the sensitive mechanisms were discussed on basis of in situ Raman spectra. The main contents of this thesis and experimental results are as follows:
     (1) XRD data show that V2O5 and V2O5/Pd films prepared with magnetron sputtering method are amorphous, and the AFM images show that V2O5/Pd thin films possess low surface roughness.
     (2) V2O5/Pd films with different thickness were deposited on glass substrates, the sensitivity of V2O5 and V2O5/Pd films to hydrogen gas were studied by a UV-Vis spectrophotometer. The results indicate that V2O5 thin film has low sensitivity to hydrogen gas at room temperature and that the V2O5/Pd films are more sensitive to hydrogen gas. After exposed to hydrogen gas, obviously changes in the relative transmittance of the V2O5/Pd films can be observed. When the thickness of Pd thin film is constant, as the thickness of V2O5 thin film increases, the relative transmittance gradually increase; when the thickness of V2O5 thin film is constant, the relative transmittance also increase gradually. By testing the V2O5/Pd films with different thickness, the highest change in relative transmittance can be achieved with the V2O5 (280 nm)/Pd (30 nm) thin film. At the wavelength of 560 nm and 4% hydrogen/nitrogen, the change of the relative transmittance of the film is about 25%, and respondence of this film to 0.01% H2 can be observed. The results also show that there is a good linear relationship between the relative transmittance and hydrogen concentration in a certain hydrogen concentration range.
     (3) V2O5/Pd films with different thickness were coated on the end faces of multimode optic fibers, the sensitivity of V2O5/Pd films to hydrogen gas was also studied through an optical fiber sensing system. For the V2O5/Pd films, when the thickness of palladium film is 20 nm, different thicknesses of V2O5 thin films have an important effect on the reflected light intensity. When the V2O5 thickness of V2O5/Pd film increase, the response times of the sensor become longer, but the relative reflected light intensity gradually increase. When the V2O5 (280 nm)/Pd (20 nm) exposed to 4% H2, a change of 20% in relative reflected light intensity can be observed. However, for the V2O5 (40 nm)/Pd (20 nm) film, the relative reflected light intensity change only 3%. The results also show that the sensitivity of V2O5 thin film to hydrogen gas is significantly influenced by different catalysts coated onto the V2O5 thin films. The experimental results show that the catalyst effect of the Pd-Pt films is better than that of the Pd films.
     (4) The sensing mechanism of the V2O5/Pd thin films are discussed on basis of the in situ Raman spectra. The results suggest that Pd thin film mainly palys a role of catalyzer. The insertion of hydrogen atoms into the interlayers of V2O5 causes the transformation of V5+to V4+, and as a result, causes the changes in the transmitance of the films.
引文
[1]Qiu F, Matsumiya M, Shin W, et al. Investigation of thermoelectric hydrogen sensor based SiGe film[J]. Sensors and Actuators B:Chemical,2003,94(2):152-160.
    [2]Matsumiya M, Shin W, Izu N, et al. Nano-structured thin-film Pt catalyst for thermoelectric hydrogen gas sensor[J]. Sensors and Actuators B:Chemical,2003,93:309-315.
    [3]Shin W, Matsumiya M, Izu N, et al. Hydrogen-selective thermoelectric gas sensor[J]. Sensors and Actuators B:Chemical,2003,93:304-308.
    [4]Shin W, Matsumiya M, Qiu F, et al. Thermoelectric gas sensor for detection of high hydrogen concentration[J]. Sensors and Actuators B:Chemical,2004,97:344-347.
    [5]Sawaguchi N, Shin W, Izu N. Enhanced hydrogen selectivity of thermoelectric gas sensor by modification of platinum catalyst surface[J]. Materials Letters,2006,60(3):313-316.
    [6]Choi Y, Tajima W, Shin W, et al. Effect of Pt/alumina catalyst preparation method on sensing performance of thermoelectric hydrogen sensor[J]. Journal of Materials Science,2006,41: 2333-2338.
    [7]Chi H, Sang H, Ishwar S. Thermoelectric hydrogen sensor LixNi1-x synthesized by molten salt method[J]. Korean Journal of Chemical Engineering,2006,23(3):362-366.
    [8]Zhang Q, Ploss B, Chan H, et al. Integrated Pyroelectric array based on PCLT/P (VDF-TrFE) composite[J]. Sensors and Actuators,2000,86:216-219.
    [9]Chen W, Chan H, Choy C. Pyroelectric properties of PbTiO3/P(VDF-TFE)0-3 nanocomposite films[J]. Thin Solid Films,1998,323:270-274.
    [10]Korotchenkov G, Dmitriev S, Brynzari V. Processes development for low cost and low power consuming SnO2 thin films gas sensors[J]. Sensors and Actuators B:Chemical,1999,54(3): 202-209.
    [11]Schierbaum K, Kirner U, Geiger J, et al. Schottky-barrier and conductivity gas sensors based upon Pd/SnO2 and Pt/TiO2[J]. Sensors and Actuators B:Chemical,1991,4:87-94.
    [12]Radecka M, Zakrzewska K, Mieczyslaw R. SnO2-TiO2 solid solutions for gas sensors[J]. Sensors and Actuators B:Chemical,1998,47:194-204.
    [13]Wada K, Egashira M. Improvement of gas-sensing properties of a Pd/SnO2 sensor by SiO2 coating films formed by dipping method[J]. Journal of the ceramic Society of Japan,1998,106: 84-88.
    [14]Zhang M, Yuan Z, Zheng C. Fast response of undoped and Li-doped titania thick-films at low temperature[J]. Sensors and Actuators B:Chemical,2008,131(2):680-686.
    [15]Chaudhary V, Mulla I, Vijayamohanan K. Selective hydrogen sensing properties of surface functionalized tin oxide[J]. Sensors and Actuators B:Chemical,1999,55:154-160.
    [16]Kang B, Ren F, Gila B, et al. AlGaN/GaN based metal-oxide-semiconductor diode-based hydrogen gas sensor[J]. Applied Physics Letters,2004,84:1123-1125.
    [17]Kang B, Kim S, Ren F, et al. Compairson MOS of schottky W/Pt-GaN diodes for hydrogen detection[J]. Sensors and Actuators B:Chemical,2005,104(2):232-236.
    [18]Ali M, Cimalla V, Lebedev V, et al. Pt-GaN schottky diodes for hydrogen gas sensors[J]. Sensors and Actuators B:Chemical,2006,113(2):197-804.
    [19]孙志平,沈保罗.光学氢敏感材料的研究进展[J].材料导报,2003,17(7).
    [20]Mandelis A, Garcia J. Pd/PVDF thin film hydrogen sensor based on laser-amplitude-modulated optical-transmittance:dependence on H2 concentration and device physics[J]. Sensors and Actuators B:Chemical,1998,49(3):258-267.
    [21]Zalvidea D, Diez A, Cruz J, et al. Hydrogen sensor based on a palladium-coated fiber-taper with improved time-response[J]. Sensors and Actuators B:Chemical,2006,114(1):268-274.
    [22]Chadwick B, Tann J, Brungs M, et al. A hydrogen sensor based on the optical generation of surface plasmons in a palladium alloy [J]. Sensors and Actuators B:Chemical,1994,17(3): 215-220.
    [23]Maier R, Jones B, Barton J, et al. Fiber optics in palladium-based hydrogen sensing[J]. Journal of Optics A:Pure and Applied Optics,2007,9:102-103.
    [24]Zhao Z, Carpenter M, Xia H, et al. All-optical hydrogen sensor based on a high alloy content palladium thin film[J], Sensors and Actuators B:Chemical,2006,113(1):532-538.
    [25]Slaman M, Dam B, Borsa D, et al. Fiber optical hydrogen detectors containing Mg-based metal hydrides[J]. Sensors and Actuators B:Chemical,2007,123(1):538-545.
    [26]Ando M, Chabicovsky R, Haruta M, et al. Optical hydrogen sensitivity of noble metal-tungsten oxide composite films prepared by sputtering deposition[J]. Sensors and Actuators B:Chemical,2003,76:13-17.
    [27]Hamagamia J, Yuichi W, Masasuke T, et al. Preparation and characterization of an optically detectable H2 gas sensor consisting of Pd/MoO3 thin films[J]. Sensors and Actuators B:Chemical, 1993,13:281-283.
    [28]Maccari A, Macrelli G, Polato P, et al. Design, production and characterization of an all solid state electrochromic medium size device[J]. Solar Energy,1998,63(4):217-229.
    [29]Granqvist C, Azens A, Kullman L, et al. Recent advances in electrochromics for smart windows applications[J]. Solar Energy,1998,63(4):199-216.
    [30]Jelle B, Hagen G. Electrochemical muitilayer deposition of polyaniline and prussian plue and their application in solid state electrochromic windows[J]. Journal of applied electrochemistry, 1998,28:1061-1065.
    [31]Woellenstein J, Scheulin M, Herres N, et al. Gas sensitive behaviour and morphology of reactive evaporated V2O5 thin films[J]. Sensors and Materials,2003,15(5):239-246.
    [32]汤兆胜,孙玉琴,范正修.V2O5薄膜用作SO2气敏传感器[J].功能材料,2002,33(1):52-54.
    [33]Imawan C, Steffes H, Solzbacher F, et al. Structural and gas-sensing properties of V2O5-MoO3 thin films for H2 detection[J]. Sensors and Actuators B:Chemical,2001,77: 346-351.
    [34]Andersson A. Adsorption studies on vanadium oxides:A verification of the oxidized surface state model[J]. Studies in Surface Science and Catalysis,1985,21:381-402.
    [35]Haber J, Witko M, Tokarz R. Vanadium pentoxide Ⅰ:structures and properties[J]. Applied Catalysis A:General,1997,157:3-22.
    [36]Berkowitz J, Chupka W, Inghram M. Thermodynamics of the V-0 system:dissociation energies of VO and VO2[J]. Journal of Chemical Physics,1957,27:87-90.
    [37]Honing J. Electrodes of conductive metallic oxides[M]. Elsevier Amsterdam, Part A,1980.
    [38]唐涛,陆光达.钯氢体系的物理化学性质[J].稀有金属,2003,27(2):278-285.
    [39]Renner J. A proposed mechanism for the sol-gel transformation[J]. Bull Math Biophys,1965, 27:105-112.
    [40]赵化侨.等离子体化学与工艺[M].中国科学技术大学出版社,1993.
    [41]Joep B, Gunter L, Andreas W. On-line and in-situ UV/vis spectroscopy for multi-parameter measurements:a brief review[J]. Spectroscopy Europe,2006,18(4):1-4.
    [42]杨南茹.无机非金属材料测试方法[M].武汉:武汉理工大学出版社,1990:145-155.
    [43]白春礼.扫描力显微术[M].上海:上海出版社,1995.
    [44]Bharat B, Kwang J, Manuel P. Nanotribology and nanomechanics of AFM probe-based data recording technology [J]. Journal of Physics:Condensed Matter,2008,20(36):1-34.
    [45]Belousov V, Vasylyev M, Lyashenko L. The low-temperature reduction of Pd-doped transition metal oxide surfaces with hydrogen[J]. Chemical Engineering Journal,2003,91: 143-150.
    [46]Ralph W. Color constancy from invariant wavelength ratios:Ⅰ. The empirical spectral mechanism[J]. Color Research and Application,2008,33(3):238-249.
    [47]刘世玉.氧化物电致变色材料[J].新能源,1996,18(9):26-32.
    [48]Talledo A, Granqvist C. Electrochromic vanadium-pentoxide-based films:Structural, electrochemical, and optical properties[J]. Journal of Applied Physics,1995,77:4655-4666.
    [49]吴广明,吴永刚,倪星元,等.锂离子注入对V2O5薄膜光吸收的影响[J].光学学报,1999,19(5):640-646.
    [50]Pecquenard B, Gourier D, Baffier N. EPR identification of LixV2O5, phases generated by chemical and electrochemical lithium intercalation in V2O5[J]. Solid State Ionics,1995,78: 287-303.
    [51]朱玛,刘建胜,樊惠隆,等.一种新型微镜式光纤氢传感器的研究[J].光学技术,2007,11(6):941-945.
    [52]Michael A. Micromirror optical-fiber hydrogen sensor[J]. Sensors and Actuators B:Chemical, 1994,22(2):155-163.
    [53]黄仲涛,曾昭槐,钟邦克,等.无机膜技术及其应用[M].北京:中国石化出版社,1999:1-60.
    [54]Madou M, Morrison S. Chemical sensing with solid state devices[M]. San Diego, CA, Academic press,1989:35-74.
    [55]Schilling O, Colbow K. A mechanism for sensing reducing gases with vanadium pentoxide films[J]. Sensors and Actuators B:Chemical,1994,21(2):151-157.
    [56]Se-Hee L, Cheong H, Tracy C, et al. Raman spectroscopic studies of amorphous vanadium oxide thin films[J]. Solid State Ionics,2003,165:111-116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700