地铁钢轨波磨形成机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一个多世纪以来,钢轨波磨引起了铁路工作者的广泛注意和研究兴趣,然而人们却一直没有总结出治愈波磨的根本方法。一个公认的事实是:不同类型的波磨其形成机理也不同,因而很难用某一种方法完全治愈钢轨波磨。但是部分类型的钢轨波磨也可以通过相应的措施得到很好地预防。随着城市轨道交通的不断发展,我国地铁发展迅速,与此同时,各个城市的地铁线路都出现了不同程度的波磨。地铁钢轨波磨的形成机理十分复杂,至今尚未完全弄清楚。它的研究涉及多学科多领域的相关知识,如结构动力学、固体接触力学、滚动接触理论、摩擦学、计算方法等。因此,深入研究地铁钢轨波磨问题是十分重要的,揭示其形成机理并提出相应的波磨减缓措施,对确保我国地铁车辆安全运行和城市轨道的减振降噪具有重要意义。
     我国某地铁线路开通不久后,整个线路多种轨道形式上均出现严重的钢轨波磨,其不仅引起了车辆轨道结构的强烈振动,还带来了恼人的环境噪音,引起了乘客和附近居民的强烈不满。因此,本文对该地铁线路钢轨波磨的形成机理及其相关的减磨措施展开详细的研究和探讨,主要包括:
     (1)简单介绍了城市轨道交通的发展概况,对轨道交通发展过程中出现的钢轨波磨问题进行了简单论述,对地铁波磨的研究现状做了详细的综述,指出了钢轨波磨研究的重要性。
     (2)详细介绍某城市地铁车辆轨道结构特征、典型区段钢轨波磨状态和轨道结构特性测试结果,对钢轨波磨通过频率与轨道结构振动频率的相互关系做了详细探讨,发现该线路上出现的波磨主要与轨道结构形式相关。
     (3)建立了车辆簧下质量与多种轨道耦合作用的三维实体有限元理论分析模型,分析讨论了轨道结构的动态特性与波磨发生发展的相互关系,给出了各种轨道形式波磨形成机理的初步解释。
     (4)建立了地铁车辆-无砟轨道钢轨耦合作用下的波磨理论分析模型,模型集成了考虑刚柔特性的整车-无砟轨道垂横向耦合动力学模型、改进的轮轨非Hertz滚动接触模型、轮轨材料摩擦磨损模型和钢轨波磨磨耗叠加模型。该模型可以考虑整车车辆轮轨之间的动力作用对钢轨波磨形成和发展的影响,以及波磨导致钢轨表面不平顺发生变化后其对轮轨接触和动力学的反激励作用,即整个大模型可以考虑车辆轨道瞬态动力作用行为与轮轨磨耗的往复循环相互作用过程。动力学耦合模型中,车辆结构采用多刚体质量块—弹簧—阻尼系统来模拟,钢轨采用铁木辛柯梁模型,轨道板采用三维实体有限元来模拟,更加真实地反应了轨道结构的特性;滚动接触模型中考虑了磨耗逐步累积的钢轨波磨对轮轨接触的影响;材料摩擦磨损模型采用考虑自旋效应的摩擦功磨耗模型;波磨磨耗叠加模型可以同时计算整车车辆8个车轮与钢轨相互作用所形成的磨耗。
     (5)详细介绍某地铁现场波磨的发展情况,掌握了该地铁特定轨道形式上波磨的发展规律。结合现场跟踪的实测结果,对本文的理论模型进行了试验验证,仿真计算结果表明该模型能够能客观地反应实际情况,其模拟结果和现场调查情况相吻合。
     (6)研究了白噪声激励、复合不平顺激励和凹坑激励下普通短轨枕曲线轨道和科隆蛋减振直线轨道钢轨波磨的形成机理和其发展情况。研究结果表明,普通短轨枕轨道结构在60Hz~90Hz范围内钢轨和轨道板整体相对于路基的垂向弯曲振动是125mm~160mm波磨产生的根本原因;数值结果显示在多种激励下,普通短轨枕轨道内外轨波磨的显著波长与现场情况相一致。科隆蛋(Cologne)减振扣件轨道在160Hz~300Hz的钢轨垂向弯曲振动和钢轨扭转振动是形成40mm~50mm波磨的根本原因;数值结果显示在多种激励下,科隆蛋减振扣件轨道左右轨波磨的显著波长与现场情况相一致。数值结果还表明,钢轨波磨的形成与随机不平顺中的初始波长关系较小,与轨道结构自身的固有特性以及车辆通过速度关系较大,只有初始不平顺中的波长与波磨通过频率对应波长相近时,其才能发展成波磨,否则其会在轮轨的碾压过程中消失。
     (7)研究了扣件参数、曲线超高、车辆载重和摩擦系数对钢轨波磨的影响,并提出了相应地减缓措施。研究结果表明,随着扣件参数的增大,科隆蛋减振轨道的敏感频率发生偏移,波磨的波动幅值明显减小,且钢轨波磨的发展速度也比较缓慢;适当地减小小半径曲线过超高值,以及设置较小的欠超高有利于减缓曲线轨道钢轨波磨形成和发展速率;相同条件下,高峰期车辆通过波磨轨道时所形成的均匀磨耗偏大,而非高峰期车辆形成的非均匀磨耗偏大,即波磨更严重;在保证正常牵引制动需求的情况下,轮轨摩擦系数控制在0.35以下时,钢轨波磨的发展速度能够得到很好的控制。
Rail corrugation has excited the interest of railway researchers for more than a century. But there is not a good cure for it. It has been realized that different type of corrugation arises from different mechanism, and some types of corrugation can indeed be prevented through proper method. Now, rail corrugation appears on many metro lines. The mechanism of subway rail corrugation is complex and it is still not fully understood. Its research involves many subjects and multi-field knowledges, such as structural dynamics, rolling contact theory, tribology, material science, computational method, etc. Therefore, it is very important to carry out in-depth research on rail corrugation in metro system so as to understand the formation mechanism and then propose the corresponding mitigation measures, which is of great significance for ensuring the safe operation of metro vehicles and urban railway noise and vibration reduction.
     Rail corrugation has caused serious problems on a Metro line shortly after the operation, which not only caused strong vibration of the vehicle and track, but also brought annoying ambient noise, and aroused strong dissatisfaction of passengers and nearby residents. Aiming at investigating the formation mechanism and mitigation measurements of rail corrugation, the present paper conducts a detailed study on the following aspects.
     (1) A brief overview of the development of urban rail transit and the accompanied corrugation problem is presented. The studies on subway corrugation are reviewed in detail. The importance of study on rail corrugation is pointed out.
     (2) The thesis gives a detailed description of the characteristics of vehicle-track structure of the selected Metro line, rail corrugation on the typical sections, and obtained test results of track structure. The relationship between the natural frequencies of the track structure and the passing-frequencies of the existing corrugations is investigated. It shows that the corrugation occurrence has nothing to do with the wheelset twist resonance and mainly corresponds to the characteristic of the track structure.
     (3) The3D FEM mod is developed. The model considers the coupling effect of the vehicle unsprung mass and the track structure. Using the model finds the relationship between the mode shapes and the corresponding resonance frequencies of the track structure and the corrugations. The preliminary explanation of the formation mechanism of corrugation on different track structure is presented.
     (4) A rail corrugation model for the metro vehicle and the slab track is developed. It considers a combination of the coupling dynamics model of a whole vehicle and track, the modified Kalker's non-Hertzian rolling contact model for wheel and rail, a material wear model and a accumulated wear model. It considers not only the effect of wheel/rail transient dynamic interaction on the formation and development of corrugation, but also the effect of the accumulated corrugation on the wheel/rail contact and coupling dynamics. That is, this model can take into account a feedback process between the long-term effects of the rail corrugation and the transient coupling dynamic of whole vehicle. In the coupling dynamic model, the vehicle is treated as a full rigid multi-body system; the rail is modeled with a Timoshenko beam resting on discrete rail pads. The slab is modeled as a three-dimensional flexible structure based on finite element method. The effect of the accumulated corrugation on the wheel/rail contact is considered in rolling contact model. The material model is based on the frictional work which considers the spin effect. The accumulated wear model can superimpose the corrugation formed due to the interaction between the8wheels of the whole vehicle and the rails.
     (5) Extensive filed measurements of rail corrugation are carried out and analyzed in detail. The developed corrugation model is validated by using the tracking test results and the validation shows a good agreement between the results of the test and the calculation by the model.
     (6) The formation and development mechanism of corrugation on the tracks with fix-dual short sleepers and Cologne fastenings is investigated through the numerical simulation which calculates the response of the wheel/rail system to the excitations of white noise, mixed-sin irregularities and dent defect. The obtained results are as follows:①the resonant in the band of60Hz-90Hz of the fix-dual short sleepers track is an underlying cause of the125mm-160mm wavelength corrugation, and indicates that the rail together with the slab vibrates with respect to the subgrade in vertical direction.②the resonant in the band of160Hz-300Hz of the Cologne fastenings track is the root cause of the40mm-50mm wavelength corrugation. The resonant includes the vertical bending vibration and the torsional vibration of the rail, with respect to the slab.③the calculated wavelengths of corrugation are consistent with the measured results.④the formation of corrugation is mainly influenced by the inherent characteristics of track structure and vehicle speed.⑤the track irregularities can develop into rail corrugations only when the passing frequencies of their wavelengths are close to the frequencies of the track resonances to be easily excited. Otherwise, they will disappear gradually in the wheel/rail rolling contact process.
     (7) The effect of fastener parameter, curve superelevation, vehicle load and friction coefficient on the rail corrugation formation is also investigated through the numerical simulation, and the corresponding mitigation methods are proposed. The numerical results show that with the increase of fastener parameter the sensitive resonance frequencies of the Cologne track are changed and the fluctuating amplitude at the passing frequency of the corrugation significantly decrease and the development speed of the corrugation is quite slow. An appropriate reduction in the superelevation can slow down the formation and development rate of corrugation. When passing over the corrugated rail, the vehicle in non-peak results in larger non-uniform wear compared to the vehicle in peak, that is, the corrugation resulting from the vehicle in non-peak is more serious. On the premise of ensuring the braking and traction requirements, the friction coefficient less than0.35can effectively controls the development of rail corrugation.
引文
[1]曾青中,韩增盛.城市轨道交通车辆[M].成都:西南交通大学出版社,2006.
    [2]中投顾问.2011-2015年中国城市轨道交通与设备行业投资分析及前景预测报告[J/OL] 2011.06,www.ocn.com.cn.
    [3]王存福.中国城市轨道交通建设进入黄金期 [J/OL]2011.6.16,http://news.xinhuanet.com/local/2011-06/16/c_121545678.htm.
    [4]OOSTERMEIJER K H,张厚贵,刘维宁等.钢轨波纹磨耗研究综述[J].都市快轨交通,2010,23(2):6-13.
    [5]OOSTERMEIJER K H. Review on short pitch rail corrugation studies [J]. Wear, 2008,265(9-10):1231-7.
    [6]金学松,刘启跃.轮轨摩擦学[M].中国铁道出版社,2004.
    [7]刘学毅.钢轨波形磨耗成因研究[D].西南交通大学,1996.
    [8]AHLBECK D R, DANIELS L E. A review of rail corrugation processes under different operating modes; proceedings of the 1990 ASME/IEEE Joint Railroad California. New York,1990 [C].
    [9]GRASSIE S L, KALOUSEK J. Rail corrugation:characteristics, causes and treatments [J]. IMechE,1993,207(F):57-68.
    [10]SATO Y. Review on rail corrugation studies [J]. Wear,2002,253(1-2):130-9.
    [11]NIELSEN J C O, LUNDEN R, JOHANSSON A, et al. Train-track interaction and mechanisms of irregular wear on wheel and rail surfaces [J]. Vehicle System Dynamics,2003,1(3):3-54.
    [12]GRASSIE S L. Rail corrugation:advances in measurement, understanding and treatment [J]. Wear,2005,258(7-8):1224-34.
    [13]GRASSIE S L. Rail corrugation:characteristics, causes, and treatments [J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit,2009,223(6):581-96.
    [14]AHLBECK D R, DANIELS L E. Investigation of rail corrugations on the Baltimore Metro [J]. Wear,1991,144:197-210.
    [15]TASSILLY E, VINCENT N. Rail corrugations:analytical model and field tests [J]. Wear,1991,144(1-2):163-78.
    [16]TASSILLY E, VINCENT N. A linear model for the corrugation of rails [J]. Journal of Sound and Vibration,1991,150(1):25-45.
    [17]FREDERICK C. A rail corrugation theory; proceedings of the 2nd international conference of Contact Mechanics and Wear of Rail System, University of Kingston,1986 [C]. University of Waterloo Press.
    [18]VADILLO E G, T RRAGO J, ZUBIAURRE G G, et al. Effect of sleeper distance on rail corrugation [J]. Wear,1998,217(1):140-5.
    [19]G MEZ I, VADILLO E G. An analytical approach to study a special case of booted sleeper track rail corrugation [J]. Wear,2001,251(1-12):916-24.
    [20]DIANA G, CHELI F, BRUNI S, et al. Experimental and numerical investigation on subway short pitch corrugation [J]. Veh Syst Dyn,1998,29(supl):234-45.
    [21]DIANA G, BOCCIOLONE M, COLLINA A, et al. An investigation into the
    reduction of short pitch corrugation formation in Milan underground[R],2001.
    [22]TORSTENSSON P T, NIELSEN J C O. Monitoring of rail corrugation growth due to irregular wear on a railway metro curve [J]. Wear,2009,267(1-4):556-61.
    [23]GRASSIE S L, ELKINS J A. Rail corrugation on north american transit systems [J]. Veh Syst Dyn,1998,29(sup1):5-17.
    [24]BRICKLE B J, ELKINS J A, GRASSIE S L, et al. Rail corrugation mitigation in transit [R]. USA:National Research Council,1998.
    [25]KURZECK B. Combined friction induced oscillations of wheelset and track during the curving of metros and their influence on corrugation [J]. Wear,2011, 271(1-2):299-310.
    [26]KALOUSEK J, JOHNSON K L. An investigation of short pitch wheel and rail corrugations on the Vancouver mass transit system [J]. ARCHIVE:Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit 1989-1996 (vols 203-210),1992,206(26):127-35.
    [27]WU T X, THOMPSON D J. An investigation into rail corrugation due to micro-slip under multiple wheel/rail interactions [J]. Wear,2005,258(7-8): 1115-25.
    [28]WU T X. Parametric excitation of wheel/track system and its effects on rail corrugation [J]. Wear,2008,265(9-10):1176-82.
    [29]WU T X. On the railway track dynamics with rail vibration absorber for noise reduction [J]. Journal of Sound and Vibration,2008,309(3-5):739-55.
    [30]WU T X. Effects on short pitch rail corrugation growth of a rail vibration absorber/damper [J]. Wear,2011,271(1-2):339-48.
    [31]JIN X S, WEN Z F. Effect of discrete track support by sleepers on rail corrugation at a curved track [J]. Journal of Sound and Vibration,2008,315(1-2): 279-300.
    [32]JIN X S, WEN Z F, WANG K Y, et al. Three-dimensional train-track model for study of rail corrugation [J]. Journal of Sound and Vibration,2006,293(3-5): 830-55.
    [33]JIN X S, WEN Z F, ZHANG W H, et al. Numerical simulation of rail corrugation on a curved track [J]. Computers & Structures,2005,83(25-26):2052-65.
    [34]JIN X S, WEN Z F, WANG K Y. Effect of track irregularities on initiation and evolution of rail corrugation [J]. Journal of Sound and Vibration,2005,285(1-2): 121-48.
    [35]NIELSEN J. Numerical prediction of rail roughness growth on tangent railway tracks [J]. Journal of Sound and Vibration,2003,267(3):537-48.
    [36]JOHANSSON A, NIELSEN J. Rail corrugation growth-Influence of powered wheelsets with wheel tread irregularities [J]. Wear,2007,262(11-12):1296-307.
    [37]ANDERSSON C, JOHANSSON A. Prediction of rail corrugation generated by three-dimensional wheel-rail interaction [J]. Wear,2004,257(3-4):423-34.
    [38]金学松,温泽峰,王开云.钢轨磨耗型波磨计算模型和数值方法;proceedingsof the中国铁道学会车辆委员会2004年度铁路机车车辆动态仿真学术会议,中国四川峨眉,2004[C].
    [39]金学松,温泽峰,王开云等. Effect of High-Frequency Vertical Vibration of Track on Formation and Evolution of Corrugations [J]. Tsinghua Science and Technology,2004,9(3):274-80.
    [40]JIN X S, WEN Z F, WANG K Y, et al. Effect of passenger car curving on rail corrugation at a curved track [J]. Wear,2006,260(6):619-33.
    [41]熊嘉阳,金学松.铁路曲线钢轨初始波磨演化分析[J].机械工程学报,2006,42(6):60-6.
    [42]熊嘉阳,金学松.铁路曲线钢轨横向凹坑对初始波磨形成的影响[J].工程力学,2006,23(6):135-41+4.
    [43]WEN Z, JIN X. Rail corrugation formation studied with a full-scale test facility and numerical analysis [J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology,2007,221(6):675-98.
    [44]温泽峰,金学松.非稳态载荷下轮轨滚动接触及其钢轨波磨研究[J].摩擦学学报,2007,27(3):252-8.
    [45]JIN X S, MAO X B, WEN Z F, et al. Effect of sleeper pitch on rail corrugation at a tangent track in vehicle hunting [J]. Wear,2008,265(9-10):1163-75.
    [46]WEN Z F, JIN X S, MAO X B, et al. Effect of a scratch on curved rail on initiation and evolution of plastic deformation induced rail corrugation [J]. International Journal of Solids and Structures,2008,45(7-8):2077-96.
    [47]金学松,温泽峰,肖新标.曲线钢轨初始波磨形成的机理分析[J].机械工程 学报,2008,44(3):1-8+15.
    [48]XIE G, IWNICKI S. A rail roughness growth model for a wheelset with non-steady, non-Hertzian contact [J]. Veh Syst Dyn,2010,48(10):1135-54.
    [49]XIE G, IWNICKI S. Simulation of wear on a rough rail using a time-domain wheel-track interaction model [J]. Wear,2008,265(11-12):1572-83.
    [50]BAEZA L, VILA P, XIE G, et al. Prediction of rail corrugation using a rotating flexible wheelset coupled with a flexible track model and a non-Hertzian/non-steady contact model [J]. Journal of Sound and Vibration,2011, 330(18-19):4493-507.
    [51]XIE G, IWNICKI S. Calculation of wear on a corrugated rail using a three-dimensional contact model [J]. Wear,2008,265(9-10):1238-48.
    [52]G MEZ J, VADILLO E G, SANTAMAR A J. A comprehensive track model for the improvement of corrugation models [J]. Journal of Sound and Vibration,2006, 293(3-5):522-34.
    [53]GOMEZ I. A linear model to explain short pitch corrugation on rails [J]. Wear, 2003,255(7-12):1127-42.
    [54]HEMPELMANN K, kNOTHE K. An extended linear model for the prediction of short pitch corrugation [J]. Wear,1996,191(161-9).
    [55]IGELAND A, ILIAS H. Rail head corrugation growth predictions based on non-linear high frequency vehicle/track interaction [J]. Wear,1997,213(1-2): 90-7.
    [56]COLLETTE C, VANHONACKER P, BASTAITS R, et al. Comparison between time and frequency studies of a corrugated curve of RER Paris network [J]. Wear, 2008,265(9-10):1249-58.
    [57]HIENSCH M. Rail corrugation in The Netherlands-measurements and simulations [J]. Wear,2002,253(1-2):140-9.
    [58]MATSUMOTO A, SATO Y, ONO H, et al. Formation mechanism and countermeasures of rail corrugation on curved track [J]. Wear,2002,253(1-2): 178-84.
    [59]MATSUMOTO A, SATO Y, TANIMOTO M, et al. Study on the Formation Mechanism of Rail Corrugation on Curved Track [J]. Veh Syst Dyn,1996, 25(764703936):450-65.
    [60]EADIE D T, KALOUSEK J, CHIDDICK K C. The role of high positive friction (HPF) modifier in the control of short pitch corrugations and related phenomena [J]. Wear,2002,253(1-2):185-92.
    [61]TOMEOKA M, KABE N, TANIMOTO M, et al. Friction control between wheel and rail by means of on-board lubrication [J]. Wear,2002,253(1-2):124-9.
    [62]EGANA J I, VINOLAS J, GIL-NEGRETE N. Effect of liquid high positive friction (HPF) modifier on wheel-rail contact and rail corrugation [J]. Tribology International,2005,38(8):769-74.
    [63]MATSUMOTO A, SATO Y, OHNO H, et al. Improvement of bogie curving performance by using friction modifier to rail/wheel interface-Verification by full-scale rolling stand test [J]. Wear,2005,258(7-8):1201-8.
    [64]SUDA Y, IWASA T, KOMINE H, et al. Development of onboard friction control [J]. Wear,2005,258(7-8):1109-14.
    [65]EADIE D T, SANTORO M. Top-of-rail friction control for curve noise mitigation and corrugation rate reduction [J]. Journal of Sound and Vibration, 2006,293(3-5):747-57.
    [66]MATSUMOTO A, SATO Y, OHNO H, et al. Study on curving performance of railway bogies by using full-scale stand test [J]. Veh Syst Dyn,2006,44:862-73.
    [67]MATSUMOTO K, SUDA Y, FUJII T, et al. The optimum design of an onboard friction control system between wheel and rail in a railway system for improved curving negotiation [J]. Veh Syst Dyn,2006,44:531-40.
    [68]ALONSO A, GONZALEZ F, PEREZ J, et al. Use of active steering in railway bogies to reduce rail corrugation on curves [J]. Proceedings of the Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit,2007,221(4): 509-19.
    [69]EADIE D T, SANTORO M, OLDkNOW K, et al. Field studies of the effect of friction modifiers on short pitch corrugation generation in curves [J]. Wear,2008, 265(9-10):1212-21.
    [70]ISHIDA M, BAN T, IIDA K, et al. Effect of moderating friction of wheel/rail interface on vehicle/track dynamic behaviour [J]. Wear,2008,265(9-10): 1497-503.
    [71]MATSUMOTO K, SUDA Y, KOMINE H, et al. Wheel/rail friction control with feedback system detecting yaw moment of wheelset [J]. Veh Syst Dyn,2008,46: 791-804.
    [72]NAKAI T, SUDA Y, KOMINE H, et al. Feedback friction control between wheel and rail by detecting yaw moment of wheelset [J]. Wear,2008,265(9-10): 1512-7.
    [73]MEEHAN P A, BELLETTE P A, DANIEL W J T. Validation of a tangent track corrugation model with a two disk test rig [J]. Wear,2011,271(1-2):268-77.
    [74]VUONG T T, MEEHAN P A, EADIE D T, et al. Investigation of a transitional wear model for wear and wear-type rail corrugation prediction [J]. Wear,2011, 271(1-2):287-98.
    [75]COLLETTE C, HORODINCA M, PREUMONT A. Rotational vibration absorber for the mitigation of rail rutting corrugation [J]. Veh Syst Dyn,2009,47(6): 641-59.
    [76]CROFT B, JONES C, THOMPSON D. Reducing Wheel-Rail Interaction Forces and Roughness Growth by Application of Rail Dampers Noise and Vibration Mitigation for Rail Transportation Systems [M]//SCHULTE-WERNING B, THOMPSON D, GAUTIER P-E, et al. Springer Berlin/Heidelberg.2008:392-8.
    [77]LIU H P, WU T X, LI Z G. Theoretical modelling and effectiveness study of rail vibration absorber for noise control [J]. Journal of Sound and Vibration,2009, 323(3-5):594-608.
    [78]MAES J, SOL H. A double tuned rail damper--increased damping at the two first pinned-pinned frequencies [J]. Journal of Sound and Vibration,2003,267(3): 721-37.
    [79]ILIAS H. The influence of railpad stiffness on wheelset/track interaction and corrugation growth [J]. Journal of Sound and Vibration,1999,227(5):935-48.
    [80]EGANA J, VINOLAS J, SECO M. Investigation of the influence of rail pad stiffness on rail corrugation on a transit system [J]. Wear,2006,261(2):216-24.
    [81]OYARZABAL O, GOMEZ J, SANTAMARIA J, et al. Dynamic optimization of track components to minimize rail corrugation [J]. Journal of Sound and Vibration,2009,319(3-5):904-17.
    [82]王步康,董光能,刘永红,et al钢轨短波长波浪形磨损的安定性分析[J].摩擦学学报,2004,24(1):70-3.
    [83]王步康.钢轨接触表面短波长波浪形磨损的机理研究[D].西安交通大学,2003.
    [84]王步康,谢友柏.钢轨短波波磨的产生机理[J].摩擦学学报,2001,21(5):375-8.
    [85]LIU Q, JIN X, WANG X, et al. An investigation of rail corrugation in China, Proceedings of Contact Mechanics and Wear of Rail/Wheel Systems,5th International Conference, Tokyo, Japan,2000 [C].
    [86]LIU Q, ZHANG B, ZHOU Z. An experimental study of rail corrugation [J]. Wear, 2003,255(7-12):1121-6.
    [87]刘启跃,刘钟华.沪杭线钢轨波磨成因分析[J].西南交通大学学报,1990,(3):23-9.
    [88]刘启跃,王夏秋,周仲荣.钢轨表面波浪形磨损研究[J].摩擦学学报,1998, 18(4):337-40.
    [89]谭立成,俞铁峰.曲线钢轨波浪磨损形成机理及减轻措施——兼论轮轨润滑的影响[M].中国铁道学会轮轨表面接触损伤及对策学术研讨会.北京.1990:1-5.
    [90]谭立成.钢轨波状磨损形成机理的初步试验和理论研究[J].中国铁道科学,6(1):28-52.
    [91]TAN L.C., Yu T.F.. Formation of rail corrugation and measure to reduce it on curved track [M]. The Proceedings of Fifth International Heavy Haul Railway Conference.1993:288-91.
    [92]CHEN G X, ZHOU Z R, OUYANG H, et al. A finite element study on rail corrugation based on saturated creep force-induced self-excited vibration of a wheelset-track system [J]. Journal of Sound and Vibration,2010,329(22): 4643-55.
    [93]JIN X S, WANG K Y, WEN Z F, et al. Effect of rail corrugation on vertical dynamics of railway vehicle coupled with a track [J]. Acta Mech Sinica,2005, 21(1):95-102.
    [94]JIN X S, WEN Z F, WANG K Y, et al. Effect of a scratch on curved rail on initiation and evolution of rail corrugation [J]. Tribology International,2004, 37(5):385-94.
    [95]金学松,郭俊,肖新标等.高速列车安全运行研究的关键科学问题;proceedings of the第18届全国结构工程学术会议,中国广东广州,2009[C].
    [96]金学松,沈志云.轮轨滚动接触力学的发展[J].力学进展,2001,(1):33-46.
    [97]金学松,沈志云.轮轨滚动接触疲劳问题研究的最新进展[J].铁道学报,2001,(2):92-108.
    [98]金学松,王开云,温泽峰等.钢轨横向不均匀支撑刚度对钢轨波磨的影响[J].力学学报,2005,(6):67-79.
    [99]金学松,温泽峰,王开云.钢轨磨耗型波磨计算模型与数值方法[J].交通运输工程学报,2005,(2):12-8.
    [100]金学松,温泽峰,张卫华等.世界铁路发展状况及其关键力学问题;proceedings of the工程力学学术研讨会,2004[C].
    [101]金学松,温泽峰,张卫华等.世界铁路发展状况及其关键力学问题——全国结构工程学术会议特邀报告;proceedings of the第十三届全国结构工程学术会议,中国江西井冈山,2004[C].
    [102]金学松,张继业,温泽峰等.轮轨滚动接触疲劳现象分析[J].机械强度,2002,(2):250-7.
    [103]金学松,张雪珊,张剑等.轮轨关系研究中的力学问题[J].机械强度,2005, (4):408-18.
    [104]沈志云,张卫华,金学松等.轮轨接触力学研究的最新进展[J].中国铁道科学,2001,(2):4-17.
    [105]温泽峰.钢轨波浪形磨损研究[D].西南交通大学,2006.
    [106]温泽峰,金学松.钢轨波浪形磨损研究[J].中国铁道科学,2007,(1):136-8.
    [107]翟婉明,金学松,赵永翔.高速铁路工程中若干典型力学问题[J].力学进展,2010,(4):358-74.
    [108]张继业,金学松,张卫华.高频轮轨相互作用下钢轨的波磨[J].摩擦学学报,2003,(2):128-31.
    [109]张继业,金学松,张卫华.基于高频轮轨作用的波浪型磨损研究[J].应用力学学报,2004,(4):6-11+165.
    [110]Wheel and Rail Roughness Measuring System使用手册[M].2006.
    [111]MAN A P D. A survey of dynamics railway track properties and their quality [D].Delft Uiversity, The Nertherland,2002.
    [112]李伟,杜星,房建英等.北京地铁四号线扣件刚度和阻尼测试情况报告[R].2011.
    [113]魏伟.铁路轮轨系统高频振动[D].西南交通大学,1997.
    [114]KALKER J J. Three-dimensional elastic bodies in rolling contact [M]. Springer, 1990.
    [115]CLAYTON P. Tribological aspects of wheel-rail contact:a review of recent experimental research [J]. Wear,1996,191(1-2):170-83.
    [116]翟婉明.车辆-轨道耦合动力学[M].科学出版社,2007.
    [117]TIMOSHENKO S. Method of analysis static and dynamical stresses in rail [M]. Proc of the 2nd International Congress of Applied Mechanics. Zurich.1927.
    [118]吴磊.地铁车辆-钢弹簧浮置板轨道耦合动态行为的研究[D].西南交通大学,2012.
    [119]凌亮.考虑多节车的高速列车/轨道耦合动力学研究[D].西南交通大学,2012.
    [120]肖广文.钢轨焊接接头伤损分析[D].西南交通大学,2009.
    [121]KNOTHE K, GRASSIE S L. Modeling of railway track and vehicle/track interaction at high frequencies [J]. Veh Syst Dyn,1993,22:209-62.
    [122]XIAO X, WEN Z, JIN X, et al. Effects of track support failures on dynamic response of high speed tracks [J]. International Journal of Nonlinear Sciences and Numerical Simulation,2011,8(4):615-30.
    [123]肖新标,温泽峰,金学松.轨下支承失效对车辆系统动态响应及乘坐舒适度的影响[J].铁道学报,2008,29(6):26-33.
    [124]肖新标,金学松,温泽峰.轨下支承失效对直线轨道动态响应的影响[J].力学学报,2008,40(1):67-78.
    [125]肖新标,金学松,温泽峰.轨枕支撑硬点对轨枕动力响应的影响[J].交通运输工程学报,2007,7(6):28-35.
    [126]欧进萍,王光远.结构随机振动[M].高等教育出版社,1998.
    [127]KALKER J. A fast algorithm for the simplified theory of rolling contact [J]. Veh Syst Dyn,1982,11(1):1-13.
    [128]李霞.车轮磨耗预测初步研究[D].西南交通大学,2009.
    [129]ISHIDA M, ABE N. Experimental study on rolling contact fatigue from the aspect of residual stress [J]. Wear,1996,191(1-2):65-71.
    [130]KALOUSEK J, HOU K, MAGEL E, et al. The benefits of friction management: a third body approach; proceedings of the Proceedings of the World Congress Conference on Railroad Research, Colorado Springs, June,1996 [C].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700