确定性光学加工频带误差的评价与分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相对于传统光学手工加工,确定性光学加工大幅提高了光学加工的精度和效率。但在确定性加工中,被加工表面除了低频的面形误差外,往往还包含较多的中高频成分。这些空间频带误差的存在严重影响了系统的光学性能,且难以得到控制。其中的关键在于:①目前缺乏与光学性能建立联系的频带误差定量评价方法;②现有功率谱密度方法在分析不同的确定性加工方法或者不同的工艺参数对频带误差及光学性能的影响时存在不足。为此,论文围绕确定性加工频带误差的评价与分析两方面展开研究,以达到为确定性加工频带误差的控制提供参考的目的。论文的研究工作包括以下几个部分:
     ①在现有功率谱密度特征曲线的基础上,提出基于功率谱密度特征曲线的小波评价方法,在反映误差频谱特征、评价光学表面的同时,还可表达不合格频率在光学表面的分布,对确定性加工进行指导;
     ②提出基于Harvey-Shack散射理论的小波评价方法,为建立确定性加工中频带误差与光学性能之间定量关系提供理论基础;
     ③提出基于光学性能的确定性加工频带误差评价方法。利用基于Harvey-Shack散射理论的小波评价方法分析的实验结果,结合统计光学理论,对不同光学性能产生主要影响的频带误差进行理论探索,得出了频带误差对光学性能的影响规律;
     ④提出基于小波理论的确定性加工频带误差分析方法,分析了加工工艺参数与元件表面频谱分布特征之间的关系,寻找敏感频率误差产生的原因,并将这一方法在确定性加工(重点是离子束加工和磁流变加工)及子孔径拼接测量中应用实验,得出一些初步结论;
     ⑤提出基于光学性能的确定性加工频带误差分析方法。将基于小波理论的频带误差分析方法与基于光学性能的频带误差评价方法相结合,将频带误差的评价穿插于误差的分析当中,为选择合适的确定性加工方法及合适的工艺参数,实现光学元件表面频带误差的合理控制提供参考,并通过三个实验介绍了其在确定性加工中的应用。
Deterministic optical machining method improves the accuracy and the efficiency of optical machining compared with conventional optical manual fabrication. But there are many Mid- and High-spatial frequencies in deterministic machining. These spatial frequency band errors degrade optical performances significantly and are difficult to be controlled. The key reasons are:①There is lack of a quantitative specification method of frequency band errors relation to optical performances at present.②There are limitations in present Power Spectral Density (PSD) method to analyze the influence of different deterministic machining method or different technical parameters on frequency band errors and optical performances. The major research efforts in the dissertation are to offer the references for the control of frequency band errors in deterministic machining, and include the following points revolving about specification and analysis of frequency band errors in deterministic machining:
     ①A wavelet specification method based on PSD Character Curve is proposed. The character of frequency errors spectrum is reflected and the optical surface is evaluated, moreover, the corresponding region of unqualified frequency is found to provide effective guidance for deterministic machining.
     ②A wavelet specification method based on Harvey-Shack scattering theory is proposed. The quantitative relation between frequency band errors in deterministic machining and optical performances is established.
     ③A specification method of frequency band errors in deterministic machining based on optical performances is proposed. According to the experiment result of the wavelet specification method based on Harvey-Shack scattering theory and statistical optics theory, the influences of frequency band errors on optical performances are obtained.
     ④An analysis method of frequency band errors in deterministic machining based on wavelet theory is proposed. The relation between technical parameters and distribution of frequency spectrum of workpiece surface is established and the occurred reason of notable frequency error is found, and moreover, some elementary conclusions are obtained through some experiments in deterministic machining (emphasis on Ion Beam Figuring and Magnetorheological Finishing) and subaperture stitching test according to the analysis method.
     ⑤An analysis method of frequency band errors in deterministic machining based on optical performances is proposed. The analysis method of frequency band errors based on wavelet theory and the specification method of frequency band errors based on optical performances are combined by inserting the specification method of frequency band errors in the analysis of errors, thereby the references for selecting appropriate deterministic machining method and appropriate technical parameters to control frequency band errors of optical surface are offered. Finally three maching experiments are introduced in deterministic machining by using this analysis method.
引文
[1] R. A. Jones and W. J. Rupp. Rapid optical fabrication with CCOS. Proc. SPIE, 1990, 1333: 34-43
    [2] W. J. Rupp. The development of optical surfaces during the grinding process. Applied Optics, 1965, 4(6): 743-748
    [3] R. A. Jones. Optimization of computer controlled polishing. Applied Optics, 1977, 16(1): 218-224
    [4]王贵林.SiC光学材料超精密研抛关键技术研究:学位论文.长沙:国防科技大学,2002
    [5] F. W. Preston. The theory and design of plate glass polishing machines.J. Soc. Glass Technol,1927,9:214~256
    [6]张学军.数控非球面加工过程的优化研究:学位论文.长春:中国科学院长春光机所,1997
    [7]郑为民.高陡度光学非球面自动成形的研究:学位论文.杭州:浙江大学,1998
    [8]周旭升.大中型非球面计算机控制研抛工艺方法研究:学位论文.长沙:国防科技大学,2007
    [9]杨力.先进光学制造技术.北京:科学出版社,2001
    [10] L. Yang and D. X. Wang.Study on distortion control technology of the active stressed lap polishing deeper aspherical mirror. Proc. SPIE, 2005, 6024:60241V-1~60241V-8
    [11] H. M. Martin,R. G. Allen,J. H. Burge,et al.Polishing of a 6.5m f/1.25 mirror for the first Magellan telescope.Proc. SPIE,1999,3739:47~55
    [12]范斌,万勇建,杨力等.大型非球面主镜能动磨盘加工模型.光电工程,2005,32(12):59~62
    [13] I. A. Kozhinova, S. R. Arrasmith, J. C. Lambropoulos, et al. Exploring anisotropy in removal rate for single crystal sapphire using MRF. Proc. SPIE, 2001, 4451:277~285
    [14] J. C. Lambropoulos, S. R. Arrasmith, S. D. Jacobs, et al. Manufacturing-induced residual stresses in optical glasses and crystals: Example of residual stress relief by magnetorheological finishing (MRF) in commercial silicon wafers. Proc. SPIE, 2001, 4451: 181~190
    [15] M. Tricard, A. Shorey, B. Hallock, et al. Cost-effective,deterministic finishing of large optics. Proceedings of the 6th euspen international conference, 2006:44~49
    [16]彭小强.确定性磁流变抛光的关键技术研究:学位论文.长沙:国防科技大学,2004
    [17] P. M. Shanbhag, M. R. Feiberg, G. Sandri, et al. Ion beam machining of millimeter scale optics. Applied Optics, 2000, 39(4):599~611
    [18] L. N. Allen. Progress in ion figuring large optics. Proc. SPIE, 1994, 2428: 237~247
    [19] M. Ando, et al. Basic examinations of shape correction machining of minute area by ion beam figuring. in 4th EUVL Symposium. Nov. 2005: EUVA Canon
    [20]程灏波,王英伟.纳米精度光学非球面研磨、抛光技术.航空精密制造技术,2004,40(1):6~9
    [21] T. Haensel, P. Seidel, A. Nickel, et al. Deterministic ion beam figuring of surface errors in the sub-millimeter spatial wavelength range. EUSPEN, 2006: Baden, Vienna, Austria
    [22] A. Bielke, K. Beckstette and C. Kübler. Fabrication of aspheric optics– process challenges arising from a wide range of customer demands and diversity of machine technologies. Proc. SPIE, 2004, 5252:1~12
    [23]张云庆.非球面光学加工——日益增长的需求和面临的工艺挑战.光机电信息,2005,11:14~21
    [24] J. K. Lawson, D. M. Aikens, R. E. English, et al. Power spectral density specifications for high-power laser systems. Proc. SPIE. 1996, 2775:345~356
    [25] J. K. Lawson, J. M. Auerbach, R. E. English, et al. NIF optical specifications: the importance of the RMS gradient. LLNL Report UCRL-JC-130032, 1998:7~12
    [26] M. Tricard and P. E. Murphy. Subaperture stitching for large aspheric surfaces. Talk for NASA Technology Days 2005 (http://optics.nasa.gov/tech_days/)
    [27] H. Meiling, J. P. Benschop, U. Dinger, et al. Progress of the EUVL alpha tool. Proc. SPIE, 2001, 4343: 38-50
    [28] P. Kurs. The EUV alpha demo tool program at Carl Zeiss SMT AG. 2004
    [29] P. Kurs. Optics for EUV Lithography. 2000
    [30] H. Meiling, J. P. Benschop, R. A. Hartman, et al. EXTATIC: ASML's alpha-tool development for EUVL. Proc. SPIE. 2002, 4688: 52-63
    [31] H. Meiling, V. Banine, P. Kuerz, et al. The EUV program at ASML: an update. Proc. SPIE. 2003, 5037: 24-35
    [32]任寰,卓志云,蒋晓东等.波前功率谱密度函数评价方法探讨.强激光与粒子束,2002,14(2):279~282
    [33] J. K. Lawson, C. R. Wolfe, K. R. Manes, J. B. Trenholme, et al. Specification of optical components using the power spectral density function. Proc. SPIE, 1995, 2536: 38~50
    [34] D. M. Aikens, C. R. Wolfe and J. K. Lawson. The use of Power Spectral Density (PSD) functions in specifying optics for the National Ignition Facility. Proc.SPIE, 1995, 2536: 281~292
    [35] D. M. Aikens. The origin and evolution of the optics for the National Ignition Facility. Proc. SPIE, 1995, 2536: 2~12
    [36]许乔,顾元元等.大口径光学元件波前功率谱密度检测.光学学报,2001, 21(3):344~347
    [37]徐芳,魏全忠,伍凡.功率谱密度函数评价方法探讨.光学仪器,2000,22(3): 21~24
    [38]于瀛结,李国培.关于光学元件波面测量中的功率谱密度.计量学报,2003,24(2):103~107
    [39] ISO 10110, Optics and optical instrument :Preparation of drawings for optical elements and systems
    [40] Zemax optical design program user’s guide,Version January 6,2003
    [41] Code V user’s guide, Version 9.10
    [42] OSLO Optics Reference, Version 6.1
    [43]李士贤,郑乐年编.光学设计手册.北京:北京理工大学出版社,1990
    [44] R. J. Noll. Effect of mid and high spatial frequencies on optical performance. Opt. Eng., 1979, 18: 137~142
    [45] J. E. Harvey and A. Kotha. Scattering effects from residual optical fabrication errors. Proc. SPIE, 1995, 2576: 155~174
    [46] S. O. Rice. Symposium on the theory of electromagnetic waves: reflection of electromagnetic waves from slightly rough surfaces. 1951, Interscience publishers:351
    [47] P. Beckmann and A. Spizzichino. The scattering of electromagnetic waves from rough surfaces. 1987: Artech House
    [48] R. J. Noll, P. Glenn and J. Osantowski. Optical surface analysis code (OSAC). Proc. SPIE, 1982, 362: 78~85
    [49] Optical surface analysis code (OSAC) version 7.0 user’s manual. NASA goddard space flight center, 1993
    [50] K. A. O’Donnnell and E. R. Mendez. Experimental study of scattering from characterized random surfaces. J. Opt. Soc. Am., 1987, 4(7):1194
    [51] J. E. Harvey and C. L. Vernold. Transfer function characterization of scattering surfaces: Revisited. Proc. SPIE, 1997, 3141: 113~127
    [52] C. L. Vernold and J. E. Harvey. Comparison of Harvey-Shack scatter theory with experimental measurements. Proc. SPIE, 1997, 3141: 128~138
    [53] J. E. Harvey and C. L. Vernold. Modifying the Harvey-Shack surface scatter theory. Proc. SPIE, 1998, 3426:326~332
    [54] C. L. Vernold. A non-paraxial scattering theory for specifying and analyzing fabrication errors in optical surfaces. A dissertation for the degree of doctor ofphilosophy. The university of Arizona, 1998
    [55] A. K. Thompson. Scattering effects of machined optical surfaces. A dissertation for the degree of doctor of philosophy. The university of Central Florida, 1998
    [56] J. W. Goodman著,秦克诚等译.统计光学.北京:科学出版社,1992
    [57] R. Barkat. The influence of random wavefront errors on the imaging characteristics of an optical system. Optica Acta, 1971, 18:683-694
    [58]向阳.粗糙波面光学传递函数像质评价准则和粗糙度公式理论.光学学报,1997,17(1):45~52
    [59] R. N. Youngworth and B. D. Stone. Simple estimates for the effects of mid-spatial-frequency surface errors on image quality. Applied optics, 2000, 39(3):2198~2209
    [60] M.Ghigo, R.Canestrari, D.Spiga, et al. Correction of high spatial frequency errors on optical surfaces by means of Ion Beam Figuring. Proc. SPIE, 2007, 6671: 667114-1~667114-10
    [61] M. Schinhaerl, G. Smith, A. Geiss, et al. Calculation of MRF influence functions. Proc. SPIE, 2007, 6671:66710Y-1~66710Y-12
    [62] C. Supranowitz, C. Hall, P. Dumas, et al. Improving surface figure and microroughness of IR materials and diamond turned surfaces with Magnetorheological Finishing (MRF). Proc. SPIE, 2007, 6545: 65450S-1~65450S-11
    [63] B. Fan, Y. Y. Wan, L. Yang, et al. The grind and polish prediction of Computer Controlled Active Lap. Proc. SPIE, 2006, 6148: 61480Z-1~61480Z-5
    [64] L. G. Zheng and X. J. Zhang. Novel resistance iterative algorithm for CCOS. Proc. SPIE, 2006, 6288: 62880N-1~62880N-9
    [65] X. J. Zhang, Z. Y. Zhang, L. G. Zheng, et al. Manufacturing and testing SIC aspherical mirrors in space telescopes. Proc. SPIE, 2005, 6024: 602402-1~602402-5
    [66] J. Taniguchi. Surface roughness of optical substrate finished by ion beam figuring. 2004
    [67] A. Schindler, T. Haensel, A. Nickel, et al. Finishing procedure for high-performance synchrotron optics. Proc. SPIE, 2003, 5180: 64~72
    [68] T. Haensel, P. Seidel, A. Nickel, et al. Deterministic ion beam figuring of surface errors in the sub-millimeter spatial wavelength range. EUSPEN. 2006. Baden, Vienna, Austria
    [69]陈灏波.基于空间频率评价磁流变抛光非球面中频误差.哈尔滨工业大学学报,2006,38(6):917~919
    [70]陈灏波,冯之敬,王英伟.磁流变抛光光学非球面元件表面误差的评价.清华大学学报,2004,44(11):1497~1500
    [71]范斌,万勇建,陈伟等.能动磨盘加工与数控加工特性分析.中国激光,2006,33(1):128~132
    [72]范斌.能动磨盘加工工艺及智能控制研究:学位论文.成都:中国科学院光电技术研究所,2006
    [73] H. M. Martin, R. G. Allen, J. H. Burge, et al. Fabrication of mirrors for the Magellan Telescopes and the Large Binocular Telescope. Proc. SPIE, 2003, 4837: 609~618
    [74] D. Golini and W. Czajkowski. Microgrinding makes ultrasmooth optics fast. Laser Focus World, 1992, 28(7):146~150
    [75] P. D. Funkenbusch. Role of topography in deterministic microgrinding. Convergence, 1996, 8
    [76] R. A. Jones. Computer controlled optical surfacing with orbital tool motion. Optical Engineering, 1986, 25(6):59~62
    [77] D. Golini, W. J. Rupp and J. Zimmerman. Microgrinding: new technique for rapid fabrication of large mirrors. Proc. SPIE, 1989, 1113: 204~210
    [78] R. A. Jones.Automated optical surfacing. Proc. SPIE, 1990, 1293: 704~710
    [79]杨世杰.计算机在天文镜面加工中的应用.紫金山天文台台刊,1987,6(4):385~388
    [80] W. S. Donald and J. H. Steven. An automated aspheric polishing machine. Proc. SPIE, 645:66~74
    [81]万勇建,袁家虎,杨力.一种新型数控抛光加工模型——模糊控制模型.光电工程,2002,29(6):5~8
    [82]程晓峰,郑万国,蒋晓东等.用功率谱密度坍陷评价光学元件波前中频误差特性.强激光与粒子束,2005,17(10):1465~1468
    [83] R. Galigekere, D. Holdsworth, M. Swamy, et al. Monent patterns in the Radon space. Opt Eng, 2000, 39(4): 1088~1097
    [84]杨福生.小波变换的工程分析与应用.北京:科学出版社,1999
    [85] Wavelet toolbox3.0.1 help, MATLAB Version 7.0.1.24704 (R14) Service Pack 1
    [86] J. P. Antoine, P. Carrette, R. Murenzi, et al. Image analysis with two-dimensional continuous wavelet transform, Signal Proc., 1993, 31: 241~272
    [87] J. P. Antoine and R. Murenzi. Two-dimensional directional wavelets and the scale-angle representation, Signal Processing, 1996, 52: 259~281
    [88] J. P. Antoine, R. Murenzi and P. Vandergheynst. Two-dimensional directional wavelets in image processing, Int. Journal of Imaging Systems and Technology, 1996, 7: 152-165
    [89] Yawtb-0.1.0,http://rhea.tele.ucl.ac.be/yawtb/pmwiki.php/Main/YAWTb,2002.6.15
    [90]周旭升,李圣怡,戴一帆等.光学表面中频误差的控制方法——确定区域修正法.光学精密工程,2007,11:1668~1673
    [91]杨建东,田春林.高速研磨技术.北京:国防工业出版社,2003
    [92] D. Golini, G. Forbes and P. Murphy. Method for Self-Calibrated Sub-Aperture Stitching for surface figure measurement. US Patend #6956657, 2005
    [93] S. Y. Chen, S. Y. Li, Y. F. Dai, et al. Iterative algorithm for subaperture stitching test with spherical interferometers. Opt. Soc. Am. A. A, 2006, 23(5): 1219~1226
    [94] S. Y. Chen, S. Y. Li and Y. F. Dai. Iterative algorithm for subaperture stitching interferometry for general surfaces. Opt. Soc. Am. A. A, 2005, 22(9): 1929~1936
    [95]陈善勇.非球面子孔径拼接干涉测量的几何方法研究:学位论文.长沙:国防科技大学,2006
    [96] J. E. Harvey. Light-Scattering characteristics of optical surfaces. Ph.D Dissertation, Univ. Of Arizona, 1976
    [97]罗鹏飞,张文明,刘福声.随机信号分析,长沙:国防科技大学出版社,2000
    [98]向阳.光学元件表面微观轮廓和轮廓的特征.光学精密工程,1997,5(2):77~83
    [99] G. Rasigni, F. Varnier, M. Rasigniand, et al. Autocovariance functions for polished optical surfaces. JOSA A, 1983, 76(2): 222
    [100] G. Rasigni, M. Rasigni, P. Palmari, et al. Statistical parameters for random and pseudorandom rough surfaces. JOSA A, 1985, 5(1): 99~103
    [101] J. W. Goodman. Introduction to fourier optics (Second edition). McGraw-Hill, 1996
    [102]梁铨廷.物理光学.北京:机械工业出版社,1980
    [103]张以谟.应用光学下册.北京:机械工业出版社,1982

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700