高分辨率空间相机敏捷成像的像移补偿方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着空间相机分辨率的不断提高,各空间技术强国除了追求相机的高地面分辨率外,对相机的图像采集效率也有了较为严格的要求,并且提出更多的图像应用方向,敏捷成像应运而生并成为了重要的研究方向之一。本文分析了不同敏捷成像模式对高分辨率空间相机像移补偿的要求,在此基础上研究适应飞行器大侧摆和大俯仰姿态下的敏捷成像的像移补偿方法。
     首先,参照国外敏捷成像卫星,规划出单条带成像、多轨连续条带成像、同轨连续条带成像、多轨立体成像、同轨立体成像以及同轨多目标成像六种在飞行器姿态三轴姿态稳定时敏捷成像模式,研究每种成像模式的特点和作用。按照每种敏捷成像模式对飞行器姿态要求,将六种模式分为侧摆成像、俯仰成像以及侧摆俯仰成像三类。
     其次,建立瞬态几何成像模型,用简单直观的方法定性分析侧摆成像和俯仰成像两类敏捷成像模式对像移补偿的要求。根据齐次坐标变换矩阵及景点到像面的变换过程,建立了像移速度矢计算模型,并推导了像移速度的精确计算公式。通过精密的像移矢计算模型以及传递函数的评价方法定量分析三类敏捷成像模式对像移补偿的要求。
     再次,对传统补偿方法下的像移速度相对误差和偏流角误差的误差源进行归纳。通过对传统补偿方法在敏捷成像时的像移速度和偏流角匹配残差、像移速度和偏流角估值误差以及偏流角累积误差的分析,确定传统补偿方法对敏捷成像模式的适应能力,进而提出了适应大侧摆和大俯仰的敏捷成像模式需要解决的三个问题,侧摆成像问题、持续成像问题以及俯仰成像问题。
     然后,研究敏捷成像的三个问题的解决方法:分析异速匹配和实时偏流调整方法的原理,并通过地面实验和在轨测试的完成两个方法验证。建立了实时偏流调整中的机构调整附加误差计算的数学模型,对实时偏流调整原理以及偏流角误差进行了定量分析,从理论证明了实时偏流调整的可行性。根据横向像移图像的生成原理,建立了横向像移图像的数学模型。提出了组建完成方程组的横向像移图像复原的方法,完成了地面仿真验证和算法精度分析。
     最后,根据异速匹配、实时偏流调整以及构建完整方程组方法的实施条件,设计了适用于敏捷成像的高分辨率空间相机的敏捷像面,并且提出了基于敏捷像面的适应于飞行器大侧摆和大俯仰姿态的高分辨率空间相机的敏捷成像方案,为高分辨率空间相机敏捷成像的像移补偿技术的发展,提供了理论依据。
With the continuous improvement of space camera resolution, in addition to thepursuit of the camera's high ground resolution, the images’ collection efficiency ofcamera has also been more stringent required by countries that have powerful spacetechnology, and more aspects of application of image were promoted, then agileimaging emerged and became an important one of research directions. Requirementsof the different agile imaging modes to the image motion compensation of highresolution space cameras were analyzed,and method of image motion compensationwas researched to adapt the large angle of roll and pitch attitudes of agile aircraftin this paper.
     First, with reference to foreign agile imaging satellites, single band imaging,multi-track continuous band imaging, same-track continuous band imaging,multi-track stereo imaging, same-track stereo imaging and same-track multi-targetimaging modes was planed when the three-axis attitudes of aircraft are steady,andthe characteristic and good of each imaging mode was studied. The six modes ofagile imaging were also divided in to three kinds: roll imaging, pitch imaging andboth roll and pitch imaging in according to the requirements to the attitudes ofaircrafts.
     Secondly, the establishment of instantaneous-state geometric imaging model was established, and used to qualitatively analyze the requirement of the roll imagingand pitch image to the image motion compensation. According to the homogeneouscoordinate transformation matrix and the transformation process from the scene tothe image plane, an image motion velocity vector computational model was built,and a precise formula of image motion velocity was derived. The precise imagemotion vector model and transfer function evaluation method were applied toquantitatively analyze the requirement of three kinds of agile imaging mode to theimage motion compensation.
     Thirdly, error sources of image motion velocity’s relative error and drift angle’serror were summarized when the conventional compensation method of imagemotion was applied to agile imaging. Matching error, estimation error andcumulative error of drift angle and matching error and estimation error of imagemotion velocity were analyzed to determine adaptability of the conventionalcompensation method to agile imaging, and then three pivotal problems that need tobe solved were discovered in order to fit agile imaging mode of large roll imagingand pitch imaging.The three problems are problem of roll imaging,problem ofpersistent imaging and problem of pitch imaging.
     Fourthly, three issues of agile imaging solutions were studied. The principle ofmethods of the multi-velocity match of image motion velocity and real-timeadjustment of drift angle were analyzed, and that were validated by experiment onground and test in orbit. A mathematical model of the additional error of drift’sframework was modeled when drift angle was revolving. A theory of creating imageof transverse image motion was promoted by reaching the imaging process of TDICCD. A method of composing integrated group of equations was brought up torecover image of transverse image motion. The method was validated in theemulation environment, and the arithmetic precision was analyzed.
     Finally, based on the methods of multi-velocity match of image motion velocity,real-time adjustment of, and composing integrated group of equations, a agile imageplane of was designed for agile imaging,and a blue print of agile imaging of high-resolution space cameras was put forward to adapt to large angles of roll andpitch attitudes of aircraft based on the agile image plane,that provide academic baseto the development of image motion compensation of space high resolution cameras’collecting scene agilely.
引文
[1]Gene Dial,Howard Bowen,Frank Gerlach,et al.IKONOS satellite,imagery,and products[J].Remote Sensing of Environment,2003,88:23-36.
    [2]冯钟葵.国际上航天器的研制与发射动态[J].遥感信息,2001,2:49-53.
    [3]张永生,巩丹超.高分辨率遥感卫星应用[M].北京:科学出版社,2004,1-14.
    [4]汪凌,卜毅博.高分辨率遥感卫星及其应用现状与发展[J].测绘技术装备,2006,4(8):3-5.
    [5]王家骐,金光,颜昌翔.光电跟踪测量设备的目标定位误差分析[J].光学精密工程,2006,13(2):105-116.
    [6]Hadar O, Fisher M, and Kopeika N S. Image Resolution Limits Resulting fromMechanical Vibrations, Part III: Numerical Calculation of Modulation TransferFunction [J]. Opt Eng,1992,31(3):581-589.
    [7]A Stern and N S Kopeika.Analytical method to calculate optical transferfunctions for image motion and vibrations using moments [J]. J Opt Soc Am A,1997,14(2):388-396.
    [8]Miller B M, Rubinovich E Y. Image motion compensation at charge-coupleddevice photographing in delay-integration mode[J]. Automationtion and ReMoteControl,2007,68(3):564-571.
    [9]Macelo C Algrain, Mark K. Woehrer. Determination of Attitude Jitter in SmallSatellite [J]. SPIE,1996,2739:215-228.
    [10]Victor C Chen and William J Miceli. The effect of roll, pitch and yaw motionson ISAR imaging [J]. SPIE,1999,3810:149-158.
    [11]Alexandre J Smirnov. Image stabilization in small satellite optoelectronic remotesensing systems [J]. SPIE,1997,3119:36-45.
    [12]Donald A, Kawachi. Image Motion Due to Camera Rotation[M].Photogrammetic Engineering,1965.
    [13]佟首峰.TDICCD在高分辨率遥感相机应用技术研究[D].北京:中国科学院,2000,1-32.
    [14]Wertz J R, Larson W J.航天任务的分析与设计[M].北京:航空工业出版社,1992.
    [15] Manila, Kuala Lumpur. Primary Geospatial Data Acquisition Systems [R].Technology Update Seminar of GIS Development,2010,6.
    [16]李大耀.我国空间技术的发展历程回顾[J].航天返回与遥感,1991,2(2):1-9.
    [17]唐绍凡,刘冰.我国小卫星、微小卫星有效载荷的发展[J].航天返回与遥感,1999,20(4):13-15.
    [18]赵文伯,刘俊刚.CMOS图像传感器发展现状[J].半导体光电,1999,20(1):11-16.
    [19]Thomas W.Mccurnin.Signal processing for low-level high-precision CCDimaging[C].Proc SPIE,1991,1448:225-235.
    [20]J.R.Schott.Remote Sensing,The Image Chain Approach[C].Oxford UniversityPress.New York,1997,1-12.
    [21]N.S.Kopeika.A System Engineering approach to imaging[C].SPIE Press,Bellingham,WA,1998,3-5.
    [22]D.J.Schroeder. Astronomical Optics[C]. Academic Press, San Diego,California,1987,8-13.
    [23]周强.卫星总体参数对遥感图像质量影响的研究[D].黑龙江:哈尔滨工业大学,2002,1-7,18-20.
    [24]R.R.Auclmann. Smear due to satellite orbit motion for scanningsystem[C].Hughes Aircraft Company Technical Memo,1997:1-5.
    [25]Andre’ G Lareau. Electro-optical imaging array with motion compensation[J].SPIE,1993,2023:66-78.
    [26]Billy M Gaddy. The KA-99panoramic camera [J]. SPIE,1976l(79),190-196,.
    [27]Richard C Ruck. The KA-93panoramic camera [J]. SPIE,1976(79),208-215.
    [28]李兴华.高分辨力空间摄影相机像移补偿控制技术研究[D].北京:中国科学院,2000,1-7.
    [29]王家骐.光学仪器总体设计[M].长春:中国科学院长春光学精密机械与物理研究所,2003.
    [30]袁孝康.CCD相机的像移补偿技术[J].激光与红外,2005,35(9):628-632.
    [31]袁孝康.星载TDI-CCD推扫相机的偏流角计算与补偿[J].上海航天,2006,6:10-13.
    [32]陈梁,刘春霞,龚惠兴.极轨星载TDI CCD相机的像移及恢复算法研究[J].遥感学报,2002,6(1):35-39.
    [33]周庆才,王志坚,王春艳.基于稳像理论的空间光学遥感像移补偿的分析和计算[J].光学学报,2004,24(3):413-417.
    [34]L.J.Nelson. Space imaging, Earth watch, and the satellite picture in1997[C].Adv Image,1997,12(2):61-63.
    [35]Savvas,G. MTF Simulation including transmittance effects and experimentalresults of charge coupled images[J]. IEEE Transactions on Electron Devices,197825(2):145-149.
    [36]Simulation of dynamic MTF calibration system for an earth observation satellite
    [C]. Proc. IEEE,2005,7803:195-200.
    [37]公发全,张晓辉等.TDI CCD调制传递函数检测及评价方法研究.光学技术,2002,28(3):228-231.
    [38]颜昌翔,王家骐.航相机像移补偿计算的坐标变换方法[J].光学精密工程,2000,8(3):203-207.
    [39]Delvit J M.Leger D, Roques S. Modulation transfer function estimation fromnonspecific images[J]. Proceedings of Optical Engineering,2004,43(6):1355-1365.
    [40]Delvit J M, Leger D, Roques S. Modulation transfer function measurement usingnon specific views[J]. Proceedings of SPIE,2003,4855:34-45.
    [41]樊超,李英才,易红伟.速高比对TDICCD相机的影响分析[J].兵工学报,2007,28(7):817-821.
    [42]World’s Largest Sub-Meter High Resolution Satellite Constellation.http://www.digtalglobe.com/constellation/high_resolution_Datesheet.pdf.
    [43]冯钟葵,石丹等.法国遥感卫星的发展——从SPOT到Pleiades[J].遥感学报,2007,4:87-91.
    [44]WorldView-2Collection Capacity. http://www.digtalglobe.com/constellation/wordview-2/Capacity_Datasheet.pdf.
    [45]Pleiades: Very High Resolution Observation [M]. Presentation of SPOT IMAGEDirect Receiving Station Meeting,2004.
    [46]Pleiades Program Overview [M]. Presentation of SPOT IMAGE DirectReceiving Station Meeting,2006.
    [47]Pleiades Meeting with FFG [R]. http://www.spotimage.com.
    [48]郭强,张晓虎.地球同步轨道二维扫描像移补偿技术建模与分析[J].光学学报,2007,27(10):1779-1787.
    [49]韩诚山.胶片式空间详查相机像移补偿器研究[D].北京:中国科学院,2004,1-22.
    [50]王家骐,于平等.航天光学遥感器像移速度矢计算数学模型.光学学报.2004.24(12):1585-1588.
    [51]闫得杰.飞行器姿态对空间相机像移补偿的影响[D].北京:中国科学院,2009,6:17-20.
    [52]李伟雄,徐抒岩,闫得杰.影响偏流角估值误差的参数[J].红外与激光工程,2011,40(8):1530-1536.
    [53]闫得杰,徐抒岩,韩诚山.飞行器姿态对空间相机像移补偿的影响[J].光学精密工程,2008,16(11):2199-2203.
    [54]李伟雄,闫得杰等.空间相机地心距误差修正[J].光学精密工程,2012,20(5):225-232.
    [55]胡永力,谭南征.TDICCD相机侧摆MTF的研究[J].航天返回与遥感,2003,24(1):33-37.
    [56]何红艳,乌崇德,王小勇.侧摆对卫星及CCD相机系统参数的影响和分析[J].航天返回与遥感,2003,24(4):14-18.
    [57]翟林培,刘明,修吉宏.考虑飞机姿态角时倾斜航空相机像移速度计算[J].光学精密工程,2006,14(3):490-494.
    [58]许永森,丁亚林,田海英,等.斜视状态下航空遥感器像移的计算与补偿[J].光学精密工程,2007,15(11):1779-1783.
    [59]张丽.空间相机像移补偿方法研究[J].航天返回与遥感,2007,28(9).
    [60]刘明,吴宏圣,匡海鹏,等.航空相机的像移补偿方法及应用[J].光学精密工程,2004,12(4):30-34.
    [61]G.Montage.The one-meter catastrophe[C].Space Common.1997,13(1):1-7.
    [62]Ahmed A. Kelly.GOES image navigation and registration system[C], Proc.SPIE,1996,2812:766-776.
    [63]Jeffery J. Puschell.Janpanese advanced meterological imager:a next generationGEO imager for MTSA T-1R[C].Proc. SPIE,2002,4814:152-161.
    [64]B.M.Miller, E.Ya.Rubinovich.Image Motion Compensation at Charge-coupledDevice Photographing in Delay-Integration Mode [J].Automation and RemoteControl,2007,68(3):564-571.
    [65]Goes N.Data Book,Ver.B,February2005,CDRL PM-1-1-03Section7[EB/OL], http://goes.gsfc.nasa.gov/text/GOES-N_Databook/databook.pdf,Chapter7,No.3.
    [66]王志刚,袁建平等.高分辨率卫星遥感图像的偏流角及其补偿研究[J].宇航学报,2002,23(5):39-43.
    [67]谷松,王绍举.空间相机调焦偏流机构的设计与控制[J].光学精密工程,2009,17(3):615-620.
    [68]樊超,梁义涛,李伟等.偏流角对空间相机影响研究[J].电光与控制,2008,15(11):76-79.
    [69]杨秀彬,贺晓军等.偏流角误差对TDI CCD相机成像的影响与仿真[J].光电工程,2008,35(11):45-49.
    [70]于涛,徐抒岩等.空间相机偏流角的间歇式实时调整[J].光学精密工程.2009,17(8):1908-1913.
    [71]李友一.空间相机的偏流角控制[J].光学精密工程,2002,10(4):402-406.
    [72]匡海鹏等. TDI CCD全景航空相机前向像移补偿的数字实现方法[J]光学精密工程,2008,16(12):2465-2472.
    [73]Steven T. Jenkins and J. M. Hilbert, Line of sight stabilization using imagecompensation, SPIE Vol.1111,98~115.
    [74]Suhail Agwan, Dave Dobson, William Washkurak and Savas Chamberlain, AHigh Speed Dual Output Channel, Stage Selectable, TDI-CCD Image Sensor forHigh Resolution Applications, SPIE Vol.2415,124-133.
    [75]王昱.数字遥感影像构像质量评价方法初探[J].遥感信息,2000,(4):32-33.
    [76]马国锐,武文波,秦前清.遥感影像压缩质量评价方法[J].遥感信息,2004,3:48-52.
    [77]JANSCHEK K, TCHERNYKH V, DYBLENKO S. Integrated camera motioncompensation by real time image motion tracking and imagedeconvolution[C].Proceedings of the2005IEEE/ASME International Conference onAdvanced Intelligent Mechatronics,2005:628-632.
    [78]马天波,郭永飞等.科学级TDICCD相机的行频精度[J].光学精密工程,2010,18(9):2028-2035.
    [79] OLSON G. Image motion compensation with frame transfer CCD′s[C].Proceedings of SPIE,2002,4567:153-160.
    [80]何红艳,王小勇.卫星变轨对航天扫描式TDICCD相机系统参数的影响[J].航天返回与遥感,2007,28(1):30-32.
    [81]龙夫年,张旺.卫星姿态精度对TDI CCD相机的影响[J].哈尔滨工业大学学报,2002,34(3):382-384.
    [82]Holst G C. CCD Arrays, Cameras, and Displays:2nd ed [M]. USA:JCDPublishing, Willmann-Bell,1998.
    [83]毛英泰.误差理论与精度分析[M].国防工业出版社,1982,6:94-101.
    [84]Boreman. Modulation Transfer Function in Optical and Electro-OpticalSystems[M].SPIE,2001.
    [85]王家骐.第二代CCD详查相机论证报告.中国科学院长春光学精密机械研究所内部资料.1996,12.
    [86]何凤霞,张翠莲.蒙特卡罗方法的应用及算例[J].华北电力大学学报,2005,32(3):110-112.
    [87]朱本仁.蒙特卡罗方法引论[M].济南:山东大学出版社,1986.
    [88]于平,吴伟平.空间光学遥感器偏流机构控制单元的闭环测试实时模拟检测[J].光学精密工程,2009,17(11):2800:2805.
    [89]王栋,胡君,徐抒岩等.航天光学遥感器实时调偏流闭环仿真测试方法[P].中国专利,201010156789.1,2010-04-25.
    [90]DALSA. How TDI Works. DALSA1996-1997DATABOOK,1997.
    [91]Vinay K,Ingle, John G, Proakis. Digital Processing Using MATLAB[M].Internation Thomson Publishing Inc,1996.
    [92]Alfred s McEwen, Maria E Banks, etc. The High Resolution Imaging ScienceExperment (HRISE) during MRO’s Primary Science Phase [J]. Icarus,2010,37(2):13-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700