准分子激光器性能测试技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为微电子光刻系统中的关键设备,193nm准分子激光器输出光谱、能量、光束参数以及寿命、稳定性与光刻系统成本,光刻质量、成品率、效率和设备利用率等密切相关,需要在投入使用前进行准确测试评估和使用过程中的实时监测控制。因此,本文针对准分子激光器输出各参数的高精度测量方法开展深入研究,提出测试方案,对测试装置的测量精度进行分析,并通过实验和数据处理方法对测试方案的可行性进行验证。
     准分子激光器输出光谱特性测试方面,本文通过高分辨率中阶梯光栅光谱仪对准分子激光器输出光谱进行测量,测量精度达到0.02pm(FWHM)和0.1pm(E95),并应用数学反卷积方法有效减小了光谱仪器衍射元件、有限孔径、系统像差等因素引起的光谱展宽。采用Fe原子灯在193nm附近的谱线对光谱测量仪器标定并在测量过程中实时监测由于环境和机械波动引起的波长漂移以修正绝对中心波长测量结果,使准分子激光器输出中心波长测量精度优于0.1pm,波长稳定性测量精度达0.01pm。另外提出一种高重复频率脉冲激光器单脉冲提取装置和同步时序控制方法,通过理论和实验验证了该方法的可行性。将该装置应用于准分子激光器输出光谱参数测量中,消除了由于多脉冲叠加对谱宽和波长稳定性测量结果的影响。
     通过热释电能量计对光电探测器标定实现准分子激光器输出单脉冲能量、能量稳定性、剂量能量稳定性以及积分脉冲宽度的实时采集与分析。实验分析不同测试条件对能量和脉宽测量结果的影响。最终确定测试方案,即采用楔形镜或棱镜衰减器件对准分子激光器输出激光能量衰减,由聚焦透镜经散射元件后照射到光电探测器接收面,通过高速采集卡采集光电探测器信号,积分能量由能量计标定,最终获得准分子激光器输出能量参数。
     基于国际标准ISO11146和ISO11670提出的测量方法对准分子激光器输出光束特性进行了测量,采用大面阵紫外光束诊断相机和紫外可见荧光转换器两种方法对激光器输出光束近场光斑尺寸和位置稳定性进行测量,比较测量结果,结果表明采用紫外光束诊断相机直接测量方法更能反应准分子激光器输出光束特性。本文采用布鲁斯特窗法和Rochon棱镜偏振器法测量准分子激光器输出光束偏振度,采用氟化钙基片作为布鲁斯特窗材料,通过实验和数据处理对两种方法的测量精度进行分析,两种方法的偏振度测量精度优于1%。
     采用透过率法、激光量热法和荧光光谱法对紫外级熔石英和氟化钙材料在193nm激光照射下的性能稳定性进行测量分析。通过ArF激光量热计测量不同激光重复频率时,不同厚度熔石英样品吸收随能量密度变化关系以及同一样品在不同能量密度时吸收损耗随激光重复频率变化关系,建立吸收模型,得到样品表面吸收、有效单、双光子吸收系数随激光频率变化关系以及与激光器重复频率无关的熔石英材料在193nm的单、双光子吸收系数。另外应用激光量热法测量了氟化钙样品吸收随能量密度变化关系,计算得到氟化钙样品在193nm激光照射下的有效线性吸收项和有效非线性吸收系数。
     通过荧光光谱仪测量紫外级熔石英和氟化钙材料在193nm激光照射下激发荧光特性。结合其吸收损耗随激光频率和能量密度变化关系以及国内外在该领域研究现状简单分析了紫外级熔石英在193nm激光照射下与吸收有关的缺陷产生变化过程。给出紫外级熔石英材料在193nm激光长时间和高能量照射下性能下降的原因,为发展高性能深紫外光学元件提供有用信息。
As the key equipment of microlithography system, some properties of the excimer lasercentered at193nm are closely related to the Cost of Ownership, lithographic quality,yield, throughput and equipment utilization of lithography, which need to be measuredprecisely before being used and monitored during operation. Therefore, high-precisionmeasurement methods for the characterization of excimer laser have been performed inthis paper. And the accuracy as well as feasibility of the measurement equipments hasbeen analysis through experiments and data processing.
     The spectra of excimer laser are measured with a high-resolution Echelle spectrometer,the resolution of the spectrometer is0.02pm (FWHM) and0.1pm (E95), which isenhanced by using deconvolution. In addition, the accuracy of absolute centerwavelength and stability are better than0.1and0.01respectively aftercalibration with the spectra of Fe lamp. In order to obtain the spectrum of one pulse ofhigh repetition rate excimer laser, an equipment and synchronization control method isproposed.
     The pulse energy, energy stability, dose energy stability and integrated pulse length aremeasured with photodetector, which is calibrated by using pyroelectric energymeter.According to the measurement results in different test conditions, a test program isproposed.
     The beam characterizations of excimer laser are analyzed based on the internationalstandards ISO11146and ISO11670. The beam width and position stability aremeasured with large area UV camera and UV to visible fluorescence converter. Theresults indicate that the method by using UV camera is better than another method. Thepolarization of excimer laser is measured with Brewster window method and Rochonprism polarizer. And the Brewster window is Calcium fluoride substrate in this paper.The measurement accuracy of both methods is better than1%.
     Transmission measurement, laser calorimetry technique and fluorescence measurement are used for analysis of durability of synthetic fused silica and CaF2at193nmirradiation. Repetition rate-dependent absorptance measurements of synthetic fusedsilica were performed with an ArF laser calorimeter. By measuring the laserfluence-dependent absorptance of fused silica samples with different thickness indifferent repetition rate to separate the surface absorption and bulk absorption, and thesurface absorptance, effective single-and two-photon absorption coefficients weredetermined in different repetition rate. In addition, the repetition independent single-and two-photon absorption coefficients are obtained by measuring therepetition-dependent absorptance of fused silica sample with different laser fluence. Theeffective linear absorptance and nonlinear absorption coefficient of CaF2are alsodetermined with an ArF laser calorimeter.
     193nm laser induced fluorescence of fused silica and CaF2materials are measured byusing fluorescence spectrometer. Combine with the aborption measurement results andsome published papers, the reasons and mechanisms of absorption of fused silica underlong term or high energy irradiation at193nm have been given. These results provideuseful information for the development of high performance deep UV components.
引文
[1]. D. Basting, K. Pippert and U. Stamm, History and future prospects of excimer lasers [J]. Proc.SPIE,2002,4426:25-34
    [2].刘晶儒.准分子激光技术及应用[M].北京:国防工业出版社,2009年,176-233
    [3]. D. Basting. Excimer laser technology: laser sources, optics, systems and applications [M].G ttingen: Lambda Physik AG,2001,97-134
    [4]. D. Basting, G. Marowsky. Excimer laser technology [M]. Germany: Springer,2010,89-117
    [5].巩岩,张巍,193nm光刻曝光系统的现状及发展[J],中国光学与应用光学,2008,1(1):25-35
    [6]. P. C. Oh, V. Fleurov, T. Hofmann et al.. Production-ready4kHz ArF laser for193nmlithography [J]. Proc. SPIE,2002,4691:1753-1760
    [7]. V. Fleurov et al, Dual chamber ultra line-narrowed excimer light source for193nm lithography[J]. Proc. SPIE,2003,5040:1694-1703
    [8]. T. Ishihara, H.Besaucele, C. A. Maley et al.. Long-term reliable operation of a MOPA-basedArF light source for microlithography [J]. Proc. SPIE,2004,5377:1858-1865
    [9]. T. Ishihara, R. Rafac, W. J. Dunstan et al.. XLA200: the third-generation ArF MOPA lightsource for immersion lithography [J]. Proc. SPIE,2005,5754:773-779
    [10].W. D. Gillespie, T. Ishihara, W. N. Partlo et al..6kHz MOPA light source for193nmimmersion lithography [J]. Proc. SPIE,2005,5754:1293-1303
    [11].F. Trintchouk, T. Ishihara, W. Gillespie et al.. XLA300: the fourth-generation ArF MOPA lightsource for immersion lithography [J]. Proc. SPIE,2006,6154:615423
    [12].D.J.W.Brown, P.O’Keeffe, V.B.Fleurov et al.. XLR500i: recirculating ring ArF light sourcefor immersion lithography [J]. Proc. SPIE,2007,6520:652020
    [13].V.B.Fleurov, S. Rokitski, R. Bergstedt et al.. XLR600i:recirculating ring ArF light source fordouble patterning immersion lithography [J]. Proc. SPIE,2008,6924:69241R
    [14].S. Rokitski; V. Fleurov; R. Bergstedt et al.. Enabling High Volume Manufacturing of DoublePatterning Immersion Lithography with the XLR600ix ArF Light Source [J]. Proc. SPIE,2009,7274:72743O
    [15].S. Rokitski, T. Ishihara, R. Rao et al.. Flexible60-90W ArF light source for double patterningimmersion lithography in high volume manufacturing, Proc.SPIE,2009,7520:752013
    [16].R. Rokitski; T. Ishihara; R. Rao, High reliability ArF light source for double patterningimmersion lithography [J]. Proc. SPIE,2010,7640:76401Q
    [17].T. Enami,O. Wakabayashi, K. Ishii et al.. Highly durable, low CoO, mass production versionof2kHz ArF excimer laser for DUV lithography [J]. Proc. SPIE,2000,4000:1435-1444
    [18].T. Saito, T. Matsunaga, K. Mitsuhashi et al.. Ultra-narrow bandwidth4-kHz ArF excimer laserfor193nm lithography [J]. Proc. SPIE,2001,4346:1229-1237
    [19].K. Kakizaki, T. Matsunaga, Y. Sasaki et al.. Ultra-high-repetition-rate ArF excimer laser withlong pulse duration for193nm lithography [J]. Proc. SPIE,2001,4346:1210-1218
    [20].T. Saito, T. Suzuki, M. Yoshina et al.. Ultra line-narrowed ArF excimer laser G42A forsub-90-nm lithography generation [J]. Proc. SPIE,2003,5040:1704-1711
    [21].S. Tanaka, H. Tsushima, T. Nakaike et al.. GT40A: durable45-W ArF injection-lock laser lightsource for dry/immersion lithography [J]. Proc. SPIE,2006,6154:615420
    [22].H. Watanabe, S. Komae, S. Tanaka et al.. Reliable high power injection locked6kHz60Wlaser for ArF immersion lithography [J]. Proc. SPIE,2007,6520:652031
    [23].H. Tsushima, M. Yoshino, T. Ohta et al.. Reliability report of high power injection lock laserlight source for double exposure and double patterning ArF immersion lithography [J]. Proc. SPIE,2009,7274:72743L
    [24].K. Wakana, H.Tsushima, S. Matsumoto et al.. Optical performance of laser light source forArF immersion double patterning lithography tool [J]. Proc. SPIE,2009,7274:72743J
    [25].M. Yoshino, H. Nakarai, T. Ohta et al.. High-power and high-energy stability injection locklaser light source for double exposure or double patterning ArF immersion lithography [J]. Proc.SPIE,2008,6924:6924-199
    [26].M. Yoshino, H.Umeda, H. Tsushima et al.. Flexible and reliable high power injection lockedlaser for double exposure and double patterning ArF immersion lithography, Proc. SPIE,2010,7640:7640-80
    [27].U. Stamm, J. Kleinschmidt, P. Heist et al.. ArF excimer laser for193nm lithography [J]. Proc.SPIE,3051:868-873
    [28].U. Stamm, R. Patzel, J. Kleinschmidt et al.. ArF excimer laser for193nm lithography [J]. Proc.SPIE,3334:1010-1013
    [29].U. Samm, R. Paetzel, I. Berger et al.. High repetition rate excimer laser for DUV lithography[J]. Proc. SPIE,1999,3679:1050-1057
    [30].R. Patzel, K. Vogler, H. S. Albrecht et al.. High power193nm excimer lasers for DUVlithography [J]. Proc. SPIE,2001,4346:577-584
    [31].W. Zschocke, H.-S. Albrecht, T. Schroder, et al.. High repetition rate excimer lasers for193nmlithography [J]. Proc. SPIE,2002,4691:1722-1733
    [32].R. Paetzel, H. S. Albrecht, P. Lokai et al, Excimer lasers for super-high NA193nm lithography[J]. Proc. SPIE,2003,5040:1665-1671
    [33].S. V. Govorkov, A. O. Wiessner, Gongxue Hua et al.. Sub-0.25pm,50W amplified excimerlaser system for193nm lithography [J]. Proc. SPIE,2004,5377:1787-1796
    [34].K. O’Brien, Rui Jiang, N. Han, High-Range Laser Light Bandwidth Measurement and Tuning[J]. Proc. SPIE,2011,7973:797326
    [35].H.Umeda, H.Tsushima, H.Watanabe et al.. Ecology and high-durability injection lockedlaser with flexible power for double-patterning ArF immersion lithography [J]. Proc. SPIE,2011,7973:7973-55
    [36].P. Lokai, T. Schroeder, J. Kleinschmidt et al.. Absolute wavelength calibration of lithographylaser using multiple element or tandem see through hollow cathode lamp, United States Patent, US7006541B2,2006
    [37].R. L. Spangler, J. P. Lipcon, J.A. Rule et al.. Laser spectral engineering for lithographicprocess, United States Patent, US7298770B2,2007
    [38].L. Herbst, I. Klaft, T. Wenzel et al.. High-repetition rate excimer laser for micromachining [J].Proc. SPIE,2002,4971:4971-16
    [39].O. Wakabayashi, T. Enami, T. Ohta et al.. Billion level durable ArF excimer laser with highlystable energy [J]. Proc. SPIE,1999,3679:1058-1068
    [40].T. Cacouris, R. Rao, R. Rokitski et al.. Advanced light source technologies that enablehigh-volume manufacturing of DUV lithography extensions, Proc. SPIE,2012,8326:83261G
    [41].W.J. Dunstan, T. Jacques, R. J. Rafac et al.. Active spectral control of DUV light sources forOPE minimization [J]. Proc. SPIE,2006,6154:61542J
    [42].K. Lai, I. Lalovic, R. Fair et al.. Understanding chromatic aberration impacts on lithographicimaging [J]. Microlithography, Microfabrication and Microsystems,2003,2(2),105-111
    [43].A. Kroyan, I. Lalovic, N. R. Farrar, Contribution of polychromatic illumination to opticalproximity effects in the context of Deep-UV lithography [J]. Proc. SPIE,2002,4562:1112-1120
    [44].A. Kroyan, I. Lalovic and N. R. Farrar, Effects of95%integral vs. FWHM bandwidthspecifications on lithographic imaging [J]. Proc. SPIE,2001,4346:1244-1253
    [45].A. Kroyan, J. J. Bendik, O. Semprez et al.. Modeling the effects of excimer laser bandwidth onlithographic performance [J]. Proc. SPIE,2000,4000:658-664
    [46].U. Iessi, M. Kupers, E. D. Chiaraet al.. Laser bandwidth effect on overlay budget and imagingfor the45nm and32nm technology nodes with immersion lithography [J]. Proc. SPIE,2010,7640:76402B
    [47].K. Huggins, T. Tsuyoshi, M. Ong et al.. Effects of laser bandwidth on OPE in a modernlithography tool [J]. Proc. SPIE,(2006,6154:61540Z
    [48].R. C. Peng, H. J. Lee, J. Lin et al.. Laser Spectrum Requirements for Tight CD Control atAdvanced Logic Technology Nodes [J]. Proc. SPIE,2010,7640:76402C
    [49].T. Brunner, D. Corliss, S. Butt et al.. Laser bandwidth and other sources of focus blur inlithography [J]. Proc. SPIE,2006,6154:61540V
    [50].J. Pan, J. Viatella, P. Das, Y. Yamasaki, Performance and reliability of beam delivery unit foradvanced lithography [J]. Proc. SPIE,2004,5377:1894-1901
    [51].P. A. Jansson, R. H. Hunt and E. K. Plyler, Resolution enhancement of spectra [J], Journal ofthe optical society of America,1970,60(5):596-599
    [52].G. Horlick, Resolution enhancement of line emission spectra by deconvolution [J], Appliedspectroscopy,1972,26(3):395-399
    [53].P. Sievaenen, Resolution Enhancement of Raman Spectra of Solids Using True LinearPrediction and Deconvolution [J]. Appl. Spectrosc.,1999,53(2):144~149.
    [54].T. Nakaike, O. Wakabayashi, T. Suzuki et al.. Spectral Metrologies for Ultra-Line-NarrowedF2laser[J]. Proc. SPIE,2002,4691:1714~1721.
    [55].D. K. Buslov, N. A. Nikonenko, N. I. Sushko and R. G. Zhbankov. Resolution Enhancementin IR Spectra of Carbohydrates by the Deconvolution Method and Comparison of the Results withLow-Temperature Spectra [J]. Appl. Spectrosc.,2000,54(11):1651~1658.
    [56].V. A. Lorenz-Fonfria, E. Padros. Maximum Entropy Deconvolution of Infrared Spectra: Useof a Novel Entropy Expression Without Sign Restriction [J]. Appl. Spectrosc.,2005,59(4):474~486.
    [57].Yuan Jinghe. Blind deconvolution of x-ray diffraction profiles by using high-order statistics[J]. Opt. Eng.,2009,48(7):076501-1~076501-5.
    [58].N. Zorina, G. Revalde, R. Disch. Deconvolution of the mercury253.7nm spectral line shapefor the use in absorption spectroscopy [J]. Proc. SPIE,2008,7142:71420J-1~71420J-9.
    [59].Yuan Jinghe, Hu Ziqiang, Sun Jinzuo. High-order cumulant-based blind deconvolution ofRaman spectra [J]. Appl. Opt.,2005,44(35):7595~7601.
    [60].T. K Nadler, S. T. Mcdaniel, M. O. Westerhaus et al.. Deconvolution of near-infrared spectra[J], Applied spectroscopy,1989,43(8):1354-1358
    [61].李正直.重迭光谱线形的解卷积方法[J].光谱学与光谱分析,1985,5(3):1~7.
    [62].邹谋炎.反卷积和信号复原[M].北京:国防工业出版社,2001.91~157.
    [63].P. A. Jansson. Deconvolution of Images and Spectra [M]. Second Edition, New York:Academic Press,1997.76~181.
    [64].V. A. Lórenz-Fonfría, E. Padrós. Method for the Estimation of the Mean LorentzianBandwidth in Spectra Composed of an Unknown Number of Highly Overlapped Bands [J]. Appl.Spectrosc.,2008,62(6):689~700.
    [65].J. Katrasnik, F. Pernus, B. Likar. Deconvolution in Acousto-Optical Tunable FilterSpectrometry [J]. Appl. Spectrosc.,2010,64(11):1265~1273.
    [66].H. J. Bowley, S. M. H. Collin, D. L. Gerrard et al.. The fourier self-deconvolution of Ramanspectra [J], Applied spectroscopy,1985,39(6):1004-1009
    [67].Jinghe Yuan, Ziqiang Hu, Spectroscopic blind deconvolution using a constrained high-ordercumulant algorithm [J], Optical Engineering,2006,45(9):093603
    [68].钱霖,李正直,许国梁.消卷积和自消卷积方法在红外光谱测量中的应用[J].光学学报,1984,4(6):546~552.
    [69].G. W. Halsey, D. E. Jennings and W. E. Blass. Deconvolution of diode-laser spectra [J].J.Opt.Soc.Am.B,1985,2(5):837~841.
    [70].V.A. Lorenz-fonfria, E. Padros, Maximum entropy deconvolution of infrared spectra: use of anovel entropy expression without sign restriction [J], Applied spectroscopy,2005,59(4):474-486
    [71].O. P. Sievanen, Resolution enhancement of Raman spectra of solids using true linearprediction and deconvolution [J], Applied spectroscopy,1999,53(2):144-149
    [72].J. Pliva, A.S. Pine and P.D. Willson, Deconvolution of infrared spectra beyond the Dopplerlimit [J], Applied optics,1980,19(11):1833-1837
    [73].D. K. Buslov, N. A. Nikonenko. Regularized Method of Spectral Curve Deconvolution [J].Appl. Spectrosc.,1997,51(5):666~672.
    [74].J. K. Kauppine, D. J. Moffatt, H. H. Mantsch, and D. G. Cameron. Fourier Self-Deconvolution:A Method for Resolving Intrinsically Overlapped Bands [J]. Appl. Spectrosc.,1981,35(3):271~276.
    [75].T. Nakaike, O. Wakabayashi, T. Suzuki et al.. Spectral metrologies for Ultra-line-narrowed F2laser [J]. Proc. SPIE,2002,4691:1714-1721
    [76].O. Wakabayashi, J. Sakuma, T. Suzuki T et al.. Spectral Measurement of Ultra Line-NarrowedF2Laser [J]. Proc. SPIE,2001,4346:1066~1073.
    [77].T. Kumazaki, O. Wakabayashi, R. Nohdomi et al.. Spectral dynamics analysis ofultra-line-narrowed F2laser [J]. Proc. SPIE,2003,5040:1363-1370
    [78].T. Suzuki, H. Kubo, T. Suganuma et al.. High-resolution multi grating spectrometer for highquality deep UV light source production [J]. Proc. SPIE,2001,4346:1254-1261
    [79].I. Lalovic, N. Farrar et al,“RELAX: Resolution Enhancement by Laser-spectrum AdjustedExposure”, Proc. SPIE,2005,5754
    [80].林中,范世福,光谱仪器学[M],机械工业出版社,1989,第十章
    [81].I. E. Alex, G.P. Gamaralalage, D.T. Jeremy, Palash P.D. Novel metrology for measuringspectral purity of KrF lasers for deep UV lithography [J]. Proc. SPIE,1999,3677:611-620
    [82].A. I. Ershov, Method and device for spectral measurements of laser beam, United States Patent,US6320663B1,2001
    [83].R. J. Rafac, Overcoming limitations of etalon spectrometers used for spectral metrology ofDUV excimer light sources [J]. Proc. SPIE,2004,5377:846-853
    [84].H. K.Toru, S.Takeshi, Y. Toshio et al.. High-resolution Multi Grating Spectrometer for HighQuality Deep UV Light Source Production [J]. Proc. SPIE,2001,4346:1254-1261
    [85].H.Tanaka, Y.Iwata, O.Wakabayashi et al.,193nm coherent light source and evaluation of ArFoptics [J], The Japan Society of Applied Physics,46th meeting (in Japanese)28p-YB-2,1999
    [86].H. Becker-Ross, S. Florek, M. Okruss, High-resoulution littrow spectrometer and method forthe quasi-simultaneous determination of a wavelength and a line profile, United States Patent, US6717670B2,2004.4
    [87].A. I. Ershov, G. G. Padmabandu, J. Tyler et al.. Novel metrology for measuring spectral purityof KrF lasers for deep UV lithography [J]. Proc. SPIE,1999,3677
    [88].A. Ershov, S. Smith, Challenges of laser spectrum metrology in248and193nm lithography[J]. Proc. SPIE,2001,4346:1219-1229
    [89].R.L.Sandstrom, A. I. Ershov, W.N.Partlo et al.. High resolution spectral measurement device,United States Patent, US6713770B2,2004
    [90].P. P. Das, R. L. Sandstrom, I. Fomenkov, Wavelength reference for excimer laser, UnitedStates Patent,5978391,1999
    [91].雷玉堂,光电检测技术[M],中国计量出版社,2009
    [92].侯识华,宋世庚,陶明德,热释电材料及其应用[J], Electronic components&Materials,2000,119(16):26-30
    [93].E. H. Putley, Semiconductors and Semimetal,1970,5:259
    [94].H.-S. Albrecht, U. Rebhan. Measurement and evaluation methods for beam characterization ofcommercial excimer lasers [J]. Proc. SPIE,1996,2870:354-359
    [95].贾亚青,激光能量计标准装置的研究[J],中国计量,2010.11,80-81
    [96].L. Zhang, B. B. Shao, P. L. Yang et al.. Diagnosis of high-repetition-rate pulse laser withpyroelectric detector, Chinese Optics,2011,4(4):404-410
    [97].ISO/DIS11146-I:(2005), Lasers and laser-related equipment—Test methods for laser beamwidths, divergence angles and beam propagation ratios—Part1: Stigmatic and simple astigmaticbeams
    [98].ISO/DIS11670:(2003), Lasers and laser-related equipment—Test methods for laser beamparameters—Beam positional stability
    [99].Yongfa Fan, A. Bourov, M. Smith, Effects of beam pointing instability on two-beaminterferometric lithography [J]. Proc. SPIE,2006,6154:61542L
    [100]. K. Mann et al,"Monitoring and shaping of excimerlaser beam profiles [J]. Proc. SPIE,1992,1834:184,
    [101]. K. Mann, J. Ohlenbusch and V.Westphal, Characterization of excimer laser beamparameters [J]. Proc. SPIE,1996,2870:367-377
    [102]. H.-S. Albrecht, U. Rebhan, Measurement and evaluation methods for beamcharacterization of commercial excimer lasers [J]. Proc. SPIE,2870,354-359
    [103]. R. Sandstromth, A. Ershov, V. Fleurov, MOPA laser architecture for high power lithographylight sources, SPIE27Conference on Microlithography, March3-8,2002, Santa Clara, CA, USA
    [104]. W. N. Partlo, Laser lithography system with improved bandwidth control, United StatesPatent, US7899095B2,2011
    [105]. S. V. Govorkov, A.O.W.Wiessner, T. V.Misyuryaev et al.. Bandwidth limited and longpulse master oscillator power oscillator laser systems, United States Patent, US7418022B2,2008
    [106]. T. Suzuki, K. Kakizaki, T. Matsunaga et al.. Ultra line narrowed injection lock laser lightsource for higher NA ArF immersion lithography tool [J]. Proc. SPIE,2007,6520:652024
    [107]. T. Kumazaki, T. Suzuki, S. Tanaka et al.. Reliable High Power Injection Locked6kHz60W Laser for ArF Immersion Lithography [J]. Proc. SPIE,2008,6924:69242R
    [108]. T. Saito, S. Ito, A. Tada, Long lifetime operation of an ArF-excimer laser [J], Appl. Phys.B,1996,63:229-235
    [109]. T. Enami, T. Ohta, H. Tanaka et al..1kHz5W ArF excimer laser for microlithographywith highly narrow0.7pm bandwidth and issues on durability relate to optical damage [J]. Proc.SPIE,1998,3578:31-42
    [110]. C. Mühlig, H. Stafast and W. Triebel, Generation and annealing of defencts in virginfused silica(type III) upon ArF laser irradiation: Transmission measurements and kinetic model [J],Journal of Non-Crystalline Solids,2008,354:25-31
    [111]. J. Moll, P. M. Schermerhorn, Excimer laser induced absorption in fused silica [J]. Proc.SPIE,1999,3679:1129-1136
    [112]. J. Moll. ArF laser induced absorption in fused silica exposed to low fluence at2000Hz [J].Proc. SPIE,2001,4346:1272-1279
    [113]. J. Moll, P. Dewa, Laser resistance of fused silica for microlithography: experiments andmodels [J]. Proc. SPIE,2002,4691:1734-1741
    [114]. C. Mühlig, H. Stafast, W. Triebel et al.. Influence of Na-related defencts on DUVnonlinear absorption in CaF2: Nanosecond versus femtosecond laser pulses [J]. Proc. SPIE,2009,7504:75040I-1-12
    [115]. C. Mühlig, W. Triebel, H. Stafast and M. Letz, Influence of Na-related defects on ArFlaser absorption in CaF2[J], Applied physics B,2010,99:525-533
    [116]. W. B. Jackson, N. M. Amer, A. C. Boccara. Photothermal deflection spectroscopy anddetection [J]. Appl. Opt.,1981,20(8):1333-1344.
    [117]. W. Triebel, M. Guntau, C. Mühlig et al.. Time resolved investigation of pulse laserinduced defects in optical glasses of high UV-transmission [J], Glass Sci. Technol.,1998,71C:67-72
    [118]. C. Mühlig, W. Triebel, S. Bark-Zollmann et al.. In situ diagnostics of pulse laser-induceddefects in DUV transparent fused silica glasses [J], Nuclear Instruments and Methods in PhysicsResearch B,2000,166-167:698-703
    [119]. W. Triebel, S. Bark-Zollmann and C. Mühlig, Evaluation of fused silica for DUV laserapplications by short time diagnostics [J]. Proc. SPIE,2000,4103:1-11
    [120]. M. Guntau, W. Triebel, Novel method to measure bulk absorption in optically transparentmaterials [J], Rev. Sci. Instrum.,2000,71:2279-2282
    [121]. C. Mühlig, S. Kufert, S. Bark-Zollmann et al.. Measuring small absorption losses of laserpulses in fused silica by a pump and probe technique [J]. Proc. SPIE,2001,4449:13-21
    [122]. W. Triebel, C. Mühlig and S. Kufert, Application of the laser induced deflection (LID)technique for low absorption measurements in bulk materials and coatings [J]. Proc. SPIE,2005,5965:59651J-1-10
    [123]. C. Mühlig, W. Triebel, S. Kufert et al.. Direct measurements of residual absorption influoridic thin films and optical materials for DUV laser applications [J]. Proc. SPIE,2007,6403:640317-1-9
    [124]. C. Mühlig, W. Triebel, S. Kufert and S. Bublitz, Laser induced fluorescence andabsorption measurement for DUV optical thin film characterization [J]. Proc. SPIE,2008,7101:71011R-1-9
    [125]. C. Mühlig, W. Triebel and S. Kufert, Coefficients of stationary ArF laser pulse absorptionin fused silica(type III)[J], Journal of Non-Crystalline Solids,2007,353:542-545
    [126]. C. Mühlig, S. Bublitz and S. Kufert, Nonlinear absorption in single LaF3and MgF2layers at193nm measured by surface sensitive laser induced deflection technique [J], Appliedoptics,2009,48(35):6781-6787
    [127]. C. Mühlig, S. Kufert, W. Triebel et al.. Absorption measurement of DUV opticalmaterials at193nm and157nm by laser induced deflection [J]. Proc. SPIE,2003,5188:96-105
    [128]. C. Mühlig, S. Kufert, W. Triebel et al.. Bulk absorption measurements of highlytransparent DUV/VUV optical materials [J]. Proc. SPIE,2004,5457:701-712
    [129]. D. Sch nfeld, U. Klett, C. Mühlig et al.. Measurement of initial absorption of fused silicaat193nm using laser induced deflection technique(LID)[J]. Proc. SPIE,2007,6720:67201A-1-8
    [130]. C. Mühlig, S. Kufert, W. Triebel et al.. Simultaneous measurement of bulk absorption andfluorescence in fused silica upon ArF laser irradiation [J]. Proc. SPIE,2002,4779:107-115
    [131]. C. Mühlig, W. Triebel, S. Kufert and S. Bublitz, Characterization of low losses in opticalthin films and materials [J], Applied Optics,2008,47(13): C135-C142
    [132]. C. Mühlig, W. Triebel, S. Kufert and S. Bublitz, Accelerated life time testing of fusedsilica upon ArF laser irradiation [J]. Proc. SPIE,7132(2008),71321G-1-9
    [133]. C. Mühlig, W. Triebel and S. Kufert, Rapid lifetime testing of fused silica for DUV laserapplications [J], Journal of Non-Crystalline Solids,2011,357:1981-1984
    [134]. C. Mühlig, W. Triebel, ArF laser induced pulse absorption in fused silica(type III):modeling the fluence and repetition rate dependence [J], Journal of Non-Crystalline Solids,2009,355:1080-1084
    [135]. W. Triebel, Characterization of DUV optical materials by direct absorption measurementsand LIF [J]. Proc. SPIE,2005,5991:59911-1-16
    [136]. A. Burkert, C. Mühlig, W. Triebel et al.. Investigating the ArF laser stability of CaF2atelevated fluencies [J]. Proc. SPIE,2005,5878:58780E-1-8
    [137].王艳茹,光学元件吸收损耗和热变形检测技术研究,中国科学院光电技术研究所,2011.
    [138]. S. M. Lima, J. A. Sampaio, T. Catunda, A. C. Bento, L. C. M. Miranda and M. L. Baesso.Mode-mismatched thermal lens spectrometry for thermo-optical properties measurement in opticalglasses: a review [J]. Journal of Non-Crystalline Solids,2000,273:215-227.
    [139]. J. Moreau, V. Loriette. Confocal thermal-lens microscope [J]. Opt. Lett.,2004,29(13):1488-1490.
    [140]. N. Ragozina, S. Heissler, W. Faubel, U. Pyell. Near-Field Thermal Lens Detection at257nm as an Alternative to Absorption Spectrometric Detection in Combination with ElectromigrativeSeparation Techniques [J]. Anal. Chem.,2002,74:4480-4487.
    [141]. J. Georges. Investigation of the diffusion coefficient of polymers and micelles in aqueoussolutions using the Soret effect in cw-laser thermal lens spectrometry [J]. Spectro chimica Acta PartA,2003,59:519-524.
    [142]. M. L. Baesso, A. C. Bento, A. A. Andrade, J. A. Sampaio, E. Pecoraro, L. A. O. Nanes, T.Catunda, S. Gama. Absolute thermal lens method to determine fluorescence quantum efficiency andconcentration quenching of solids [J]. Phys. Rev. B,1998,57(17):10545-10549.
    [143]. J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery. Longtransient effects in lasers with inserted liquid samples [J]. J. Appl. Phys.,1965,36:3-8.
    [144]. C. Hu and J. R. Whinnery. New thermooptical measurement method and a comparisonwith other method [J]. Appl. Opt.,1973,12:72-79.
    [145]. S. J. Sheldon, L. V. Knight, and J. M. Thorne. Laser-induced thermal lens effect: a newtheoretical model [J]. Appl. Opt.,1982,20:1663-1669.
    [146]. M. Gugliotti, M. S. Baptista, L. G. Dias. Single-beam interface thermal lensing [J]. Appl.Opt.,1999,38(7):1213-1215.
    [147]. M. E. Long, R. L. Swofford, and A. C. Albrecht. Thermal lens Technique: a new methodof absorption spectroscopy [J]. Science,1976,191:183-184.
    [148]. T. Berthoud, N. Delorme, and P. Mauchien. Beam geometry optimization in dual beamthermal lensing spectrometry [J]. Anal. Chem.,1985,57:1216-1219.
    [149]. P. K. Kuo and M. Munidasa. Single-beam interferometry of a thermal bump [J]. Appl.Opt.,1990,29(36):5326-5331.
    [150]. R. Chow, J. R. Taylor, Z. L.Wu, Z. Wu, Y. Han, T. Yang. Absorptance measurements oftransmissive optical components by surface thermal lensing technique [J], Proc. SPIE,1998,3244:376-385.
    [151]. S. Doiron and A. Hache. Time evolution of reflective thermal lenses and measurement ofthermal diffusivity in bulk solids [J]. Appl. Opt.,2004,43(21):4250-4253.
    [152]. S.Martin, S.Bock, E.Welsch. Optical measurement of UV absorption in dielectriccoatings, Laser-Induced Damage in Optical Materials [J]. Proc. SPIE,2001,4347:93-101
    [153].范树海,贺洪波,邵建达,范正修,赵元安.表面热透镜薄膜吸收测量灵敏度提高方法[J].物理学报,2006,55:758-763.
    [154].胡海洋,范正修,赵强.表面热透镜技术探测光学薄膜的微弱吸收[J].光学学报,2001,21(2):150-154.
    [155]. B. Li and E. Welsch. Probe-beam diffraction in a pulsed top-hat beam thermal lens with amode-mismatched configuration [J]. Appl. Opt.,1999,38(24):5241~5249.
    [156]. B. C. Li, S. Martin, and E. Welsch. In situ measurement on ultraviolet dielectriccomponents by a pulsed top-hat beam thermal lens [J]. Appl. Opt.,2000,39(25):4690-4697.
    [157]. B.C.Li, S. Martin and E. Welsch, Pulsed top-hat beam thermal lens measurement onultraviolet dielectric coatings [J]. Optics Lett.,1999,24(20):1398-1400
    [158]. B.C.Li, S. Martin, E. Welsch et. Al.. Pulsed top-hat beam thermal lens: A simple andsensitive tool for in situ measurement on ultraviolet dielectric components [J]. Proc. SPIE,2000,3902:470-478
    [159]. Bincheng Li, Shengming Xiong, Yundong Zhang et al.. Nonlinear absorptionmeasurement of UV dielectric components by pulsed top-hat beam thermal lens [J], OpticsCommunications,2005,244:367-376
    [160]. S. Martin, S. Bock and E. Welsch, Optical measurement of UV absorption in dielectriccoatings [J]. Proc. SPIE,2001,4347:93-101
    [161]. B. C. Li, S. Martin, E. Welsch. Different conditioning and absorption behavior of fluoridematerial combinations for dielectric multilayers at193nm[J]. Proc. SPIE,2001,4347:82-92.
    [162]. D. A. Pinnow and T. C. Rich. Development of a calorimetric method for making presitionoptical absorption measurements [J]. Appl. Opt.,1973,12:984-992.
    [163]. ISO11551,1994, Test method for absorptance of optical laser components,(InternationalOrganization for Standardization, Geneva,1994).
    [164]. U. Willamowski, D. Ristau and E. Welsch, Measuring the absolute absorptance of opticallaser components [J], Applied Optics,1998,37(36):8362-8370
    [165]. U. Willamowski, T. Groβ, D. Ristau et al.. Calorimetric measurement of opticalabsorption and transmissivity with sub ppm sensitivity [J]. Proc. SPIE,2775,148-158
    [166]. H. Blaschke, M. Jupé, and D. Ristau. Absorptance measurements for the DUV spectralrange by laser calorimetry [J]. Proc. SPIE,2003,4932:467-474.
    [167]. ISO11551:2003(E), Test Method for Absorptance of Optical Laser Components,(International Organization for Standardization, Geneva,2003).
    [168]. U. Pfeifer, B. Steiger, Investigation of optical calorimetric absorptance of Suprasil andCaF2substrates in the UV range [J]. Proc. SPIE,3244,296-303
    [169]. D. Ristau and J. Ebert. Development of a thermographic laser calorimeter [J]. Appl. Opt.,1986,25:4571-4578.
    [170]. E. Eva and K. Mann. Calorimetric measurement of two-photon absorption andcolor-center formation in ultraviolet-window materials [J]. Appl. Phys. A.,1996,62:143-149.
    [171]. E. Eva, K. Mann, Calorimetric measurement of two-photon absorption and color-centerformation in ultraviolet-window materials [J], Appl. Phys. A,1996,62:143-149
    [172]. K. Mann, O. Apel and E. Eva, Charaterization of absorption and scatter losses on opticalcomponents for ArF excimer lasers [J]. Proc. SPIE,3578,614-624
    [173]. E. Eva, K. Mann, Nonlinear absorption phenomena in optical materials for UV-spectralrange [J]. Proc. SPIE,2870,476-482
    [174]. K. Mann, O. Apel, G. Eckert et al.. Testing of optical components for microlithography at193nm and157nm [J]. Proc. SPIE,2001,4346:1340-1348
    [175]. O. Apel, K. Mann, Scatter and absorption losses from DUV optics: A comparative study[J]. Proc. SPIE,2000,3902:460-469
    [176]. K. Mann, O. Apel, G. Eckert, C. G rling, U. Leinhos, B. Schafer. Testing of opticalcomponents for microlithography at193nm and157nm [C]. Proc. SPIE,2001,4346:1340-1348.
    [177]. O.Apel, K.Mann, A.Zoeller, et. Al.. Nonlinear absorption of thin Al2O3films at193nm[J], Appled Optics,2000,39(18):3165-3169
    [178]. K.Mann, G.Eckert, C.G rling et al.. Characterization of DUV and VUV opticalcomponents [J]. Proc. SPIE,2011,7973:79732B-1-6
    [179]. K. Mann, E. Eva and B. Granitza, Characterization of absorption and degradation onoptical components for high power excimer lasers [J]. Proc. SPIE,27142-11
    [180]. K. Mann, E. Eva, Characterizing the absorption and aging behavior of DUV opticalmaterial by high-resolution excimer laser calorimetry [J]. Proc. SPIE,3334,1055-1061
    [181]. K.Mann, U. Leinhos and B. Sch fer, Characterization of absorption losses in deep UVoptical materials [J]. Proc. SPIE,2007,6403:64031J-1-10
    [182]. C. G rling, U. Leinhos, K. Mann, Surface and bulk absorption in CaF2at193nm and157nm [J], Optics Communications,2005,249:319-328
    [183]. C. Ouchi, M. Hasegawa, A. Matsumoto, K. Sone. Measurement of absorptance of opticalcoatings for F2lithography [C]. Proc. SPIE,2001,4449:7-12.
    [184]. I. Balasa, H. Blaschke, L. Jensen et al.. Impact of SiO2and CaF2surface composition onthe absolute absorption at193nm [J]. Proc. SPIE,2011,8190:81901T-1-9
    [185]. K. Mann, A.Bayer, T. Miege et al.. A novel photo-thermal setup for evaluation ofabsorptance losses and thermal wavefront deformations in DUV optics [J]. Proc. SPIE,2007,6720:67201B-1-10
    [186]. K. Mann, A.Bayer, U. Leinhos et al.. A novel photo-thermal setup for determination ofabsorptance losses and wavefront deformations in DUV optics [J]. Proc. SPIE,2008,6924:69242P-1-10
    [187]. K. Mann, A.Bayer, U. Leinhos et al. Measurement of wavefront distortions in DUVoptics due to lens heating[C]. Proc. SPIE,2009,7389:73891.
    [188]. B. Schafer, J. Gloger, U. Leinhos, K. Mann. Photo-Thermal measurement of absorptancelosses, temperature induced wavefront deformation and compaction in DUV optics [J]. Opt. Exp.,2009,17(25):23025-23036.
    [189]. K.Mann, U. Leinhos, J. Sudradjat et al.. Absolute measurement of absorptance in DUVoptics from laser-induced wavefront deformations [J]. Proc. SPIE,2011,8190:81901S-1-7
    [190]. www. refractiveindex.info
    [191]. U. Griesmann, J. H. Burnett, Refractivity of nitrogen gas in the vacuum ultraviolet [J],Optics Letters,1999,24(23):1699-1701
    [192].李新阳,王春鸿,鲜浩等,一种转盘式机械快门同步时序控制方法及其应用,中国,发明专利,CN1570570A,2005年1月
    [193]. ISO11146-2, Lasers and laser-related equipment-Test methods for laser beam widths,divergence angles and beam propagation ratios-Part2: General astigmatic beams,2005(E)
    [194]. ISO11146-1Lasers and laser-related equipment-Test methods for laser beam widths,divergence angles and beam propagation ratios-Part1: Stigmatic and simple astigmatic beams,2005(E)
    [195]. ISO11670Lasers and laser–related equipment-Test methods for laser beamparameters-Beam positional stability,2003(E)
    [196]. ISO12005, Lasers and laser-related equipment-Test methods for laser beamparameters-Polarization,2003(E)
    [197]. U. Natura, O. Sohr, R. Martin et al.. Mechanisms of radiation induced defect generationin fused silica [J]. Proc. SPIE,2004,5273:155-163
    [198]. Ch. G rling, U. Leinhos, K. Mann, Self-trapped exciton luminescence and repetition ratedependence of two-photon absorption in CaF2at193nm [J]. Optics Communications,2003,216:369-378
    [199]. U. Natura, R. Martin, G. Goenna et al.. Kinetics of laser induced changes of characteristicoptical properties in Lithosil with193nm excimer laser exposure [J]. Proc. SPIE,2005,5754:1312-1319
    [200]. C.M.Smith, N.F.Borrelli and R.J.Araujo, Transient absorption in excimer-exposed silica[J], Applied Optics,2000,39(31):5778-5784
    [201]. Y. Ikuta, S. Kikugawa, M. Hirano and H. Hosono, Damage behavior of SiO2glassinduced by193nm radiation under a simulated operating mode of lithography laser [J]. Proc. SPIE,2001,4347:187-194
    [202]. L. Skuja, H.Hosono, M. Hirano and K. Kajihara, Advances in silica-based glasses for UVand vacuum UV laser optics [J]. Proc. SPIE,2003,5122:1-14
    [203]. L. Skuja, H. Hosono, M. Hirano, Laser-induced color centers in silica [J]. Proc. SPIE,2001,4347:155-168
    [204]. J. Neauport, P. Cormont, P. Legros et al.. Imaging subsurface damage of grinded fusedsilica optics by confocal fluorescence microscopy [J], Optics Express,2009,17(5):3543-3554
    [205]. J. Fournier, J. Néauport, P. Grua et al. Evidence of a green luminescence band related tosurface flaws in high purity silica glass [J], Optics Express,2010,18(21):21557-21566
    [206]. J. Fournier, J. Neauport, P. Grua, et al.. Green luminescence in silica glass: A possibleindicator of subsurface fracture [J], Appl. Phys. Lett.,2012,100:114103
    [207]. Ch. Mühlig, W. Triebel, G. T pfer et al.. Calcium fluoride for ArF laserlithography-characterization by in situ transmission and LIF measurements [J]. Proc. SPIE,2003,4932:458-466
    [208]. Ch. Mühlig, W. Triebel, G. T pfer et al.. Laser induced fluorescence of calcium fluorideupon193nm and157nm excitation [J]. Proc. SPIE,2003,5188:123-133
    [209]. C. Mühlig, H. Stafast, W. Triebel et al.. Influence of Na-related defents on DUVnonlinear absorption in CaF2: nanosecond versus femtosecond laser pulses [J]. Proc. SPIE,2009,7504:75040I

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700