微透镜阵列光学耦合扩束技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的发展,红外目标模拟器已然成为导弹半实物仿真系统的重要组成部分,该系统由干扰源、复合物镜、扩束元件以及准直物镜四部分组成。微透镜阵列扩束技术可有效地解决点源目标模拟器中多干扰细光束扩束问题。本文完成了微透镜阵列扩束系统的光学设计,分析了微透镜结构参数、位置误差等因素对系统耦合效率的影响,主要内容包括以下三个方面:
     (1)根据点源目标模拟器装置光学系统组成对现有的扩束元件网纹镜、红外传像光缆、散射元件以及微透镜阵列的扩束原理进行分析并对四种方案的可行性进行研究,最终选取微透镜阵列作为本装置的扩束元件。
     (2)根据系统指标要求设计微透镜阵列扩束系统,采用光学材料为硅的微透镜确定其单元曲率半径、单元口径及基底厚度等结构参数;分析各参数加工误差、环境温度及位置误差等因素对系统耦合效率的影响。
     (3)由于现有加工技术的局限性,加工样品存在一定的误差。本文对加工完成的样品进行检测及软件模拟以判断是否满足系统扩束及耦合效率的要求。结果表明,加工误差在一定的范围内时可以满足系统要求。
     本文研究结果研究表明微透镜阵列作为红外目标/干扰成像模拟器中的光学耦合扩束元件在原理和加工技术都是可行的。所得结果适用于该装置的后续研究工作,可为本装置的加工、装调提供数据支持。
With the development of science and technology, infrared target simulator has become an important component of the missile simulation system that consisting the interference source, compound lens, the beam expander and collimating lens of four parts. Microlens arrays as beam expanders could effectively solve the point target simulator’s multi-beam expansion problem. This paper acquired the optical design of microlens array as a beam expander, analyzed the structural parameters, position errors and other factors on the influence of the system’s coupling efficiency. The main contents include the following three aspects:
     (1) According to the point source target simulator’s optical system, four existing beam expander devices, such as the netted mirror, optical fiber image bundles, light scattering component and microlens array are introduced, and their principles of expanding beams are analyzed. The feasibility of these four devices is discussed. Finally, microlens array is selected as the beam expander component in this device.
     (2) According to the system indicators, microlens array beam expander is designed. The structure parameters of silicon microlens array: the microlens aperture, the microlens radius and substrate thickness are identified. The error factors, such as the processing error, environmental temperature and position errors, are analyzed on the influence of the system’s coupling efficiency.
     (3) As the limitations of the existing fabrication technology, there are some errors in processed sample. The processed sample is examined and simulated to determine whether it meets the requirements of beam expand and the coupling efficiency. The results show that the processing error within a certain range could meet the system requirement.
     The results of this paper show that the microlens array as point source target simulator’s coupling beam expander optical components is feasible in fabrication techniques and principle. The results could be used for the further study of the devices, and could provide data support for the devices’fabrication and alignment.
引文
[1]任淑红,吴晓燕,张庆波等.现代导弹半实物仿真技术探讨[J].飞航导弹. 2006,5:54-56.
    [2]梁书忠.光电/红外环境仿真系统研究.国防科学技术大学硕士论文[D]. 2005:1-5.
    [3]吴永刚,吕俊杰.现有红外目标模拟器方案的分析[J].系统仿真学报. 1993, 5(4):15-19.
    [4]李春明.国内外红外制导武器系统半实物仿真技术评述[J].中国航天. 1991,(10):11-15.
    [5]梁平治.红外目标模拟器.维普资讯. 1990,10-12.
    [6]刘延斌,金光.半实物仿真技术的发展现状[J].仿真技术. 2003,(1):27-32.
    [7]王子才.仿真技术发展及应用[J].中国工程科学. 2003,5(2):40-44.
    [8]王子才.仿真科学的发展及形成[J].系统仿真学报. 2005:9-12.
    [9]曾嫦娥,鱼明哲等.美陆军制导武器试验半实物仿真技术综述[J].飞行器测控学报. 2005,24(3):75-83.
    [10]曾嫦娥,鱼明哲等.美国海空军制导武器试验的半实物仿真技术[J].飞行器测控学报. 2005,24(5):63-69.
    [11]赵松庆.基于五轴转台红外目标/干扰模拟器的实施方案[J].航天兵器. 2005,(1):23-26.
    [12]李伟,杨明,王子才.仿真精度问题探讨[J].计算机仿真. 2006,26(1):118-121.
    [13]常丽莎,周起勃. DMD动态红外景象仿真系统的电路设计与研究[J].红外. 2007,28(4):28-31.
    [14]刘永昌.红外成像制导仿真技术分析[J].红外技术. 1996,18(1):9-12.
    [15]吕俊杰.红外成像制导系统目标模拟器的研究[J].系统仿真学报. 1993,6(3):9-15.
    [16]汪朝群.关于射频与红外复合寻的制导系统的半实物仿真技术[J].航天控制. 2005,23(1):76-78.
    [17]张盈,虞红.射频/红外复合制导半实物仿真技术的发展[J].现代防御技术. 2005,33(1):44-48.
    [18]许金刚.毫米波半实物仿真系统实现方式技术研究[J].西北工业大学硕士论文. 2006:1-12.
    [19]李润顺. UV_IR传像光缆在仿真中的应用[J].光电子技术与信息. 2001,14(3):24-26.
    [20]张宏俊.红外寻的制导系统半实物仿真技术研究[J].上海航天. 1998,(4):30-33.
    [21]章雪挺,顾培夫. IR/MMW双模仿真用二色波组合器设计[J].系统与设计. 2002,24(6):21-26.
    [22]张盈,虞红.用于射频红外复合制导半实物仿真系统的波束组合器[J].现代防御技术. 2006,34(1):76-80.
    [23]施蕊,李卓.红外/射频波束组合器研究[J].红外与激光工程. 2006,35(6):780-783.
    [24]马相路.光纤传像束原理及其应用[J].光机电信息. 2007:44-49.
    [25]吕俊杰,赵松庆.光缆圆弧导轨式红外目标/背景仿真装置[J].航空兵器. 1993,(3):17-22.
    [26]张琰,吕东伟.红外抗干扰半实物仿真技术研究[J].上海铁道大学学报. 1998,19(5):107-111.
    [27]马丽华,乔卫东,赵尚弘.红外制导半实物仿真及目标模拟器研究[J].计算机仿真. 2007(24):42-44.
    [28]吕布云,杨克武等. 2mAs-Se-Te玻璃红外光纤传像束[J].红外与激光工程. 2001,30(5):357-360.
    [29]杨克武,魏国盛,吴佩兰. As-S玻璃红外光纤传像束[J].应用光学. 1999,21(1):32-35.
    [30]John C. Stover, Optical Scattering Measurement And Analysis[J]. SPIE,1990,3458:155-168.
    [31]C.N.Kurtz. Transmittance Characteristics of Surface Diffuser and the Design of nearly Band-limited Binary Diffuser[J]. Opt. SPIE,1972,3368:175-188.
    [32]T. R. M. Sales. Structured microlens arrays for beam shaping[J]. Opt.Eng. 2003, 42:3084-3085.
    [33]马仕信.光学散射元件的设计与应用之研究[D].国立中央大学光电科学研究所博士论文. 2008:9-14.
    [34]H.Urey, Karlton .D. Powell. Microlens-array-based exit-pupil expander for full-color displays[J]. Applied Optics. 2005,44(23):4930-4936.
    [35]H.Urey, Karlton .D. Powell. Microlens array-based exit pupil expander for full color display applications[J]. Proc. of SPIE. 2004,5456(227-236).
    [36]庄孝磊,周芳,陈林森.微透镜阵列光扩散片特性研究与制备[J].苏州大学学报. 2009,25(4):48-52.
    [37]左保军,李润顺,张爱红.红外模拟仿真多目标的复合方法[J].光学技术. 2001,27(1):27-28.
    [38]徐明泉.光纤传像束的传光特性表征[J].光纤与电缆及其应用技术. 1997,(5):22-23.
    [39]李响,郭鹏等.光纤传像束研究进展[J].光机电信息. 2009,26(7):24-31.
    [40]P. F. Gray. A Methord of Forming Optical Diffusers of Simple Known Statistical Properties[J]. Opt. Acta 25. 1978:765-775.
    [41]E. Wolf. Coherence of Two Inferring Beams Modulated By a Uniformly Moving Diffuser[J]. Mod Opt. 2000,47:1569-1573.
    [42]Willian N. Partlo, Willian G.. Oldham. Diffser speckle model:application to multiple moving diffusers[J]. Applied Optics. 1993,32(16):3009-3014.
    [43]Mans Bjuggren, Laurent Krummenacher, Lars Mattsson. Infrared diffuser for application in transmission and reflection at 10.6μm[J]. Applied Optics. 1997,36(4):940-948.
    [44]Hector M. Escamilla, Eugenio R. Mendez. Elena I. Chaikina. Nonreciprocal effects in the double passage of light through a random diffuser and a birefringent crystal[J]. J. Opt.Soc.Am. A. 2001,18(5):1122-1131.
    [45]T. Shirai, E. Wolf. Transformation of coherence and the spectrum of light by a moving diffuser[J]. Journal of Modern Optics. 2001,48(4):717-727.
    [46]杨国光.微光学与系统[M].杭州:浙江大学出版社. 2007:162-181,218-292.
    [47]任智斌.折射型微透镜及微透镜阵列光学性质与制作技术的研究[J].中国科学院研究生院博士学位论文. 2004:50-56.
    [48]柯才军.微透镜阵列的设计、制作及与CCD的集成技术[J].华中科技大学博士学位论文. 2005:50-56.
    [49]张锦,冯伯儒,杜春雷等.反应离子刻蚀工艺因素研究[J].光电工程. 1997,24:46-51.
    [50]史立芳,马君显,杜春雷等.微透镜填充因子快速检测方法.光电工程. 2007,34(6):53-56.
    [51]McCormick M., Davies N., Cartwright P. Large Area Full Fill Factor Microlens Arrays[J]. IEE Colloquium(Digest). 1996,(039):10/1-10/3.
    [52]A. Akatay, A. Waddie etc. Comparative performance analysis of 100% fill-factor microlens arrays fabricated by various methods[J]. Proc of SPIE. 2006,6185:0c-1-11.
    [53]岑兆丰,李晓彤.光学系统温度效应分析和无热化设计[J].激光与光电子学进展. 2009:63-67.
    [54]李林,王煊.环境温度对光学系统影响的研究及无热化设计的现状与进展[J].光学技术. 1997(5):26-29.
    [55]张锦,杜春雷,冯伯儒等.红外材料Ge的刻蚀研究[J].微细加工技术. 1997,(1):60-64.
    [56]葛益娴,王鸣,戎华.硅的反应离子刻蚀工艺因素研究[J].南京师范大学学报(工程技术版). 2006,6(3):79-82.
    [57]武新,张永胜. Origin在曲线拟合中的应用[J].计算机工程与应用. 2005:206-208.
    [58]代冬岩,张智勇,张宏礼.最小二乘法曲线拟合及其MATLAB实现[J].黑龙江科技信息. 2009:35-36.
    [59]陆健.最小二乘法及其应用[J].中国西部科技. 2007:19-21.
    [60]桑艳丽.非线性曲线拟合的最小二乘法及其应用[J].专题研究. 2009:93-94.
    [61]Origin曲线拟合curvefitting. http://www.docin.com/p-67502893.html.
    [62]P Saarikko. Diffractive exit-pupil expander for spherical light guide virtual displays designed for near-distance viewing. Journal of Optics. 2009, 065504:1-10.
    [63]N.F.Borelli, Microoptics Technology Fabrication and Applications of Lens Arrays and Devices[J]. Marcel Dekker Inc,NY,1999:933-940.
    [64]M. Oikawa, K. Iga, T. Sanada. Array of Distributed-index Planar Micro-lenses Prepared from Ion Exchange Technique[J]. Appl Phys. 1981,48(1):49-50.
    [65]McCormick M., Davies N., Cartwright P. Large Area Full Fill Factor Microlens Arrays[J]. IEE Colloquium(Digest). 1996,(039):10/1-10/3.
    [66]M.Wakaki. Microlenses Arrays Formed on Glass Plate by Use of a CO2 Laser[J]. Applied Optics. 1998,37(4):627-631.
    [67]Borelli,N.F., Morse,D.L., Bellman, R.H., Morgan, W.L. Photolytic Technique for Producing Microlens for in Photosensitive Glass[J]. Appl Opt. 1987, 24(14):1513-1518.
    [68]N.F.Borrelli. Photolytic Technique for Producing Microlens in Photosensive Glass[J]. Appl Optics. 1985,24(16):2520-2525.
    [69]N.f.Borrelli, D.L.Morse, R.H.Bellman et al. Photolytic Technique for Producing Microlenses in Photosensitive Glass[J]. Applied Optics. 1985,24(16): 2520-2525.
    [70]F Gex, D Horville, G Leli`evre. Improvement of a Manufacturing Technique for LongFocal Length Microlens Arrays[J]. Pure Appl.Opt. 1996,(5):863-872.
    [71]Daly, D.,Stevens, Davies, N. The Manufacture of Microlens Array by Melting Photoresist[J]. Meas. Sci. Techol. 1990,1:759-766.
    [72]Lin Che-Ping, Yang Hsiharng, Chao Ching-Kong. Hexagonal Microlens Array Modeling and Fabrication Using a Thermal Reflow Process[J]. Journal of Micromechanics and Microengineering. 2003, 13(5):775-781.
    [73]C.Croutxe-Barghorn, O.Soppera, D.J.Lougnot. Fabrication of Microlenses by Direct Photo-induced Crosslinking Polymerization[J]. Applied Surface Science. 2000 (168):89-91.
    [74]Z.D.Popovic, R.A.Sprague, G.A.Neville. Technique for Monolithic Fabrication of Microlens Array[J]. Applied Optics. 1998,27(4):1281-1284.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700