浅海远程海底混响的建模与特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浅海低频远程海底混响的研究由来已久,然而随着水声技术的不断拓展,尤其是未来的低频强声主动拖曳探测系统,或者近岸多基地主动探测系统欲实现对目标的远程探测,就迫切需要对浅海域中的低频混响特性以及复杂波导界面的小掠射角散射过程有更加清晰、深入的机理性认识和分析。
     鉴于此,本文以浅海低频远程海底混响的理论建模与特性研究为核心,建立了一套完整的以物理散射机制为基础的耦合简正波混响模型,并将其扩展到与水平距离有关的倾斜波导环境中。探讨了浅海低频远程海底混响的强度衰减规律、空间分布特性及其相应的物理机理。与此同时,本文还开展了大量的浅海海底混响的测量工作,对理论建模和特性分析给予了有力支撑。
     在理论建模方面:
     1、根据耦合简正波算法的物理意义,将接收点处的混响场视为海底粗糙界面或者不均匀底质对声场各模态信号的耦合作用所致。利用耦合简正波的观点解释了复杂的海底界面与海底不均匀介质的散射过程。
     2、根据海底界面起伏规律或者不均匀底质的分布情况,直接求得海底混响场的表达式,借助傅里叶积分可以对任意信号形式的海底混响场进行求解。给出了随距离变化的水平波导中本地混响、异地混响强度的解析表达式。
     3、对于缓坡倾斜海底的过渡海区,利用绝热近似,通过水平射线-垂向简正波理论求解了过渡海区海底混响的水平因子,进而建立了与水平距离有关的波导环境中的混响理论。该模型理论严谨,适用性广,并可扩展至三维问题。
     在针对工程应用的混响特性研究方面:
     1、从最基础的混响强度特性入手,尤其针对过去研究较少的多基地混响进行了系统深入的机理性探究,对比了本地混响和异地混响的强度及其衰减规律的异同,并首次探讨了过渡海域中多基地海底混响的强度衰减规律,结果表明斜坡环境中的传播效应对远程混响衰减影响显著。
     2、文中将混响过程视作一种无源网络,从声传播的视角,充分考虑浅海信道的环境效应和传播特点,细致讨论了海底界面起伏以及海底底质参数对异地远程海底混响强度衰减规律的影响机制。
     3、应用耦合简正波混响模型,探讨了浅海远程海底混响的空间分布规律,分析了垂向、水平纵向、水平横向相关的时/空/频特性,并在合理近似的基础上,定量描述了其变化规律。研究结果表明,浅海远程海底混响水平横向相关要优于水平纵向相关,而垂向相关最差。
     4、细致揭示了浅海波导边界对远程混响空间分布特性的影响。在不同海况条件下,从粗糙海面散射引起的模态耦合角度,探讨了起伏海面对浅海远距离混响的影响机制。结果表明,浅海中虽然海底混响占据支配性影响,但是,起伏海面增强了浅海波导远程传播过程中的“滤模性能”,使得高阶模态更快的消逝掉,从而增强了远程海底混响的空间相关。
     在外场试验测量方面:
     选取我国黄海、南海等典型浅海海域,分别在09年、10年和11年开展了三次浅海海底混响专项测量实验,获取了大量宝贵的高质量浅海海底混响数据,对数据的处理结果验证了本文理论模型和特性分析结果的有效性和准确性。
It had been long before the beginning for researches about low frequency distant bottomreverberation in shallow water. With the ever ceasing development of underwater acoustictechnology, more deeply analysis and understanding from the view of its physical mechanism,the long-range bottom reverberation characteristic and the complicated boundary scatteringprocess,is much more demanded for the design of low frequency active sonar or multi-staticsonar system, which would be available for long-range target detection.
     Therefore, this dissertation is focused on the analysis about physical mechanism andmodeling of the low frequency long-range bottom reverberation (LFLBR) in shallow water.Firstly, the coupled modes reverberation model based on physical scattering mechanism isintroduced, and is extended to range-dependent waveguide. Then, the decaying rule of thereverberation level (RL) and the space coherence of LFLBR are discussed systematically. Inaddition to the mentioned theoretical researches, much LFLBR measurement is carried out intypical shallow water such as the Yellow sea and the South China Sea. The validity of thetheoretical modeling and analysis is thoroughly confirmed by data processing.
     Ⅰ. Theoretical modeling work:
     1. The reverberation field received by hydrophones is considered as the interaction ofincident modes with rough boundary or volume in-homogeneities in bottom medium bymeans of coupled mode method, which can explain the complicate scattering process ofbottom medium.
     2. According to roughness spectrum of the boundary surface and distribution of thesediment in-homogeneities, the formula of bottom reverberation is derived directly. Then, theFourier integration is used for the reverberation calculation of impulsive source with anysignal spectrum. In addition, the analytical expressions of RL are presented for both mono-and bi-static situation in range-independent waveguide.
     3. While for the range-dependent waveguide with varying depth, the adiabatic modesolution is introduced to derive the mathematical expressions for horizontal factors in slopingenvironment. This approach can also be extended to handle3D problems, which gives resultsobeying principle of reciprocity in all cases.
     Ⅱ. The discussion of characteristics for engineering application
     1. Beginning with the reverberation intensity, the RL of the multi-static sonar, for whichlittle work had been done before, is demonstrated systematically. The difference between the mono-static and the bi-static system is compared. Moreover, the decaying rule of RL forbi-static case in range-dependent waveguide is studied. The investigation indicates that theinfluence of sea floor inclination on RL should be considered.
     2. In thesis, the reverberation process is represented as a linear system without secondarysources. The sound channel effect and properties of sound propagation in shallow water areconsidered during the discussion of the RL for bi-static case. At the same time, the detailedphysical mechanism of the rough interface and the effect of sediment in-homogeneities on RLare displayed respectively.
     3. The space coherence of LFLBR is summarized by the coupled mode reverberationmodel. The time/space/frequency properties of the vertical, longitudinal, and transversecorrelation coefficients are predicted all-sided. It is indicated that transverse correlation isgreater than the longitudinal correlation, and it is most uncorrelated in vertical space.
     4. The surface effect on the space coherence of LFLBR is manifested. The mechanism ofsea surface effect on LFLBR is pointed out by describing the transfer of energy betweendifferent modes. It is indicated that the propagation effect of the shallow water waveguide isaffected seriously by the irregular upper boundary. Hence, higher modes are attenuated morequickly, and that will increase its space coherence.
     Ⅲ. Series of bottom reverberation measurements in shallow water:
     Three sea experiments for the measurement of bottom reverberation were conducted in2009,2010and2011respectivly. A large amount of high quality measured data was collectedin selected area of the Yellow sea and the South China Sea. The validity of the modelpredicted results is confirmed by data processing.
引文
[1] S. E. Yang. Theory of Underwater Sound Propagation. Harbin Engineering UniversityPress.2009.
    [2]汪德昭,尚尔昌.水声学.科学出版社,1981:298页
    [3]张仁和.中国海洋声学研究进展.物理1994,23(9):513-518页
    [4]李允武.水声学和海洋工程.物理1998,27(10):583-587页
    [5] L. J. Ziomek. Underwater Acoustics: A Linear Systems Theory Approach (Orlando:Academic Press, INC).1985.
    [6] P C Etter. Underwater acoustic modeling and simulation. Spon Press,2003. D.C.Stickler,
    [7] Normal mode program with both the discrete and branch line contribution. J. Acoust.Soc. Am.1975:57(4),856-864P
    [8] F.B. Jensen, W.A. Kuperman, M.B. Porter, etc. Computational Ocean Acoustics.Springer-Verlag, New York.2000:92-93P,191-192P,330-331P
    [9] M.B. Porter. the KRAKEN Normal Mode Program. NRL/MR/5120-92-6920.Naval Research Laboratory.Washington D. May22,1992
    [10] F.B. Jensen and M.C. Ferla, SNAP: the SACLANTCEN normal-mode acousticpropagation model, Rep.SM-121, SACLANT ASW Research Centre, La Spezia, Italy.1979
    [11] F.R. DiNapoli, R.L. Deavenport. Theoretical and numerical Green's function fieldsolution in a plane multilayered medium. J. Acoust. Soc. Amer.1980,67:92-105P
    [12] M.B. Porter and E.L. Reiss, A numerical method for ocean acoustic normal modes. J.Acoust. Soc. Am.1984:76(1)
    [13] M.B. Porter and E.L. Reiss, A numerical method for bottom interaction ocean acousticmormal modes. J. Acoust. Soc. Am.1985:77(5)
    [14] Z.Y. Zhang and C.T. Tindle, Complex effective depth of the ocean bottom. J.Acoust. Soc. Am.1993:93(1)
    [15] H.P. Bucker, H.E. Morris. Normal-mode reverberation in channels or ducts. J.A.S.A.,1968:44,827–828
    [16]尚尔昌,张仁和.浅海远程混响理论.物理学报.1975,24:260-267
    [17]金国亮.均匀浅海远程平均混响强度.声学学报.1980,4:279-285
    [18]张仁和,金国亮.浅海平均混响强度的简正波理论.声学学报.1984,9(1):12-20
    [19] R.H. Zhang, G.L. Jin. Normal-mode theory of the average reverberation intensity inshallow water. J Sound Vib,1987:119:215-223
    [20] D.D. Ellis. A shallow-water normal-mode reverberation model. J. Acoust. Soc. Am.1995,97:2804-2814
    [21] D.D. Ellis. Shallow water reverberation: Nromal-mode model predictions xomparedwith bistatic towed-array measurements. IEEE J. Ocean. Eng.18,474-482
    [22] D.D. Ellis, D.V Crowe. Bistatic reverberation calculations using a three-dimensionalscattering function. J. Acoust. Soc. Am.1991,89:2207-2214
    [23] F. Desharnais, D.D. Ellis. Data-Model Comparisons of Reverberation at ThreeShallow-Water Sites. IEEE J. Ocean. Eng.1997,22(2):309-316
    [24] K.D. LePage. Bottom reverberation in shallow water: Coherent propertied as afunction of bandwidth, waveguide characteristics, and scattering distributions. J.Acoust. Soc. Am.,1999,106(6):3240-325
    [25] K.D. LePage. Bottom reverberation in shallow water: Coherent propertied as afunction of bandwidth, waveguide characteristics, and scattering distributions. Rep.SR-301, SACLANT Undersea Research Centre, La Spezia, Italy.1998
    [26] K.D. LePage. Time series variability in fluctuation waveguides. SR-319, SACLANTUndersea Research Centre, La Spezia, Italy.1999
    [27] K.D. LePage. Acoustic time series variability and time reversal mirror defocusing dueto cumulative effects of water column variability, J. Comp. Acoust.2001,9:1455–1474
    [28] K.D. LePage. Modeling Propagation and Reverberation Sensitivity to Oceanographicand Seabed Variability, SM-398, SACLANT Undersea Research Centre La Spezia,Italy,2002
    [29] K.D. LePage. Environmental Effects of Waveguide Uncertainty on Coherent Aspectsof Propagation, Scattering and Reverberation. High frequency ocean acoustic2004:165-172
    [30] K.D. LePage. Statistics of Broad-Band Bottom Reverberation Predictions inShallow-Water Waveguides. IEEE J. Ocean. Eng.,2004:29(2),330–346
    [31] K.D. LePage. Modeling propagation and reverberation sensitivity to oceanographicand seabed variability. IEEE J. Ocean. Eng.,2006:31(2),402–412
    [32] K.D. LePage. Environmental Effects of Waveguide Uncertainty on Coherent Aspectsof Propagation, Scattering, and Reverberation. IEEE J. Ocean. Eng.,2006:31(2),413–420
    [33]张仁和,李文华,裘辛芳,金国亮.浅海中的混响衰减.声学学报.1995,20(6):417-424
    [34]金国亮,张仁和.由浅海混响反演海底反射和散射系数.声学学报.1996,21(4):565-572
    [35] F. Li, G. Jin, R. Zhang, J. Liu, L. Guo. An oscillation phenomenon of reverberation inthe shallow water with a thermocline. J Sound and Vib,2002,252(3):457-468
    [36]李风华,张仁和,金国亮.浅海相干混响理论与混响强度的震荡现象.中国科学A辑,2000,30(6):560-566页
    [37]李风华,刘建军,李整林,张仁和.浅海低频混响的振荡现象及其物理解释.中国科学:物理学力学天文学,2005,35(2):140-14页
    [38]刘建军,李风华,张仁和.浅海异地混响理论与实验比较.声学学报.2006,31:173-178页
    [39]刘建军,李风华.浅海混响的垂直相干性.声学学报.2003,28(6):494-503页
    [40]刘建军,李风华.浅海混响的垂直相关和海底反射损失与散射强度的反演.声学学报.2004,29(1):49-56页
    [41]郭国强,杨益新,孙超,李博.浅海低频本地海底混响的波导不变性结构及抑制方法研究.声学学报.2009,34(6):506-514页
    [42]李风华,张燕君,张仁和,刘建军.浅海混响时间-频率干涉特性研究.中国科学:物理学力学天文学,2010,40(7):838-841页
    [43] D.E. Weston. Intensity-range relations in oceanographic acoustics. J. Sound and Vib.1971,18:271-281.
    [44] D.E. Weston. Acoustic flux methods for range-dependent ocean ducts. J. Acoust. Soc.Am.1980,68:269-281.
    [45] D.E. Weston. Acoustic flux methods oceanic guided waves. J. Acoust. Soc. Am.1980,68:287-296.
    [46] C.H. Harrison. Closed-form expressions for ocean reverberation and signal excesswith mode stripping and Lambert’s law. J. Acoust. Soc. Am.2003,114(5):2744-2756.
    [47] C. H. Harrison. Signal and Reverberation Formulae Including Refraction. SR-370NATO SACLANT Undersea Research Centre, La Spezia, Italy,2002.
    [48] C. H. Harrison. Formulae for Signal and Reverberation With Variable Bathymetry andRefraction. SR-358. NATO SACLANT Undersea ResearchCentre, La Spezia, Italy,2002.
    [49] C.H. Harrison. Fast bi-static signal-to-reverberation-ratio calculation. J. Comput.Acoust.2005,13:317–340.
    [50] C.H. Harrison. Closed Form Bi-static Reverberation and Target Echoes With VariableBathymetry and Sound Speed. IEEE J. Ocean. Eng.,2005,30(4):660–675.
    [51] C. H. Harrison, Multistatic reverberation and system modeling usingSUPREMO.6thEuropean Conf. Underwater Acoustics (ECUA), Gdansk, Poland, Jun.2002.
    [52]周纪浔.浅海平均声场角度谱分析法与回波混响比的距离、深度结构.声学学报,1980,5:86-99页
    [53]周纪浔.浅海声场垂直相关与海底边界反射(散射)损失.声学学报,1979,1:34-43页
    [54]周纪浔,关定华,尚尔昌,罗恩生.浅海远程混响与海底散射强度.声学学报,1982,7:281-288页
    [55] J. X. Zhou, X. Z. Zhang, P. H. Rogers, J. A. Simmen, P. H. Dahl, G.L. Jin, and Z. Peng.Reverberation vertical coherence and sea bottom geoacoustic inversion in shallowwater. IEEE J. Ocean. Eng.2004,29(4):988–999.
    [56] J. X. Zhou, X. Z. Zhang. Shallow-Water Reverberation Level: MeasurementTechnique and Initial Reference Values. IEEE J. Ocean. Eng.2005,30(4):832–842.
    [57] J. X. Zhou, X. Z. Zhang, Z.H. Peng, J.S. Martin. Sea surface effect on shallow-waterreverberation. J. Acoust. Soc. Am.2007,121(1):98-107.
    [58] K. D. LePage. An SNR maximization behavior for autonomous AUV control. inProc.10th European Conf. Underwater Acoustics (ECUA), Istanbul, Turky,2010.
    [59] K. D. LePage. Rapid calculation of target and reverberation for in-the-loop simulationof active sonar aboard an AUV. in Proc.10th European Conf. Underwater Acoustics(ECUA), Istanbul, Turky,2010.
    [60] K.V. Mackenzie. Bottom reverberation for530-and1030-cps sound in deep water. J.Acoust. Soc. Am.1961,33:1498-1504.
    [61] R.J. Urick. Principles of Under Water Sound.3rded. McGraw-Hill. New York.1983.
    [62] P.C. Hines, P.J. Barry. Measurements of acoustic backscatter from the Sohm AbyssalPlain. J. Acoust. Soc. Am.1992,91:315-323.
    [63] A.P. Lyons, A.L. Anderson, F.S. Dwan. Acoustic Scattering from the seafloor:modeling and data comparison. J. Acoust. Soc. Am.1994,95:2441-2451.
    [64] F. Li, J. Liu, H. Zhang. A Model/data comparison for shallow-water reverberation.IEEE J. Ocean. Eng.2004,29(4):1060–1066.
    [65] D.D. Ellis, J.R. Preston. Extracting sea-bottom information from reverberation data.In Collected Papers from the Joint Meeting Berlin99. Acoustical Society of Americaand EAA. March1999.
    [66] A.N. Ivakin. A unified approach to volume inhomogeneities in stratified oceansediments. J. Acoust. Soc. Am.1998,103:827-837.
    [67] N. C. Makris and P. Ratilal. A unified model for reverberation and submerged objectscattering in a stratified ocean waveguide. J. Acoust. Soc. Am.2001,109(3):909-941.
    [68] J.R. Preston. Shallow Water Ocean Reverberation Data Analysis And Extraction ofSeafloor Geo-acoustic Parameters. Doctoral dissertation. The Pennsylvania StateUniversity, The Graduate School, Pennsylvania.
    [69] P.D. Thorne, N.G. Pace. Broad band studies of acoustic scattering from a model roughsurface. In N.G. Pace, editor. Acoustic and the Sea Bed, Bath. University Bath Press.1983.
    [70] A. N. Ivakin, Yu. P. Lysanov. Underwater sound scattering by volumeinhomogeneities of a bottom medium bounded by a rough surface. Sov. Phys. Acoust.1981,27(3):212–215.
    [71] A.N. Ivakin. Sound scattering by random inhomogeneities in stratified oceansediments. Sov. Phys. Acoust.1986,32:492-496.
    [72] A.N. Ivakin. Scattering from elastic sea beds: First-order theory. J. Acoust. Soc. Am.1998,103(1):336-345.
    [73] A. D. Lapin. Scattering of sound by a solid layer with rough boundaries. Sov. Phys.Acoust.1966,12:46–51.
    [74] A. D. Lapin. Sound scattering at a rough solid surface. Sov. Phys. Acoust.1964,10:58–64.
    [75] W. A. Kuperman and H. Schmidt,‘‘Rough surface elastic wave scattering in ahorizontally stratified ocean,’’ J. Acoust. Soc. Am.1986,79:1767–1777.
    [76] F. Ingenito. Scattering from an object in a stratified medium. J. Acoust. Soc. Am.1987,82:2051-2059.
    [77] N. C. Makris. A spectral approach to3-D object scattering in layered media applied toscattering from submerged spheres. J. Acoust. Soc. Am.1998,104:2105-2113.
    [78] P. Ratilal, N. C. Makris. Mean and covariance of the forward field propagated througha stratified ocean waveguide with three-dimensional random inhomogeneities. J.Acoust. Soc. Am.2005,118(6):3532-3559.
    [79] A. Galinde, N. Donabed, M. Andrews, S. Lee, N. C. Makris, P. Ratilal.Range-dependent waveguide scattering model calibrated for bottom reverberation in acontinental shelf environment. J. Acoust. Soc. Am.2008,123(3):1270-1281.
    [80] W. A. Kuperman, H. Schmidt. Rough surface elastic wave scattering in a horizontallystratified ocean. J. Acoust. Soc. Am.1986,79:1767–1777.
    [81] W. A. Kuperman, H. Schmidt. Self-consistent perturbation approach to rough surfacescattering in stratified elastic media. J. Acoust. Soc. Am.1989,86:1511-1522.
    [82] P.C. Hines. Theoretical model of acoustic backscatter from a smooth seabed. J. Acoust.Soc. Am.1990,87:324-334.
    [83] P.G. Cable. Low frequency reverberation in continental shelf environments. inProc.5th European Conf. Underwater Acoustics (ECUA), Lyon, France,2000.
    [84] T. Yamamoto. Acoustic scattering in the ocean from velocity and density fluctuationsin the sediments. J. Acoust. Soc. Am.1996,99:866-879
    [85] K.B. Smith, F. D. Tappert, W. S. Hodgkiss. Propagation and analysis issues in theprediction of long-range reverberation. J. Acoust. Soc. Am.1996,99(3):1387-1404.
    [86] L.S. Li. Parabolic Equation Modeling of Bottom Interface and Volume Reverberationin Shallow Water. Master dissertation. Naval Postgraduate School, Monterey,California.
    [87]范军.水下复杂目标回声特性研究.上海交通大学博士学位论文.2001.
    [88] F. Ingenito. Scattering from an object in a stratified medium. J. Acoust. Soc. Am.1987,82:2051–2059.
    [89] N. C. Makris, F. Ingenito, W. A. Kuperman. Detection of a submerged objectinsonified by surface noise in an ocean waveguide. J. Acoust. Soc. Am.1994,96:1703–1724.
    [90] P.D. Mourad, D.R. Jackson. A model/data comparison for low-frequency bottombackscatter. J. Acoust. Soc. Am.1993,94(1):344-358.
    [91] P.D. Mourad, D.R. Jackson. High frequency sonar equation models for bottombackscatter and forward loss. In Proceedings of Oceans’89.1989:1168-1175
    [92] D.R. Jackson, D.P. Winebrenner, A. Ishimaru. Application of the composite roughnessmodel to high-frequency bottom backscattering. J. Acoust. Soc. Am.1986,79:1410-1422.
    [93] E.I. Thorsos. The validity of the Kirchhoff approximation for rough surface scatteringusing a Gaussian roughness spectrum. J. Acoust. Soc. Am.1988,83:78-92.
    [94] K. D. LePage, H. Schmidt. Spectral integral representations of monostaticbackscattering from three dimensional distributions of sediment volumeinhomogeneities. J. Acoust. Soc. Am.2003,113:789–799.
    [95] J.F. Lingevitch, K. D. LePage. Parabolic Equation Simulations of ReverberationStatistics From Non-Gaussian-Distributed Bottom Roughness. IEEE J. Ocean. Eng.,2010,35(2):199–208.
    [96] C.W. Holland, J. Osler. High Resolution Geoacoustic Inversion in Shallow Water: AJoint Time and Frequency Domain Technique. J. Acoust. Soc. Am.2000,107:789–799.
    [97] C. W. Holland, R. Hollett, L. Troiano Measurement technique for bottom scattering inshallow water. J. Acoust. Soc. Am.2000,108:997–1011.
    [98] P. M. Morse, K. U. Ingard, Theoretical Acoustics. Princeton University Press,Princeton, NJ,1986.
    [99]高天赋.粗糙界面的波导散射和非波导散射之间的关系.声学学报,1989,14(2):126-132页
    [100]吴金荣.浅海混响中简正波反向散射矩阵的准可分离性及其反演方法.中国科学院研究生院博士学位论文,2005
    [101]苏哈列夫斯基.海洋混响的统计特性.
    [102] D. V. Guzhavina, é. P. Gulin. Experimental Studies of Low-Frequency BistaticReverberation in a Shallow Sea. Acoust. Phys.2000,46(6):663–669.
    [103] D. V. Guzhavina, é. P. Gulin. Experimental Studies of Low-Frequency Reverberationon the Continental Slope in the Northwestern Pacific Ocean. Acoust. Phys.2001,47(4):398–404.
    [104] P. H. Dahl. On bistatic sea surface scattering: Field measurements and modeling. J.Acoust. Soc. Am.1999,105:2155–2169.
    [105] C.H. Greene, P.H. Wiebe. New development in bioacoustical oceanography. Seatechnol.1988,29:27-29.
    [106] N.R. Galbraith, A.Gnanadesikan, G.H. Tupper, B.S. Way. Meteorological andOceanographic Data Collected during the ASREX91Field Experiment. TechnicalReport, WHOI-94-18. Woods Hole Oceanographic Institution,1994.
    [107] J. R. Preston. Reverberation at the Mid-Atlantic Ridge during the1993ARSRPexperiment seen by R/V ALLIANCE from200–1400Hz and some modelinginferences. J. Acoust. Soc. Am.2000,107:237–259.
    [108] Y. Y. Dorfmana, Ira Dyer. Monostatic and bistatic reverberation statistics west of theMid-Atlantic Ridge. J. Acoust. Soc. Am.1999,106:1755–1764.
    [109] J. R. Preston. Report on the1999ONR Shallow-Water Reverberation FocusWorkshop. Technical Memorandum File No.99-155. Applied Research Laboratory.State College, PA.1999
    [110] C. W. Holland, R. C. Gauss, P. C. Hines, P. Nielsen, J R. Preston, C. H. Harrison, D. D.Ellis, K. D. LePage, J. Osler, R. W. Nero, D. Hutt, A. Turgut. BoundaryCharacterization Experiment Series Overview. IEEE J. Ocean. Eng.,2005,30(4):784–806.
    [111] C. W. Holland and J. Osler,“High resolution geoacoustic inversion in shallow water:A joint time and frequency domain technique,” J. Acoust. Soc. Am.,2000,107:1263–1279.
    [112] C. W. Holland, Shallow water coupled scattering and reflection measurements. IEEE J.Ocean. Eng.2002,27:454–470.
    [113] C.W. Holland, C.W. Hollett, L. Troiano. A measurement technique for bottomscattering in shallow water. J. Acoust. Soc. Amer.2000,108:997–1011.
    [114] C.W. Holland, J. Dettmer, S. E. Dosso. A technique for measuring in-situcompressional wave velocity dispersion in marine sediments. IEEE J. Ocean. Eng.2005,30:748–763.
    [115] C.W. Holland. Geoacoustic inversion for fine-grained sediments. J. Acoust. Soc. Am.2002,111:1560–1564.
    [116] S.E. Dosso, C.W. Holland. Geoacoustic uncertainties from viscoelastic inversion ofseabed reflection data. IEEE J. Ocean. Eng.2006,31:657-671.
    [117] J.R. Preston, D.D. Ellis Extracting bottom information from towed-arrayreverberation data Part I: Measurement methodology. J. Mar. Syst.2009,78:372–381.
    [118] J.R. Preston, D.D. Ellis. Extracting Bottom Information from Towed ArrayReverberation Data. Part II: Extraction Procedure and Modeling Methodology. J. Mar.Syst.2009,78:372–381. IEEE J. Ocean. Eng.2005,30:709-732.
    [119] Preston, J.R. Using cardioid arrays for reverberation analysis and inversions. IEEE J.Oceanic Eng.2007,32:879–896.
    [120] J.R. Preston, D.D. Ellis, R.C. Gauss. Geoacoustic Parameter Extraction UsingReverberation Data From the2000Boundary Characterization Experiment on theMalta Plateau.
    [121] J.R. Preston, D.D. Ellis. Shallow water reverberation highlights and bottom parameterextractions from the STRATAFORM. J. Acoust. Soc. Am.2002,112(5, Pt.2):2253.
    [122] E.K. Westwood. ORCA Version2.0Users Guide, Technical Report ARL-UT.1998.
    [123]裘辛芳,张仁和,李风华,朱柏贤,金国良.浅海声传播和混响的选频衰减.海洋学报.1998,20:41-49页
    [124] J.R. Wu, E.C. Shang, T.F. Gao, L. Ma. Numerical simulation on searching theoptimum source-depth distribution for reverberation inversion by simulated annealing.J. Comput. Acoust.2009,17:197–209.
    [125] P.H. Dahl, R.h. Zhang, J.H. Miller, L.R. Bartek, Z. Peng, SR. Ramp, J.X. Zhou, C.S.Chiu, J.F. Lynch, J.A. Simmen, R.C. Spindel. Overview of Results from the AsianSeas International Acoustics Experiment in the East China Sea. IEEE J. Oceanic Eng.2004,29:920–929.
    [126] K. D. LePage. Mono-static reverberation in range dependent waveguides: TheR-SNAP model, SR-363, SACLANT Undersea Research Centre, La Spezia, Italy,2003.
    [127] K. LePage. Bi-static reverberation modeling for range-dependent waveguides. J.Acoust. Soc. Am.2002,112:2253–2254.
    [128] K. LePage and C. H. Harrison,“Bistatic reverberation benchmarking exercise: Bistarversus analytic formulas,” J. Acoust. Soc. Am.2003,113:2333–2333.
    [129] K.D. LePage, P. Neumann, and C.W. Holland, Broad-band Time Domain Modeling ofSonar Clutter in Range Dependent Waveguides, Proc. of IEEE/MTS OCEANS ‘06,Boston, MA,2006
    [130] J. E. LeMond, R. A. Koch Finite correlation and coherent propagation effects in thenormal-mode description of bottom reverberation J. Acoust. Soc. Am.1997,102(1):266-277
    [131] K. J. McCann,‘‘A full-wave treatment of acoustic reverberation,’’ The Johns HopkinsUniversity Applied Physics Laboratory, Laurel, MD, STD-R:19031990
    [132] D. M. Fromm, B. J. Orchard, and S. N. Wolfe, Range-dependent, normal-modereverberation model for bistatic geometries, in Ocean Reverberation, edited by D. D.Ellis, J. R. Preston, The Netherlands,1993: pp.155–160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700