动态海面电磁散射与多普勒谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海面电磁散射特性研究在海洋遥感、海洋预警及海上目标检测与识别等领域有着十分重要的研究价值。本文对海面电磁散射特性研究领域的相关问题开展了系统的研究工作,重点进行了动态海面电磁散射建模和海面回波信号多普勒谱特性分析。论文主要工作和研究成果如下:
     对传统的复合表面模型(CSM)进行了相关改进,提出了优化的复合表面模型(RCSM)。模型中增加了基尔霍夫近似(KA)几何光学解的附加项来提高近垂直入射镜向区内计算结果的准确性。针对复合海面中大尺度波浪部分和小尺度部分对总体散射结果的贡献随海况和散射条件的变化而变化的实际情况,从优化的复合散射模型中分量模型的成立条件出发,给出了基于风速和入射电磁波频率的截断波数的计算方法。结合考虑了海面斜率分布的非高斯效应、面元之间的遮挡效应以及中到大尺度海浪的曲率调制作用等优化方法,提高了优化模型计算结果的有效性和准确性。
     鉴于复合表面模型中划分海浪尺度的截断波数选择的不确定性,提出了按照具体局部面元散射角的划分来选择相应的电磁散射计算模型的角度截断复合表面模型(ACCSM),针对不同海况下的具体二维复合尺度海面样本进行相应的快速电磁散射建模。与传统复合表面模型相比,该模型能够根据每一个具体面元的散射特性灵活处理该面元对总散射场的贡献。计算了L-Ku波段等多波段下不同风速时的二维介质海面同极化和交叉极化散射系数,通过比较发现,ACCSM与相应波段的实测数据结果吻合良好。与相同计算条件下的RCSM比较发现ACCSM具有更高的计算效率。
     基于线性和非线性海面几何模型与粗糙面电磁散射计算模型相结合的方法,对比研究了线性与非线性海面的几何统计特征和电磁散射特性。计算了线性与非线性海面的后向散射系数和双站散射系数,分析了雷达参数和海环境参数以及非线性作用对散射系数的影响。对计算结果进行分析发现波浪间的非线性作用对散射系数的影响主要体现在非镜向散射方向,而非线性海面的散射系数要略大于对应的线性海面散射系数。
     针对动态海面具有比静态海面更复杂的散射机理需要进行相应的详细解释和准确处理,通过引入锥形入射场并采用小斜率近似(SSA)模型计算研究动态海面后向散射回波信号的多普勒谱特性。分析了入射角、入射波频率、极化方式、海面介电特性、风速、风向等雷达参数和海环境参数以及非线性作用对多普勒频移和谱展宽的影响。计算结果表明,非线性作用对动态海面回波多普勒谱特性的影响不容忽视。分析计算结果发现,一阶SSA(SSA-1)计算得到的垂直极化和水平极化多普勒谱相同,而二阶SSA(SSA-2)则能有效地反映不同极化下的谱差异。基于与数值方法计算结果的对比,可以发现SSA-2能够在定量的基础上准确地反映不同极化下动态海面回波信号多普勒频移和展宽变化特性,体现了其在动态海面回波多普勒谱特性分析中的可行性。
     结合流体动力学理论和有限水深海谱模型,在无限深海面建模的基础上建立有限深度水域海面的几何模型,通过计算相关海面统计参数,比较分析有限深度水域海面和无限深海面在统计特性方面的差异。采用SSA-2对有限深度水域动态海面电磁散射及回波多普勒谱特性进行研究,数值计算并分析了水深以及其他雷达参数和海环境参数对散射系数和多普勒谱的影响,结果反映出有限深度水域中波与波之间的非线性作用程度要比深水中的更加强烈。
The value of research on the electromagnetic (EM) scattering from sea surface isvery significant in the field of ocean remote sensing, ocean early warning and thedetection and recognition of maritime targets. This dissertation systematically presentsthe research on the EM scattering from the sea surface, and focuses on the modeling ofEM scattering from the dynamic time-evolving sea surface and the Doppler spectraanalysis of the EM echoes from the dynamic sea surfaces. The main research andacademic contributions of the current work are as follows:
     Based on the improvement of the classical composite surface model (CSM), therefined composite surface model (RCSM) is presented. The Geometrical Optics (GO)solution of Kirchhoff Approximation (KA) serves as an additional part to improve thecalculation accuracy of the results near normal incidence. At different sea stateconditions, the shares of the contribution to total scattering from large-scale andsmall-scale sea surface should change, thus based on the validity conditions ofcomponent models in the CSM, the cutoff wavenumber with wind speed dependenceand incident wave frequency dependence is introduced. The non-Gaussian effect of seasurface slope distribution, the effects of the shadow function of surface facets and thecurvature of the surface are taken into account comprehensively, which improves thevalidity and accuracy of the model.
     Due to the uncertainty for dividing the wave scale, an angular cutoff compositesurface model (ACCSM) is proposed. This model uses the local scattering angle ofspecific facet on the sea surface to choose corresponding EM scattering model, then therapid EM scattering modeling for the specific two-dimensional (2-D) composite scalesurface sample in different sea states is presented. Compared with the CSM, thecontribution to total scattering field from each specific facet can be handled with greatflexibility by the ACCSM. Numerical calculations are carried out for co-polarized andcross-polarized scattering coefficients of2-D dielectric sea surface versus different windspeeds in the L to Ku band. The comparison of numerical results of the ACCSM andexperimental measured data shows they agree well. The ACCSM has a highercomputational efficiency compared with RCSM under the same operating conditions.
     The linear and nonlinear sea surface geometrical models combined with the EMscattering calculation methods are used to comparatively study the geometricalstatistical properties and the EM scattering characteristics of both types of sea surfaces.The backscattering coefficient and bistatic coefficient of the linear and nonlinear sea surface are numerically calculated, the influence of the radar parameters and marineenvironmental parameters on scattering coefficient are analyzed. It is found that theimpact of the nonlinear interaction between waves mainly reflected in the non-specularscattering directions, and the results for nonlinear sea surface are slightly larger thancorresponding results for linear sea surface.
     The scattering mechanism for dynamic sea surface is much more complicatedcompared with the counterpart for the static sea surface, thus the EM scattering fromdynamic sea surfaces needs to be accurately processed and analyzed in detail.Combined with the introduction of the tapered incident field, the Small SlopeApproximation (SSA) is utilized to study the Doppler spectra characteristics ofbackscattered echoes from the dynamic sea surface. The influence of nonlinear effect,radar and marine environmental parameters such as incident angle, frequency of theincident wave, polarization, electrical characteristics of the sea, wind speed, winddirection et al. on the Doppler shift and spectral width is analyzed in detail. Simulationresults show that nonlinear interactions between waves cannot be neglected if one aimsat interpreting the radar Doppler spectra. It is also found that the Doppler spectra forvertical polarization and horizontal polarization calculated by the first-order SSA(SSA-1) are the same, while the second-order SSA (SSA-2) is able to reflect thepolarimetric difference of the Doppler spectra. Based on the comparison of the resultsfrom numerical methods, it is found that the SSA-2is capable of elaborating thecharacteristics of the Doppler shift and spectral width of echoes backscattered fromdynamic sea surface for different polarizations, which show its feasibility in the analysisof Doppler spectral characteristics.
     Combining the hydrodynamic theory with the finite-depth sea spectrum, wesimulate the finte-depth sea waves based on the infinite-depth sea surface modeling.The related statistical parameters are calculated, and the statistical differences betweenthese two types of surfaces are compared and analyzed successively. Based on theSSA-2, the EM scattering and Doppler spectra from dynamic surfaces of finite-depthsea are studied, the influences of the water depth and other radar and marineenvironmental parameters on the scattering coefficient and Doppler spectra areevaluated and analyzed in detail, which reflect that the nonlinear effect in thefinite-depth sea is much more intense.
引文
[1] M. I. Skolnik, Radar handbook (The second edition). New York: McGraw-Hill,1990.
    [2] M. W. Long, Radar reflectivity of land and sea (The third edition). Boston: Artech House,2001.
    [3] L. Tsang, J. A. Kong and K. H. Ding. Scattering of electromagnetic waves (vol.1: theories andapplications). New York: Viley,2000.
    [4] L. Tsang, J. A. Kong, K. H. Ding, et al. Scattering of electromagnetic waves (vol.2: numericalsimulations). New York: Viley,2001.
    [5] L. Tsang and J. A. Kong. Scattering of electromagnetic waves (vol.3: advanced topics). NewYork: Viley,2001.
    [6] M. Saillard and A. Sentenac. Rigorous solutions for electromagnetic scattering from roughsurfaces. Waves Random Complex Media,2001,11(3):103-137.
    [7] K. F. Warnick and W. C. Chew. Numerical simulation methods for rough surface scattering.Waves Random Complex Media,2001,11(1):1-30.
    [8] T. M. Elfouhaily and C. A. Guérin. A critical survey of approximate scattering wave theoriesfrom random rough surfaces. Waves Random Media.2004,14: R1-R40.
    [9]冯芒,沙文钰,朱首贤.近岸海浪几种数值计算模型的比较.海洋预报,2003,20(1):52-59.
    [10] A. Guissard and C. Baufays. Fully and nonfully developed sea models for microwave remotesensing applications. Remote. Sens. Environ.,1994,48:25-38.
    [11] J. R. Apel. An improved model of the ocean surface wave vector spectrum and its effects onradar backscatter. J. Geophys. Res.,1994,99(C8):16269-16291.
    [12] G. Neumann. On ocean wave spectra and a new method of forecasting wind-generated sea.Beach Erosion Board. Tech. Mem.,1953, No.43, pp.42.
    [13] W. J. Pierson and L. Moscowitz. A proposed spectral form for fully developed wind seas basedon the similarity theory of S.A.kitaigorodsrii. J. Geophys. Res.,1964,69(24):5181-5190.
    [14] A. K. Fung and K. K. Lee. A Semi-Eempirical Sea-Spectrum Model for scattering coefficientestimation. IEEE J. Ocean. Eng.,1982,7(4):166-176.
    [15] K. Hasselmann, T. P. Barnett, E. Bouws, et al. Measurements of wind-wave growth and swelldecay during the Joint North Sea Wave Project (JONSWAP). Dtsch. Hydrogr. Z. Suppl.,1973,12(A8):1-95.
    [16] A. W. Bjerkaas and F. W. Riedel, Proposed model for the elevation spectrum of awind-roughened sea surface. Tech. Rep. APL-TG-1328-I-31, pp.31, Appl. Phys. Lab., JohnsHopkins Univ., Laurel, Md.,1979.
    [17] W. J. Pierson. The theory and applications of ocean wave measuring systems at and below thesea surface, on the land, from aircraft and from spacecraft. NASA contract report CR-2646,N76-17775, NASA, Washington, D.C.,1976.
    [18] S. A. Kitaigorodskii. On the theory of the equilibrium range in the spectrum of wind-generated gravity waves. J. Phys. Oceanogr.,1983,13:816-827.
    [19] I. A. Leykin and A.D. Rosenberg. Sea-tower measurements of wind wave spectra in theCaspian Sea. J. Phys. Oceanogr.,1984,14:168-176.
    [20] C. Cox. Measurements of slopes of high frequency waves. J. Mar. Res.,1958,16:199-225.
    [21] C. Cox and W. Munk. Measurement of the roughness of the sea surface from photographs ofthe sun glitter. J. Opt. Soc. Am.,1954,44:838-850.
    [22] T. Elfouhaily, B. Chapron, K. Katsaros, et al. A unified directional spectrum for long and shortwind-driven waves. J. Geophys. Res.,1997,102:15781-15796.
    [23]俞聿修.随机波浪及其工程应用.大连:大连理工大学出版社,2003.
    [24] S. A. Kitaigorodskii, V. P. Krasitskii and M. M. Zaslavskii. On Phillips' theory of equilibriumrange in the spectra of wind-generated gravityw aves. J. Phys. Oceanogr.,1975,5(3):410-420.
    [25] E. B. Thornton. Rederivation of the saturation range in the frequency spectrum ofwind-generated gravity waves. J. Phys. Oceanogr.,1977,7(1):137-140.
    [26] E. Bouws, H. Günther, W. Rosenthal, et al. Similarity of the wind wave spectrum in finitedepth water.1: Spectral form. J. Geophys. Res.,1985,90(C1):975-986.
    [27] E. Bouws, H. Günther, W. Rosenthal, et al. Similarity of the wind wave spectrum in finitedepth water.2: Statistical relations between shape and growth stage parameters. Dtsch.Hydrogr. Z.,1987,40:1-24.
    [28]管长龙.我国海浪理论及预报研究的回顾与展望.青岛海洋大学学报,2000,30(4):549-556.
    [29]文圣常,余宙文.海浪理论与计算原理.北京:科学出版社,1984
    [30] S. C. Wen, C. L. Guan, S. C. Sun, et al. Effect of water depth on wind-wave frequencyspectrum.1: Spectral form. Chin. J. Oceanol. Limnol.,1996,14(2):97-105.
    [31]徐德伦,于定勇.随机海浪理论.北京:高等教育出版社,2001.
    [32] A. N. Williams and W. W. Crull. Simulation of directional waves in a numerical basin by adesingularized integral equation approach. Ocean Engineering,2000,27:603-624.
    [33]马杰,田金文,柳健等.三维海浪场的数值模拟及其动态仿真.系统仿真学报,2001,13:39-44.
    [34] B. Schachter. Long crested wave models for Gaussian fields. Computer Graphics and ImageProcessing.1980:187-201.
    [35] G. A. Mastin, P. A. Watterberg and J. F. Mareda. Fourier synthesis of ocean surfaces. IEEE.Comput. Graph. Appl.,1987,7(3):16-23.
    [36] J. T. Johnson, J. V. Toporkov and G. S. Brown. A Numerical Study of Backscattering FromTime-Evolving Sea Surfaces: Comparison of Hydrodynamic Models. IEEE Trans. Geosci.Remote Sens.,2001,39(11):2411-2420.
    [37] B. Kinsman. Wind waves: their generation and propagation on the ocean surface. New York:Dover,1984.
    [38] K. M. Watson and B. J. West. A transport equation description of nonlinear ocean surfacewave interactions. J. Fluid Mech.,1975,70:815-826.
    [39] A. R. Hayslip, J. T. Johnson and G. R. Baker. Further numerical studies of backscattering fromtime-evolving nonlinear sea surfaces. IEEE Trans. Geosci. Remote Sens.,2006,41(10):2287-2293.
    [40] D. B. Creamer, F. Henyey, R. Schult, et al. Improved linear representation of ocean surfacewaves. J. Fluid Mech.,1989,205:135-161.
    [41] J. V. Toporkov and G. S. Brown. Numerical simulations of scattering from time-varying,randomly rough surfaces. IEEE Trans. Geosci. Remote Sens.,2000,38(4):1616-1625.
    [42] G. Soriano, M. Joelson and M. Saillard. Doppler spectra from a two-dimensional ocean surfaceat L-Band. IEEE Trans. Geosci. Remote Sens.,2006,39(11):2411-2420.
    [43] A. Fournier and W. T. Reeves. A simple model of ocean waves. Comput. Graphics,1986,20(4):75-84.
    [44] F. Nouguier, C. A. Guérin and B. Chapron. Choppy wave model for nonlinear gravity waves. J.Geophys. Res.,2009,114(C13): C09012-1-C09012-16.
    [45] F. Nouguier, C. A. Guérin and B. Chapron. Scattering from nonlinear gravity waves: The“choppy wave” model. IEEE Trans. Geosci. Remote Sens.,2010,48(12):4184-4192.
    [46] F. Nouguier, C. A. Guérin and G. Soriano. Analytical techniques for the Doppler signature ofsea surfaces in the microwave regime. II: Nonlinear surfaces. IEEE Trans. Geosci. RemoteSens.,2011,49(12):4920-4927.
    [47] B. B. Mandelbrot. The fractal geometry of nature. San Francisco: Freeman,1982.
    [48] D. L. Jaggard and Y. Kim. Diffraction by band-limited fractal screens. J. Opt. Soc. Am. A,1987,4(6):1055-1062.
    [49] D. L. Jaggard and X. Sun. Scattering from fractally corrugated surfaces. J. Opt. Soc. Am. A,1990,7(6):1131-1139.
    [50] G. Franceschetti, A. Iodice, D. Riccio, et al. Scattering from natural rough surfaces modeled byfractional Brownian motion two-dimensional processes. IEEE Trans. Antennas Propag.1999,47(9):1405-1415.
    [51] E. Jakeman. Scattering by a corrugated random surface with fractal slope. J. Phys. A: Math.Gen.,1982,15(2):55-59.
    [52] P. Flandrin. On the spectrum of fractional Brownian motions. IEEE Trans. Inform. Theory,1989,35(1):197-199.
    [53] J. Chen, T. K. Y. Lo and H. Leung. The use of fractals for modeling EM waves scattering fromrough sea surface. IEEE Trans. Geosci. Remote Sens.,1996,34(4):966-972.
    [54] F. Berizzi, E. Dalle Mese. Scattering coefficient evaluation from a two-dimensional sea fractalsurface. IEEE Trans. Antennas Propag.2002,50(4):426-434.
    [55] F. Berizzi, E. Dalle Mese. Scattering from a2D-sea fractal surfaces: fractal analysis of thescattered signal. IEEE Trans. Antennas Propag.2002,50(7):918-925.
    [56]郭立新,吴振森.二维导体粗糙面电磁散射的分形特征研究.物理学报,2000,49(6):1064-1069.
    [57] L. X. Guo and Z. S. Wu. Fractal model and electromagnetic scattering from time-verying seasurface. Electron. Lett.,2000,36(21):1810-1812.
    [58]柯熙政,吴振森,郭立新.二维随机粗糙面的fBm模拟及其统计特性.电波科学学报,1998,13:167-172.
    [59] P. Beckmann and A. Spizzichino. The Scattering of Electromagnetic Waves from RoughSurfaces. New York: Pergamon,1963.
    [60] F. G. Bass and I. M. Fuks. Wave seattering from statistcally rough surfaces. Oxford: Pergamon,1979.
    [61] L. C. Schroeder, P. R. Schaffner, J. L. Mitchell, et al. AAFE RADSCAT13.9-GHzmeasurements and analysis: wind-speed signature of the ocean. IEEE J. Ocean. Eng.,1985,10(4):346-357.
    [62] F. J. Wentz, S. Peteherich and L. A. Thomas. A model function for ocean radar cross-section at14.6GHz. J. Geophys. Res.,1984,89:3689-3704.
    [63] S. V. Nghiem, F. K. Li and G. Neumann. The dependence of ocean backscatter at Ku-band onoceanic and atmospheric parameters. IEEE Trans. Geosci. Remote Sens.,1997,35(3):581-600.
    [64] A. Bentamy, P. Queffeulou, Y. Quilfen, et al. Ocean surface wind fields estimated fromsatellite active and passive microwave instruments. IEEE Trans. Geosci. Remote Sens.,1999,37:2469-2486.
    [65] A. K. Fung, Z. Li and K. S. Chen. Backscattering from a randomly rough dielectric surface.IEEE Trans. Geosci. Remote Sens.,1992,30(2):356-369.
    [66] K. S. Chen and A. K. Fung. A comparison of backscattering models for rough surfaces. IEEETrans.Geosci.Remote Sens.,1995,33(1):195-200.
    [67] A. Ishimaru. Electromagnetic Wave Propagation, Radiation and Scattering. Englewood Cliffs:Prentice Hall,1991.
    [68] J. A. Ogilvy. Theory of Wave Scattering From Random Rough Surfaces. Bristol: institute ofphysics Publishing,1991
    [69] J. M. Jin. The Finite Element Method in Electromagnetics. New York: Wiley,1993.
    [70] S. H. Lou, L. Tsang and C. H. Chan. Application of finite element method to Monte Carlosimulations of scattering of waves by random rough surface: penetrable case. Waves RandomMedia,1991,1(4):287-307.
    [71] P. Liu and Y. Q. Jin. Numerical simulation of bistatic scattering from a target at low altitudeabove rough sea surface under an EM-Wave incidence at low grazing angle by using the finiteelement method. IEEE Trans.Geosci.Remote Sens.,2004,52:1205-1220.
    [72]刘鹏,金业秋.动态起伏海面低飞目标电磁散射Doppler频谱的有限元-区域分解法数值模拟.中国科学(G辑),2004,34:265-278.
    [73] K. S. Yee. Numerical solution of initial boundary value problems involving maxwell'sequations in isotropic media. IEEE Trans. Antennas Propag.,1966,14(5):302-307.
    [74] A. K. Fung, S. Tjuatja and C. Terre. Numerical simulation of omnidirectional scattering fromthree-dimensional randomly rough dielectric surfaces. International Geoscience and RemoteSensing Symposium,1994,1:261-263.
    [75]葛德彪,闫玉波.电磁波时域有限差分方法.西安:西安电子科技大学出版社,2002.
    [76] R. F. Harrigton. Field Computation by Moment Method. New York: Macmillan Company,1968.
    [77] D. S. Weile, B. Shanker and E. Michielssen. An accurate scheme for the numerical solution ofthe time domain electric field integral equation. IEEE APS Int. Symp. Dig.,2001:516-519.
    [78] K. Li and Y. L. Lu. Electromagnetic Field Generated by a Horizontal Electric Dipole Near theSurface of a Planar Perfect Conductor Coated With a Uniaxial Layer. IEEE Trans. AntennasPropag.,2005,53(10):3191-3200.
    [79] L. Liu and K. Li. Radiation From a Vertical Electric Dipole in the Presence of a Three-LayeredRegion. IEEE Trans. Antennas Propag.,2007,55(12):3469-3475.
    [80] D. A. Kapp and G. S. Brown. A new numerical method for rough surface scatteringcalculations. IEEE Trans. Antennas Propag.,1996,44(5):711-721.
    [81] D. Holliday, L. L. DeRaad and G. C. St-Cyr. Forward-backward: A new method for computinglow-grazing angle scattering. IEEE Trans. Antennas Propag.,1996,44(5):722-729.
    [82] M. R. Pino, L. Landesa, J. L. Rodriguez, et al. The generalized forward-backward method foranalyzing the scattering from targets on ocean-like rough surface. IEEE Trans. AntennasPropag.,1999,47(6):961-969.
    [83] H. T. Chou, J. T. Johnson. Formulation of forward-backward method using novel spectralacceleration for the modeling of scattering from impedance rough surfaces. IEEE Trans.Geosci. Remote Sens.,2000,38(1):605-607.
    [84] A. Iodice. Forward-Backward Method for scattering from dielectric rough surfaces. IEEETrans. Antennas Propag.,2002,50(7):901-911.
    [85] Z. X. Li and Y. Q. Jin. Bistatic scattering and transmitting through a fractal rough surface withhigh permittivity using the physics-based two-grid method in conjunction with theforward-backward method and spectrum acceleration algorithm. IEEE Trans. AntennasPropag.,2002,50(9):1123-1127.
    [86] J. T. Johnson. A numerical study of low-grazing-angle backscatter from ocean-like impedancesurfaces with the canonical grid method. IEEE Trans. Antennas Propag.,1998,46(1):114-120.
    [87] K. Pak, L. Tsang and J. Johnson. Numerical simulations and backscattering enhancement ofelectromagnetic waves from two-dimensional dielectric random rough surfaces with thesparse-matrix canonical grid method. J. Opt. Soc. Am. A,1997,14(7):1515-1529.
    [88] S. Q. Li, C. H. Chan, M. Y. Xia, et al. Multilevel expansion of the sparse-matrix canonical gridmethod for two-dimensional random rough surfaces. IEEE Trans. Antennas Propag.,2001,49(11):1579-1589.
    [89] D. Chen, L. Tsang and Y. Q. Jin. Microwave emission and scattering of layered foam based onMonte Carlo simulations of dense media. International Geoscience and Remote SensingSymposium,2003,1:336-338.
    [90] C. H. Chan, L. Tsang and Qin Li. Monte Carlo simulations of large-scale one-dimensionalrandom rough-surface scattering at near-grazing incidence: Penetrable case. IEEE Trans.Antennas Propag.,1998,46(1):142-149.
    [91] L. Tsang, C. H. Chan and K. Pak. Monte-Carlo simulations of large-scale problems of randomrough surface scattering and applications to grazing incidence with the BMIA/canonical gridmethod. IEEE Trans. Antennas Propag.,1995,43(8):851-859.
    [92] J. T. Johnson, R. T. Shin, J. A. Kong, et al. A numerical study of the composite surface modelfor ocean backscattering. IEEE Trans.Geosci.Remote Sens.,1998,36(1):72-83.
    [93] M. Y. Xia, C. H. Chan, S. Q. Li, et al. An efficient algorithm for electromagnetic scatteringfrom rough surfaces using a single integral equation and multilevel sparse-matrixcanonical-grid method. IEEE Trans. Antennas Propag.,2003,51(6):1142-1149.
    [94] S. W. Huang and M. Y. Xia. A modified scheme of sparse-matrix canonical-grid method usingChebyshev interpolating Green’s function. Micro. Opt. Tech. Lett.,2007,50(7):1844-1846.
    [95] V. Rokhlin. Rapid solution of integral equations of scattering theory in two dimensions. J.Comput. Phys.,1990,86(2):414-439.
    [96]聂在平,胡俊,姚海英.用于复杂目标三维矢量散射分析的快速多极子方法.电子学报,1999,27(6):104-109.
    [97] C. C. Lu and W. C. Chew. A multilevel algorithm for solving boundary integral equations ofwave equations of wave scattering. Micro. Opt. Tech. Lett.,1994,7(10):466-470.
    [98] J. M. Song and W. C. Chew. Multilevel fast multipole algorithm for solving combined fieldintegral equation of electromagnetic scattering. Micro. Opt. Tech. Lett.,1995,10(1):14-19.
    [99] R. L. Wagner, J. Song and W. C. Chew. Monte Carlo simulation of electromagnetic scatteringfrom two-dimensional random rough surfaces. IEEE Trans. Antennas Propag.,1997,45(2):235-245.
    [100] J. Hu and Z. P. Nie. Solving electromagnetic scattering from two-dimensional cavity byFMM with complexifying k-technique. Micro. Opt. Tech. Lett.,1999,20(6):430-433.
    [101] J. Hu, L. Lei, Z. P. Nie and S. Q. He. Fast solution of electromagnetic scattering from thindielectric coated PEC by MLFMA and successive overrelaxation iterative technique. IEEEMicrow. Wireless Compon. Lett.,2009,19(12):762-764.
    [102] T. J. Cui, W. C. Chew, G. Chen, et al. Efficient MLFMA, RPFMA, and FAFFA Algorithmsfor EM Scattering by Very Large Structures. IEEE Trans. Antennas Propag.,2004,52(3):759-769.
    [103] T. J. Cui and W. Wiesbeck. Electromagnetic scattering by multiple three-dimensionalscatterers buried under multilayered media-part II theory. IEEE Trans. Geosci. Remote Sens.,1998,36(2):535-546.
    [104] W. D. Li, H. W and Z. H. X. Integral equation based overlapped domain decompositionmethod for the analysis of electromagnetic scattering of3D conducting objects. Micro. Opt.Tech. Lett.,2007,49(2):265-274.
    [105] X. Q. Sheng and E. K. N. Yung. Implementation and experiments of a hybrid algorithm ofthe MLFMA enhanced FE-BI method for open-region inhomogeneous electromagneticproblems. IEEE Trans. Antennas Propag.,2002,50(2):163-167.
    [106] E. I. Thorsos. The validity of the perturbation approximation for rough surface scatteringusing a Gaussian roughness spectrum. J. Acoust. Soc. Am.,1989,86(1):261-277.
    [107] J. M. Soto-Crespo, M. Nieto-Vesperinas and A. T. Friberg. Scattering from slightly roughrandom surfaces:a detailed study on the validity of the small perturbation method. J. Opt. Soc.Am. A,1990,7(7):1185-1201.
    [108] F. T. Ulaby, R. K. Moore and A. K. Fung. Microwave Remote Sensing: Active and Passive,vol. II. Norwood, MA: Artech House,1986.
    [109] H. L. Chan and A. K. Fung. A theory of sea scatter at large incident angles. J. Geophys. Res.,1977,82(24):3439-3444.
    [110] A. Khenchaf and O. Airiau. Bistatic radar moving returns from sea surface. IEICE Trans.Electron.,2000, E83-C:1827-1835.
    [111] A. Awada, M.Y. Ayari, A. Khenchaf, et al. Bistatic scattering from an anisotropic sea surface:Numerical comparison between the first-order SSA and the TSM models. Waves RandomComplex Media,2006,16:383-394.
    [112] A. Arnold-Bos, A. Khenchaf and A. Martin. Bistatic radar imaging of the marineenvironment–Part I: Theoretical background. IEEE Trans. Geosci. Remote Sens.,2007,45(11):3372-3383.
    [113] A. Arnold-Bos, A. Khenchaf and A. Martin. Bistatic radar imaging of the marineenvironment–Part II: Simulation and results analysis. IEEE Trans. Geosci. Remote Sens.,2007,45(11):3384-3396.
    [114]金亚秋.电磁散射和热辐射的遥感理论.北京:科学出版社,1993.
    [115]金亚秋,刘鹏,叶红霞.随机粗糙面与目标复合散射数值模拟理论与方法.北京:科学出版社,2008.
    [116]康士峰,张忠治,葛德彪. L波段HH极化机载雷达杂波特性分析.电子学报,2001,29(12):1608-1610.
    [117] Y. D. Zhang and Z. S. Wu. Modified two-scale model for low-grazing-angle scattering fromtwo dimensional sea surface. Chin. Phys. Lett.,2002,19(5):666-669.
    [118]郭立新,王运华,吴振森.修正双尺度模型在非高斯海面散射中的应用.电波科学学报.2007,22(2):212-218.
    [119]郭立新,王运华,吴振森.双尺度动态分形粗糙海面的电磁散射及多普勒谱研究.物理学报.2005,54(1):96-101.
    [120] D. Nie and M. Zhang. An angular cutoff composite model for investigation onelectromagnetic scattering from two-dimensional rough sea surfaces, Chin. Phys. B,2010,19(7):074101.
    [121] M. Zhang, H. Chen, P. Zhou, et al. An efficient simulated sea slope model for backscatteringfrom a non-Gaussian sea surface. Chin. Phys. Lett.,2009,26(9):094102.
    [122] A. G. Voronovich and V. U. Zavorotny. Theoretical model for scattering of radar signals inKu-and C-bands from a rough sea surface with breaking waves. Waves Random Media,2001,11:247-269.
    [123] G. S. Brown. Backscattering from a Gaussian-distributed perfectly conducting rough surface.IEEE Trans. Antennas Propag.,1978, AP-26:472-482.
    [124] W. J. Plant. Two-scale model for short wind-generated waves and scatterometry. J. Geophys.Res.,1986,91:10735-10749.
    [125] D. R. Thompson. Calculation of radar backscatter modulations from internal waves. J.Geophys. Res.,1988,93:12371-12380.
    [126] G. Soriano and C. A. Guérin. A cutoff invariant two-scale model in electromagnetic scatteringfrom sea surfaces. IEEE Geosci. Remote Sens. Lett.,2008,5(2):199-203.
    [127] R. Romeiser, A. Schmidt and W. Alpers. A three-scale composite surface model for the oceanwave-radar modulation transfer function. J. Geophys. Res.,1994,99(C5):9785-9801.
    [128] D. Nie and M. Zhang. A versatile composite surface model for electromagneticbackscattering from seas. Waves Random Complex Media,2011,21(2):348-361.
    [129] A. G. Voronovich. Waves Scattering from Rough Surfaces. Berlin: Springer-Verlag,1994.
    [130] A. G. Voronovich. Small-slope approximation for electromagnetic wave scattering at a roughinterface of two dielectric half-spaces. Waves Random Media,1994,4(3):337-367.
    [131] G. Soriano and M. Saillard. Scattering of electromagnetic waves from two-dimensional roughsurfaces with impedance approximation. J. Opt. Soc. Am.,2001,18(1):24-33.
    [132] G. Berginc. Small-slope approximation method: a further study of vector wave scatteringfrom two dimensional surfaces and comparison with experimental data. Progress InElectromagnetics Research,2002,37:251-287.
    [133] S. T. McDaniel. Small-slope predictions of microwave backscatter from the sea surface.Waves Random Media,2001,11(3):343-360.
    [134] E. Bahar and B. S. Lee. Radar scatter cross sections for two-dimensional random roughsurfaces-Full wave solutions and comparisons with experiments. Waves Random Media,1996,6(1):1-23.
    [135] M. Nieto-Veperinas. Depolarization of electromagnetic waves scattered from slightly roughrandom surfaces:a study by means of the extinction theorem. J. Opt. Soc. Am. A,1982,72(5):539-547.
    [136] D. Winebrenner and A. Ishimaru. Application of the phase perturbation technique torandomly rough surfaces. J. Opt. Soc. Am. A,1985,2(12):2285-2294.
    [137] K. Ivanova, M. A. Michalev and O. I. Yordanov. Study of the phase perturbation techniquefor scattering of waves by rough surfaces at intermediate and large values of the roughnessparameter. J. Electrom. Waves and Appl.,1990,4(5):401-414.
    [138]许小剑,黄培康.雷达系统及其信号处理.北京:电子工业出版社,2010.
    [139] D. D. Crombie. Doppler spectrum of sea echo at13.56Mc./s.. Nature,1955,175:681-682.
    [140] R. P. Ingalls and M. L. Stone. Characteristics of sea clutter at HF. IRE Trans. AntennasPropagat.,1957, AP-5:164-165.
    [141] D. E. Barrick. First-order theory and analysis of MF/HF/VHF scatter from the sea. IEEETrans. Antennas Propag.,1972,20(1):2-10.
    [142] F. G. Bass, I. M. Fuks, A. I. Kalmykov, et al. Very high frequency radio wave scattering by adisturbed sea surface part I: scattering from a slightly disturbed boundary. IEEE Trans.Antennas Propag.,1968,16(5):554-559.
    [143] F. G. Bass, I. M. Fuks, A. I. Kalmykov, et al. Very high frequency radio wave scattering by adisturbed sea surface part II: scattering from an actual sea surface. IEEE Trans. AntennasPropag.,1968,16(5):560-568.
    [144] D. B. Trizna. A model for Doppler peak spectral shift for low grazing angle sea scatter. IEEEJ. Oceanic Eng.,1985, OE-10(4):368-375.
    [145] D. R. Thompson, B. L. Gotwols and W. C. Keller. A comparison of Ku-band dopplermeasurements at20o incidence with predictions from a time-dependent scattering model. J.Geophys. Res.,1991,96(C3):4947-4955.
    [146] M. B. Kanevskii and V. Ya. Karaev. Spectrum of radar signal reflected from sea surface.Radiophys. Quantum Electron.,1993,36:1-9.
    [147] U. V. Zavorotny and A. G. Voronovich. Two-scale model and ocean radar Doppler spectra atmoderate-and low-grazing angles. IEEE Trans. Antennas Propag.,1998,46(1):84-92.
    [148]郭立新,王蕊,王运华等.二维粗糙海面散射回波多普勒谱频移及展宽特征.物理学报,2008,57(6):3464-3472.
    [149] M. Zhang, H. Chen and H. C. Yin. Facet-based investigation on EM scattering fromelectrically large sea surface with two-scale profiles: theoretical model. IEEE Trans. Geosci.Remote Sens.,2011,49(7):1967-1975.
    [150] D. Walker. Experimentally motivated model for low grazing angle radar Doppler spectra ofthe sea surface. IEE Proceedings-Radar, Sonar Navig.,2000,147(3):114-120.
    [151] D. Walker. Doppler modeling of radar sea clutter. IEE Proc.-Radar, Sonar Navig.,2001,148(2):73-80.
    [152]李晓飞.时变海面电磁散射特性研究.北京航空航天大学博士学位论文.2010.
    [153] C. L. Rino, T. L. Crystal and A. K. Koide. Numerical simulation of backscattering fromlinear and nonlinear ocean surface realizations. Radio Sci.,1991,26(1):51-71.
    [154] J. V. Toporkov and G. S. Brown. Numerical study of the extended kirchhoff approach andthe lowest order small slope approximation for scattering from ocean-like surfaces: doppleranalysis. IEEE Trans. Geosci. Remote Sens.,2002,50(4):417-425.
    [155] K. Herterich and K. Hasselmann. A similarity relation fro the nonlinear energy transfer in afinite-depth gravity-wave spectrum. J. Fluid Mech.,1980,97:215-224.
    [156] E. M. Bitner. Non-linear effects of the statistical model of shallow-water wind waves. Appl.Ocean Res.,1980,2(2):63-73.
    [157] D. E. Barrick and B. J. Lipa. The second-order shallow-water hydrodynamic couplingcoefficient in interpretation of HF radar sea echo. IEEE J. Ocean. Eng.,1986, OE-11(2):310-315.
    [158] B. J. Lipa and D. E. Barrick. Extraction of sea state from HF radar sea echo: mathematicaltheory and modeling. Radio Sci.,1986,21(1):81-100.
    [159] G. J. Holden and L. R. Wyatt. Extraction of sea state in shallow water using HF radar. IEEProc. F,1992,139(2):175-181.
    [160] S.T. Wu and A.K. Fung. A noncoherent model for microwave emissions and backscatteringfrom the sea surface. J. Geophys. Res.,1972,77:5917-5929.
    [161] J.R. Appel. Principles of Ocean Physics (3rd print). London: Academic,1990.
    [162] D. Lemaire, P. Sobieski, C. Craeye, et al. Two-scale models for rough surface scattering:Comparison between the boundary perturbation method and the integral equation method.Radio Sci.,2002,37(1):1001.
    [163] C. Bourlier, G. Berginc and J. Saillard. One-and two-dimensional shadowing functions forany height andslope stationary uncorrelated surface in the monostatic and bistaticconfigurations. IEEE Trans. Antennas Propag.,2002,50(3):312-324.
    [164]王运华.海面及其与上方目标的复合电磁散射研究.西安电子科技大学博士学位论文.2006.
    [165] S. O. Rice. Reflection of electromagnetic waves from slightly rough surfaces. Commun. PureAppl. Math.,1951,4:351-378.
    [166] G. R. Valenzuela. Theories for the interactions of electromagnetic and oceanic waves—Areview. Boundary-Layer Meteorol.,1978,13(1):61-85.
    [167] J. T. Johnson. Third-order small-perturbation method for scattering from dielectric roughsurfaces. J. Opt. Soc. Am. A.,1999,16(11):2720-2736.
    [168] F. Arikan and N. Vural. Simulation of sea clutter at various frequency bands. J. Electromagn.Waves Appl.,2005,19(4):529-542.
    [169] H. Masuko, K. Okamoto, M. Shimada, et al.1986, Measurement of microwavebackscattering signatures of the ocean surface using X band and Ka band airbornescatterometers. J. Geophys. Res.,1986,91:13065-13083.
    [170] J. Daley, J. T. Ransone and J. J. Burkett. Radar sea return-JOSS I, Technical Report NRLReport7268, Naval Research Laboratory, Wave Propagation Branch, Electronics Division.
    [171] J. Daley, J. T. Ransone and J. J. Burkett. Radar sea return-JOSS II, Technical Report NRLReport7234, Naval Research Laboratory, Wave Propagation Branch, Electronics Division.
    [172] J. V. Toporkov. Study of electromagnetic scattering from randomly rough ocean-like surfacesusing Integral-Equation-Based numerical technique. PhD dissertation of Virginia PolytechnicInstitute and State University,1998.
    [173]叶红霞.随机粗糙面与目标复合电磁散射的数值计算方法.复旦大学博士论文,2007.
    [174] R. Romeiser and D. R. Thompson. Numerical study on the along-trackinterferometric radarimaging mechanism of oceanic surface currents. IEEE Trans. Geosci. Remote Sens.,2000,38(1):446-458.
    [175] F. Biesel. Study of wave propagation in water of gradually varying depth. Gravity Waves,U.S. National Bureau of Standards Circular521,1952:243-253.
    [176] A. T. Ippen and G. Kulin. The shoaling and breaking of the solitary wave. Proc. Conf. CoastalEng.,1955:27-49.
    [177] F. E. Camfield and R. L. Street. Observations and experiments on solitary wave deformation.Proc. Conf. Coastal Eng.,1967:284-301.
    [178] C. J. Galvin. Breaker type classification on three laboratory beaches. J. Geophys. Res.,1968,73(12):3651-3659.
    [179] B. L. Lewis and I. D. Olin. Experimental study and theoretical model of high-resolution radarbackscatter from sea surfaces. Radio Sci.,1980,15(4):815-828.
    [180] D. B. Trizna. A model for Brewster angle damping and multipath effects on the microwaveradar sea echo at low grazing angles. IEEE Trans. Geosci. Remote Sens.,1997,35(5):1232-1345.
    [181] J. A. Puleo, G. Farquharson, S. J. Frasier and K. T. Holland. Comparison of optical and radarmeasurements of surf and swash zone velocity fields. J. Geophys. Res.,2003,08(C3):3100.
    [182] M. E. McCormick. Ocean Engineering Wave Mechanics. New York: John Wiley&Sons Inc,1973.
    [183] O. Brink-Kjar and I. G. Jonsson. Verification of cnoidal shoaling: Putnam and Chinn’sexperiments. Progress Report28, Institute of Hydrodynamics and Hydraulic Engineering,Technical Univ. of Denmark, Lyngby,1973,19-23.
    [184] I. A. Svendsen and I. G. Jonsson. Hydrodynamics of coastal regions. Technical Univ. ofDenmark, Lyngby,1976.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700