时变海面与目标复合电磁散射研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于实际地海环境杂波特性的研究是复杂环境中目标识别和信号分离技术的关键所在,其应用涉及遥感、雷达成像和预警等众多领域。论文系统地研究了海面电磁散射及其与电大尺寸目标复合散射问题,重点进行时变海面及其与上方运动目标的回波多普勒分析,建立掠入射条件下包含碎浪和船首波的时域复合散射模型。论文主要工作如下:
     1.首先总结基于海谱的海面几何建模方法,并采用Creamer模型生成二维非线性海面。在此基础上分别采用修正的双尺度法和迭代基尔霍夫近似方法分析海面电磁散射。通过引入曲率项和相位项,修正的双尺度法可以有效计算海面同极化的散射场;迭代基尔霍夫近似通过对海面表面电磁流的修正引入了海面面元之间的多次散射效应。利用Z-Buffer技术对确定的海面几何模型进行消隐处理,代替了传统的遮挡函数。根据仿真数据对海杂波统计特性进行分析。
     2.通过修正海面反射系数和散射路径,得到适合计算海面上电大目标复合散射场的四路径模型。基于互易性原理对二维海面与三维电大目标之间耦合场进行分析,得到相关结论。采用无网格法的基本解方法分析一维粗糙海面及其与目标复合散射,得到与矩量法等同精度的数值结果,并且有效提高了计算效率
     3.鉴于舰船与海面之间形成的类似角反射器结构,采用迭代物理光学法计算船体与海面之间多次散射场。利用Z-Buffer技术处理了舰船-海面复杂模型的自遮挡现象,并对迭代的收敛性进行讨论。通过对双站散射截面和基于数值结果的合成孔径雷达(SAR)成像仿真,发现舰船与海面的类似角反射器结构在后向附近产生强烈的耦合散射。
     4.基于准静态近似,采用频域方法进行时变海面舰船目标动态雷达特征信号建模。从实际的海面散射环境出发,分析海面几何模型中的非线性项和海浪漂流运动对于海面散射多普勒谱的影响。通过引入波浪水平运动速度分量,得到与实测多普勒谱相符的数值结果。基于修正的四路径模型,计算时变海面上运动目标电磁散射多普勒谱,对复合散射各个分量的多普勒频移和展宽进行研究。
     5.针对掠入射条件下海面外场实测中出现的超级现象(Super Events),建立包含溢出型碎浪的复杂海面电磁散射模型。采用有限大二面角劈结构来近似模拟碎浪三维几何模型,根据波浪破碎判据得到碎浪在二维海面上的空间分布并与实测及经验公式比较。结合海面面散射和碎浪体散射研究掠入射下散射系数和多普勒谱特征,并对超级现象的形成原因进行分析。基于Ke]vin船首波模型分析船首波散射与船型参数的关系,以及船首波对复合电磁散射的影响。
Research on the clutter characteristics of the realistic earth and sea environment is the key point in the target recognition and signal separation technologies for the complex environment, and its applications are widely involved in various fields, such as remote sensing, radar imaging, and early warning. The dissertation presents the research of the electromagnetic scattering from the sea surface and the composite scattering from the electrically large targets and the sea surface, which is with emphasis on the Doppler analysis of the time domain electromagnetic echo from the time-varied sea surface and the moving target. The time domain composite scattering is modeled with inclusion of the breaking waves and the ship bow waves in the low grazing angles. The main works are as follows:
     1. The geometric modelings of the sea surface are summaried based on the sea spectrums, and the two-dimensional nonlinear sea surfaces are generated with the Creamer model. The electromagnetic scattering of the sea surface is investigated with the modified two-scale method and the iterated Kirchhoff Approximation respectively. Including the curvature term and phase term, the modified two-scale method can be used to calculate the co-polarized scattering field from the sea surface. With correction of the electromagnetic currents on the sea surface, the multi-scattering field between the surface facets is analyzed with the iterated Kirchhoff Approximation. The Z-Buffer technology is utilized for the shadowing effect of the deterministic sea surface model and substitutes the classical shadowing functions. The statistical properties of the sea clutter are investigated with the simulated results.
     2. The four-path model is modified for the electrically large targets on sea surface by the corrections of the reflection coefficients and the scattering paths. The coupling scattering between the two-dimensional sea surface and the three-dimensional electrically large target is analyzed based on the reciprocity theorem, and some conclusions are obtained. The fundamental solutions to the mesh free method are used to analyze the composite scattering of the one-dimensional rough sea surface and the target. The accuracy of the numerical results is equivalent to the method of moment, and the calculation efficiency is promoted prominently.
     3. Due to the corner reflector structure formed by the ship and the sea surface, the multiple scattering between the ship hull and the sea surface is evaluated with the iterated physical optics method. The self-shadowing of the complex ship-sea model is treated with the Z-Buffer technology, and the convergence of the itetation is discussed. With the analysis of the bistatic scattering cross sections and the synthetic aperture radar (SAR) imaging of the simulated data, the strong coupling scattering of the dihedral corner reflector structure of the ship-sea model is observed near the backward direction.
     4. Based on the quasi-stationary approximation, the dynamic radar signatures for ships on time-varied sea surface is modeled with the frequency domain methods. The effects of the nonlinear term and the sea wave drift on the Doppler spectrum of the scattering field are investigated for the realistic sea scattering environment. The numerical results agree with the measured data well with inclusion of the horizontal motion of the water waves. The composite scattering of the moving targets on the time-varied sea surface is calculated with the modified four-path model, and the components of the composite scattering are analyzed with the Doppler spectrum.
     5. The complex sea surface scattering model is established with inclusion of the spilling breakers to analyze the super events in the filed experiments in the low grazing angles. The three-dimensional geometric models of the breaking waves are approximately simulated with the dihedral wedge with finite size. According to the breaking criteria of the sea waves, the distribution of the breakers is obtained, which is also compared with the measured data and empirical formulas. Combined with the surface scattering and the volume scattering, the scattering coefficients and the Doppler spectrum are investigated for the forming reason of the super events in low grazing angles. The relationship between the scattering of ship bow wave and the ship signature is analyzed based on the Kelvin bow wave model, and the effects of the ship bow waves on the composite scattering are investigated.
引文
[1]冯芒,沙文钰,朱首贤.近岸海浪几种数值计算模型的比较.海洋预报,2003,20(1):52-59.
    [2]闻斌,刘俊.海浪数值模式研究回顾与进展.海洋预报.2006,23(4):76-81.
    [3]A. Guissard and C. Baufays. Fully and nonfully developed sea models for microwave remote sensing applications. Remote. Sens. Environ.,1994,48:25-38.
    [4]J. R. Apel. An improved model of the ocean surface wave vector spectrum and its effects on radar backscatter. J. Geophys. Res.,1994,99 (C8):16269-16291.
    [5]G. Neumann. On ocean wave spectra and a new method of forecasting wind-generated sea. Beach Erosion Board, Tech. Mem.,1953, No.43, pp.42.
    [6]W. J. Pierson and L. Moscowitz. A proposed spectral form for fully developed wind seas based on the similarity theory of S.A.kitaigorodsrii. J. Geophys. Res.,1964,69 (24): 5181-5190.
    [7]A. K. Fung and K. K. Lee. A Semi-Eempirical Sea-Spectrum Model for scattering coefficient estimation. IEEE Journal of Oceanic Engineering,1982,7(4):166-176.
    [8]D. E. Hasselmann. Directional wave spectra observed during JONSWAP 1973. J. Phys. Oceanogr.,1980,10(7):1264-1280.
    [9]M. A. Donelan and W. J. Pierson. Radar scater and equilibrium ranges in wind-generated waves with application to scaterometry. J. Geophys. Res.,1987,92:4971-5029.
    [10]M. A. Donelan, J. Hamilton and W. H. Hui. Directionnal spectra of wind waves. Philos. Trans. R. Soc. London,1985, A315:509-562.
    [11]T. Elfouhaily et al. A unified directional spectrum for long and short wind-driven waves. J. Geophys. Res.,1997,102:15781-15796.
    [12]C. Cox and W. Munk. Measurement of the roughness of the sea surface from photographs of the sun glitter. Journal of the Optical Society of America,1954,44:838-850.
    [13]文圣常,余宙文.海浪理论与计算原理.北京:科学出版社,1984.
    [14]徐德伦,于定勇.随机海浪理论.北京:高等教育出版社,2001.
    [15]袁业立,华锋,潘增弟,孙乐涛.LAGFD-WAM海浪数值模式——1.基本物理模型.海洋学报,1992,14(5):1-7.
    [16]袁业立,潘增弟,华锋,孙乐涛.LAGFD-WAM海浪数值模式——Ⅱ.区域性特征线嵌入格式及其应用.海洋学报,1992,14(6):12-24.
    [17]杨永增,乔方利,赵伟,滕涌,袁业立.球坐标系下MASNUM海浪数值模式的建立及其应用.海洋学报,2005,27(2):1-7.
    [18]A. N. Williams and W. W. Crull. Simulation of directional waves in a numerical basin by a desingularized integral equation approach. Ocean Engineering,2000,27:603-624.
    [19]G. Wei, J. T. Kirby and A. Sinha. Generation of waves in Boussinesq models using a source function method. Coastal Engineering,1999,36:271-299.
    [20]R. S. Langley. On the time domain simulation of second order wave forces and induced responses. Applied Ocean Research,1986,8(3):134-143.
    [21]马杰,田金文,柳健,王长青,沈秩厥.三维海浪场的数值模拟及其动态仿真.系统仿真学报,2001,13:39-44.
    [22]J. T. Johnson, J. V. Toporkov and Gary S. Brown. A Numerical Study of Backscattering From Time-Evolving Sea Surfaces:Comparison of Hydrodynamic Models. IEEE Trans. Geosci. Remote Sens.,2001,39(11):2411-2420.
    [23]E. I. Thorsos. The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum. J. Acoust. Soc. Am.,1988,83(1):78-92.
    [24]C. L. Rino, T. L. Crystal and A. K. Koide. Numerical simulation of backscatter from linear and nonlinear ocean surface realizations. Radio Sci.,1991,26(1):51-71.
    [25]J. V. Toporkov and G. S. Brown. Numerical simulations of scattering from time-varying, randomly rough surfaces. IEEE Trans. Geosci. Remote Sens.,2000,38(4):1616-1625.
    [26]D. B. Creamer et al. Improved linear representation of ocean surface waves. J. Fluid Mech., 1989,205:135-161.
    [27]G. Soriano, M. Joelson and M. Saillard. Doppler spectra from a two-dimensional ocean surface at L-Band. IEEE Trans. Geosci. Remote Sens.,2006,39(11):2411-2420.
    [28]K. M. Watson and B. J. West. A transport equation description of nonlinear ocean surface wave interactions. J. Fluid Mech.,1975,70:815-826.
    [29]A. R. Hayslip, J. T. Johnson and G. R. Baker. Further numerical studies of backscattering from time-evolving nonlinear sea surfaces. IEEE Trans. Geosci. Remote Sens.,2006,41(10): 2287-2293.
    [30]B. B. Mandelbrot. The fractal geometry of nature. San Francisco: Freeman,1982.
    [31]D. L. Jaggard and Y. Kim. Diffraction by band-limited fractal screens. J. Opt. Soc. Am. A, 1987,4(6):1055-1062.
    [32]D. L. Jaggard and X. Sun. Scattering from fractally corrugated surfaces. J. Opt. Soc. Am. A, 1990,7(6):1131-1139.
    [33]G. Franceschetti. Scattering from natural rough surfaces modeled by fractional Brownian motion two-dimensional processes. IEEE Trans. Antennas Propag.,1999,47(9):1405-1415.
    [34]E. Jakeman. Scattering by a corrugated random surface with fractal slope. J. Phys. A:Math. Gen.,1982,15(2):55-59.
    [35]P. Flandrin. On the spectrum of fractional Brownian motions. IEEE Trans. Inform. Theory, 1989,35(1):197-199.
    [36]J. Chen, T. K. Y. Lo and H. Leung. The use of fractals for modeling EM waves scattering from rough sea surface. IEEE Trans. Geosci. Remote Sens.,1996,34(4):966-972.
    [37]Bass. Wave Seattering from Statistcally Rough Surfaces. Oxford: Pergamon,1979.
    [38]K. S. Chen and A. K. Fung. A comparison of backscattering models for rough surfaces. IEEE Trans.Geosci.Remote Sens.,1995,33(1):195-200.
    [39]A. K. Fung, Z. Li and K. S. Chen. Backscattering from a randomly rough dielectric surface. IEEE Trans. Geosci. Remote Sensi.,1992,30(2):356-369.
    [40]A. K. Fung and M. F. Chen. Numerical simulation of scattering from simple and composite random surfaces. J. Opt. Soc. Am.,1985,2(12):2274-2284.
    [41]A. Ishimaru and J. S. Chen. Scattering from very rough surfaces based on the modified second-order Kirchhoff approximation with angular and propagation shadowing. J. Acoust. Soc. Am.,1990,88:1877-1883.
    [42]J. A. Ogilvy. Theory of Wave Scattering From Random Rough Surfaces. Bristol:institute of physics Publishing,1991.
    [43]L. C. Schroeder et al. AAFE RADSCAT 13.9-GHz measurements and analysis: wind-speed signature of the ocean. IEEE Journal of Oceanic Engineering,1985.10(4):346-357.
    [44]W. L. Jones et al. The SEASAT-A satellite scatterometer: the geophysical evaluation of remotely sensed wind vectors over the ocean. J. Geophys. Res.,1982,87(C5):3297-3317.
    [45]S. V. Nghiem, F. K. Li and G. Neumann. The dependence of ocean backscatter at Ku-band on oceanic and atmospheric parameters. IEEE Trans. Geosci. Remote Sens.,1997,35(3): 581-600.
    [46]D. Holliday. Resolution of a controversy surrounding the Kirchhoff approach and the small perturbation method in rough surface scattering theory. IEEE Trans. Antennas Propagat., 1987,35(1):120-122.
    [47]A. Ishimaru and J. S. Chen. Scattering from very rough metallic and dielectric surfaces:a theory based on the modified Kirchhoff approximation. Waves in Random Media,1991, 1(1):21-34.
    [48]E. I. Thorsos. The validity of the perturbation approximation for rough surface scattering using a Gaussian roughness spectrum. J. Acoust. Soc. Am.,1989,86(1):261-277.
    [49]J. M. Soto-Crespo, M. Nieto-Vesperinas and A. T. Friberg. Scattering from slightly rough random surfaces:a detailed study on the validity of the small perturbation method. J. Opt. Soc. Am. A,1990,7(7):1185-1201.
    [50]A. Voronovich. Small-slope approximation for electromagnetic wave scattering at a rough interface of two dielectric half-spaces. Waves in Random and Complex Media,1994,4(3): 337-367.
    [51]G. Soriano and M. Saillard. Scattering of electromagnetic waves from two-dimensional rough surfaces with impedance approximation. J. Opt. Soc. Am.,2001,18(1):24-33.
    [52]G. Berginc. Small-slope approximation method:a further study of vector wave scattering from two dimensional surfaces and comparison with experimental data. Progress In Electromagnetics Research,2002,37:251-287.
    [53]S. T. McDaniel. Small-slope predictions of microwave backscatter from the sea surface. Waves in Random and Complex Media,2001,11(3):343-360.
    [54]D. R. Thompson. Calculation of radar backscatter modulations from internal waves. J. Geophys. Res.,1988,93(C10):12371-12380.
    [55]J. T. Johnson et al. A numerical study of the composite surface model for ocean backscattering. IEEE Trans. Geosci. Remote Sens.,1998,36(1):72-83.
    [56]D. R. Thompson, T. M. Elfouahily and J. L. Garrison. An improved geometrical optics model for bistatic GPS scattering from the ocean surface. IEEE Trans. Geosci. Remote Sens., 2005,43(12):2810-2821.
    [57]F. T. Ulaby, R. K. Moore and A. K. Fung. Microwave Remote Sensing: Active and Passive, vol. Ⅱ. Norwood, MA:Artech House,1986.
    [58]G. Soriano and C. A. Guerin. A cutoff invariant two-scale model in electromagnetic scattering from sea surfaces. IEEE Geoscience and remote sensing letters,2008,5(2): 199-203.
    [59]E. J. Walsh et al. Visual demonstration of three scales sea-surface roughness under light wind conditions. IEEE Trans. Geosci. Remote Sens.,2005,43(8):1751-1762.
    [60]A. Awada et al. Bistatic scattering from an anisotropic sea surface: Numerical comparison between the first-order SSA and the TSM models. Waves in Random and Complex Media, 2006,16(3):383-394.
    [61]M. Nieto-Veperinas. Depolarization of electromagnetic waves scattered from slightly rough random surfaces:a study by means of the extinction theorem. J. Opt. Soc. Am. A,1982, 72(5):539-547.
    [62]E. Bahar and B. S. Lee. Radar scatter cross sections for two-dimensional random rough surfaces-Full wave solutions and comparisons with experiments. Waves in Random Media, 1996,6(1):1-23.
    [63]D. Winebrenner and A. Ishimaru. Application of the phase perturbation technique to randomly rough surfaces. J. Opt. Soc. Am. A,1985,2(12):2285-2294.
    [64]K. Ivanova, M. A. Michalev and O. I. Yordanov. Study of the phase perturbation technique for scattering of waves by rough surfaces at intermediate and large values of the roughness parameter. J. Electrom. Waves and Appl.,1990,4(5):401-414.
    [65]金亚秋,黄兴忠,殷杰羿.具有泡沫白帽的粗糙海面的后向散射.海洋学报,1994,16(4):63-72.
    [66]金亚秋.电磁散射和热辐射的遥感理论.北京:科学出版社,1993.
    [67]金亚秋,李中新.下视雷达对海杂波中船目标监测的散射回波数值模拟.科学通报,2002,47(16):1211-1216.
    [68]金亚秋,刘鹏,叶红霞.随机粗糙面与目标复合散射数值模拟理论与方法.北京:科学出版社,2008.
    [69]康士峰,张忠治,葛德彪.L波段HH极化机载雷达杂波特性分析.电子学报,2001,29(12):1608-1610.
    [70]薛谦忠,吴振森.粗糙介质面对高斯波束的散射.电子与信息学报,2000,22(5):875-880
    [71]Zhang Yandong and Wu Zhensen. Modified two-scale model for low-grazing-angle scattering from two dimensional sea surface. Chinese Physics Letters,2002,19(5):666-669.
    [72]郭立新,徐燕,吴振森.分形粗糙海面高斯波束散射特性模拟.电子学报,2005,33(3):534-537.
    [73]郭立新,任玉超.动态分形粗糙海面散射遮蔽效应和多普勒谱研究.电子与信息学报,2005,27(10):1666-1670.
    [74]M. Zhang, H. Chen, P. Zhou and X.-Y. Zhang. An efficient simulated sea slope model for backscattering from a non-Gaussian sea surface. CHIN. PHYS. LETT.,2009,26(9):094102.
    [75]M. Zhang, H. Chen and H. C. Yin. Facet-based investigation on EM scattering from electrically large sea surface with two-scale profiles:theoretical model. IEEE Trans. Geosci. Remote Sens.,2011,49(7):1967-1975.
    [76]D. Nie and M. Zhang. A versatile composite surface model for electromagnetic backscattering from seas. Waves in Random and Complex Media,2011,21(2):348-361.
    [77]D. Nie and M. Zhang. An angular cutoff composite model for investigation on electromagnetic scattering from two-dimensional rough sea surfaces, Chinese Physics B, 2010,19(7):074101.
    [78]K. S. Yee. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media. IEEE Trans. Antennas Propagat.,1966,14(5):302-307.
    [79]A. K. Fung, S. Tjuatja and C. Terre. Numerical simulation of omnidirectional scattering from three-dimensional randomly rough dielectric surfaces. International Geoscience and Remote Sensing Symposium,1994,1:261-263.
    [80]葛德彪,闫玉波.电磁波时域有限差分方法.西安:西安电子科技大学出版社,2002.
    [81]T. Dogaru and L. Carin. Time-domain sensing of targets buried under a Gaussian, exponential, or fractal rough interface. IEEE Trans. Geosci. Remote Sens.,2001,39(8): 1807-1819.
    [82]Yinchao Chen, Qunsheng Cao and Raj Mittra. Multiresolution Time Domain Scheme for Electromagnetic Engineering. New Jersey: John Wiley & Sons.,2005.
    [83]R. F. Harrigton. Field Computation by Moment Method. New York: Macmillan Company, 1968.
    [84]L. Tsang, C. H. Chan and K. Pak. Monte-Carlo simulations of large-scale problems of random rough surface scattering and applications to grazing incidence with the BMIA/canonical grid method. IEEE Trans. Antennas Propagat.,1995,43(8):851-859.
    [85]R. L. Wagner, J. Song and W. C. Chew. Monte Carlo simulation of electromagnetic scattering from two-dimensional random rough surfaces. IEEE Trans. Antennas Propagat., 1997,45(2):235-245.
    [86]D. J. Donohue et al. Application of Iterative Moment-Method Solutions to ocean surface radar scattering. IEEE Trans.Antennas Propagat.,1998,46(1):121-132.
    [87]J. T. Johnson. A numerical study of low-grazing-angle backscatter from ocean-like impedance surfaces with the canonical grid method. IEEE Trans. Antennas Propagat.,1998, 46(1):114-120.
    [88]J. T. Johnson. On the canonical grid method for two-dimensional scattering problems.IEEE Trans.Antennas Propagat.,1998,46(3):297-302.
    [89]V. Rokhlin. Rapid solution of integral equations of scattering theory in two dimensions. J. Comput. Phys.,1990,86(2):414-439.
    [90]聂在平,胡俊,姚海英.用于复杂目标三维矢量散射分析的快速多极子方法.电子学报,1999,27(6):104-109.
    [91]C. C. Lu and W. C. Chew. A multilevel algorithm for solving boundary integral equations of wave equations of wave scattering. Microwave and Opt. Tech. Lett.,1994,7(10):466-470.
    [92]J. M. Song and W. C. Chew. Multilevel fast multipole algorithm for solving combined field integral equation of electromagnetic scattering. Micro. Opt. Tech. Lett.,1995,10(1):14-19.
    [93]Hu Jun and Nie Zaiping. Solving electromagnetic scattering from two-dimensional cavity by FMM with complexifying k-technique. Micro. Opt. Tech. Lett.,1999,20(6):430-433.
    [94]Jun Hu, Lin Lei, Zaiping Nie and Shiquan He. Fast Solution of Electromagnetic Scattering from Thin Dielectric Coated PEC by MLFMA and Successive Overrelaxation Iterative Technique. IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS,2009, 19(12):762-764.
    [95]Hu Jun, Nie Zaiping and Gong Xiaodong. Solving electromagnetic scattering and radiation by FMM with curvilinear RWG basis. Chinese Journal of Electronics,2003,12(3):457-460.
    [96]T. J. Cui et al. Efficient MLFMA, RPFMA, and FAFFA Algorithms for EM Scattering by Very Large Structures. IEEE Trans. Antennas Propagat.,2004,52(3):759-769.
    [97]T. J. Cui and W. Wiesbeck. Electromagnetic scattering by multiple three-dimensional scatterers buried under multilayered media-part II theory. IEEE Trans. Geosci. Remote Sens., 1998,36(2):535-546.
    [98]D. S. Weile, B. Shanker and E. Michielssen. An accurate scheme for the numerical solution of the time domain electric field integral equation. IEEE International Antennas and Propagation Symposium,2001, pp.516-519.
    [99]K. W. Lam, L. Z. Zheng and Q. Li. Statistical distributions of fields in scattering byrandom rough surfaces based on Monte Carlo simulations of Maxwell equations. IEEE International Antennas and Propagation Symposium,2003 pp.573-576.
    [100]D. A. Kapp and G. S. Brown. A new numerical-method for roughsurface scattering calculations. IEEE Trans. Antennas Propagat.,1996,44:711-722.
    [101]P. Tran. Calculation of the scattering electromagnetic waves from a two-dimensional perfectly conducting surface using the method of ordered multiple interactions. Waves in Random Media,1997,7(3):295-302.
    [102]D. Holliday, L. L. DeRaad and G. C. St-Cyr. Forward-backward:A new method for computing low-grazing angle scattering. IEEE Trans. Antennas Propagat.,1996,44(5): 722-729.
    [103]H. T. Chou and J. T. Johnson. A novel acceleration algorithm for the computation of scattering from rough surfaces with the forward-backward method. Radio Sci.,1998,33(5): 1277-1287.
    [104]Antonio Iodice. Forward-Backward Method for scattering from dielectric rough surfaces. IEEE Trans. Antennas Propagat.,2002,50(7):901-911.
    [105]C. D. Moss et al. Forward-Backward Method with spectral acceleration for scattering from layered rough surfaces. IEEE Trans. Antennas Propagat.,2006,54(3):1006-1016.
    [106]Z. Q. Zhao. Numerical study of electromagnetic scattering from three-dimensional water waves. PhD dissertation of Oklahoma State University,2002.
    [107]王谅,金鹰,李宇,丁坚.关于波浪破碎特性的研究.海洋工程,1995,13(3):81-89.
    [108]J. Fuchs et al. Correlation of hydrodynamic features with LGA radar backscatter from breaking waves, IEEE Trans. Geosci. Remote Sens.,1999,37(5):2442-2460.
    [109]P. Wang, Y. Yao and M. P. Tulin. An efficient numerical tank for nonlinear water waves, based on the multi-subdomain approach with BEM. Int. J. Numer. Meth. Fluids,1995,20: 1315-1336.
    [110]袁业立,华锋,张书文,韩磊.含破碎海浪海面起伏统计的理论模型.中国科学D, 2008,38(1):124-133.
    [111]J. C. West and Z. Q. Zhao. Electromagnetic modeling of multipath scattering from breaking water waves with rough faces. IEEE Trans. Geosci. Remote Sens.,2002,40(3):583-592.
    [112]J. C. West. Low-Grazing-Angle (LGA) Sea-Spike Backscattering From Plunging Breaker Crests. IEEE Trans. Geosci. Remote Sens.,2002,40(2):523-526.
    [113]Z. Q. Zhao and J. C. West. Low-Grazing-Angle microwave scattering from a three-dimensional spilling breaker crest: a numerical investigation. IEEE Trans. Geosci. Remote Sens.,2005,43(2):286-294.
    [114]Y. Z. Li and J. C. West. Low-Grazing-Angle Scattering From 3-D Breaking Water Wave Crests. IEEE Trans. Geosci. Remote Sens.,2006,44(8):2093-2101.
    [115]H. Goldstein. Sea echo. Propagation of Short Radio Waves, D. E. Kerr, Ed.. New York: McGraw-Hill,1951, pp.481-527.
    [116]M. Katzin. On the mechanisms of radar sea clutter. Proc. IRE,1957,45:44-54.
    [117]D. R. Lyzenga, A. L. Maffett and R. A. Shuchman. The contribution of wedge scattering to the radar cross section of the ocean surface. IEEE Trans. Geosci. Remote Sens.,1983, GE-21(4):502-505.
    [118]B. E. Browe. Wave scattering from structures that display areas of small radii of curvature in the presence of an extended planar surface. Master degree dissertation of Virginia Polytechnic Institute and State University,1999.
    [119]S. W. Lee, A. Ishimaru and Y. Kuga. Numerical analysis of scattered waves from rough surfaces with and without an object. SPIE,2002,4780:7-14.
    [120]J. C. West. Ray analysis of Low-Grazing scattering from a breaking water wave. IEEE Trans. Geosci. Remote Sens.,1999,37(6):2725-2727.
    [121]D. E. Barrick. First-order theory and analysis of MF/HF/VHF scatter from the sea. IEEE Trans.Antennas Propagat.,1972,20(1):2-10.
    [122]F. G. Bass et al. Very high frequency radio wave scattering by a disturbed sea surface part I: scattering from a slightly disturbed boundary. IEEE Trans. Antennas Propagat.,1968,16(5): 554-559.
    [123]F. G. Bass et al. Very high frequency radio wave scattering by a disturbed sea surface part II: scattering from an actual sea surface. IEEE Trans. Antennas Propagat.,1968,16(5): 560-568.
    [124]J. V. Toporkov and G. S. Brown. Numerical study of the extended kirchhoff approach and the lowest order small slope approximation for scattering from ocean-like surfaces: doppler analysis. IEEE Trans. Geosci. Remote Sens.,2002,50(4):417-425.
    [125]J. Cooper. Scattering of electromagnetic fields by a moving boundary: the one-dimensional case. IEEE Trans. Antennas Propagat.,1980,28(6):791-795.
    [126]D. Walker. Experimentally motivated model for low grazing angle radar Doppler spectra of the sea surface. IEE Proceedings-Radar, Sonar and Navigation,2000,147(3):114-120.
    [127]A. D. Rozenberg, D. C. Quigley and W. K. Melville. Laboratory Study of Polarized Microwave Scattering by Surface Waves at Grazing Incidence: The Influence of Long Waves. IEEE Trans. Geosci. Remote Sens.,1996,34(6):1331-1342.
    [128]P. H. Y. Lee et al. Wind-Speed Dependence of Small-Grazing-Angle Microwave Backscatter from Sea Surfaces. IEEE Trans. Antennas Propagat.,1996,44(3):333-340.
    [129]P. H. Y. Lee et al. X-band microwave backscattering from ocean waves. J. Geophys. Res., 1995,100(C2):2591-2611.
    [130]汪茂光.几何绕射理论(第二版).西安:西安电子科技大学出版社,1994.
    [131]黄培康,殷红成,许小剑.雷达目标特性.北京:电子工业出版社,2005.
    [132]G. A. Thiele. Overview of selected hybrid methods in radiating system analysis. Proc. IEEE, 1992,80(1):67-78.
    [133]J. Silvestro. Scattering from slot near conducting wedge using hybrid method of moments/geometrical theory of diffraction:TE case. Electronics Letters,1992,8(11): 1055-1057.
    [134]L. P. Theron, D. B. Davidson and U. Jakobus. Extensions to the Hybrid Method of Moments/Uniform GTD Formulation for Sources Located Close to a Smooth Convex Surface. IEEE Trans. Antennas Propagat.,2000,48(6):940-945.
    [135]F. Obelleiro et al. Hybrid moment-method physical-optics formulation for modeling the electronmagnetic behavior of on-board antennas. Microwave Opt. Tech. Lett.,2000,27(1): 88-93.
    [136]J. M. Taboada and F. Obelleiro. Including multibounce effects in the moment-method physical-optics method. Microwave Opt. Tech. Lett.,2002,32(4):435-439.
    [137]T. J. Cui et al. A two-region model for the fast implementation of the method of moments. Proceeding of IEEE AP-S,2003,2(6):330-333.
    [138]D. Andersh et al. Xpatch 4:the next generation in high frequency electromagnetic modeling and simulation software. Radar Conference,2000. The Record of the IEEE 2000 International,2000, pp.844-849.
    [139]S. Kapur and D. E. Long. IES3:efficient electrostatic and electromagnetic simulation. IEEE Computational Science & Engineering,1998,5(4):60-67.
    [140]S. D. Keller, W. O. Coburn and S. J. Weiss. Efficient electromagnetic modeling of bent monopole antenna on aircraft wing using FEKO. Antennas and Propagation,2009. EuCAP 2009.3rd European Conference,2009,2226-2228.
    [141]J. M. Song et al. Fast Illinois Solver Code(FISC). IEEE Trans. Antennas Propagat.,1998, 40(3):27-34.
    [142]N. Homsup and J. Breakall. Application of XFDTD and FEKO program to the analysis of planar antennas. Communications and Information Technologies (ISCIT),2010 International Symposium,2010,646-650.
    [143]M. Zhang, L.-W. Li and A.-Y. Ma. Analysis of scattering by a large array of waveguide-fed wide-slot millimeter wave antennas using precorrected-FFT algorithm. IEEE Microwave and Wireless Components Letters,2005,15(11):772-774.
    [144]万国宾,张红霞,万伟,陈益邻.带罩天线散射计算的子平面波技术.电波科学学报,2008,23(3):417-428.
    [145]M. R. Pino et al. The generalized Forward-Backward method for analyzing the scattering from targets on ocean-like rough surfaces. IEEE Trans. Antennas Propagat.,1999,47(6): 961-969.
    [146]R. J. Burkholder, M. R. Pino and F. Obelleiro. A Monte Carlo study of the rough-sea-surface influence on the radar scattering from two-dimensional ships. IEEE Antennas and Propagation Magazine,2001,43(2):25-33.
    [147]康十峰,王显德.粗糙面与目标电磁散射统计特性分析.微波学报,2004,20(3):43-46.
    [148]Kai Li and Yilong Lu. Electromagnetic Field Generated by a Horizontal Electric Dipole Near the Surface of a Planar Perfect Conductor Coated With a Uniaxial Layer. IEEE Trans. Antennas Propagat.,2005,53(10):3191-3200.
    [149]Liang Liu and Kai Li. Radiation From a Vertical Electric Dipole in the Presence of a Three-Layered Region. IEEE Trans. Antennas Propagat.,2007,55(12):3469-3475.
    [150]Y. Zhang et al. Mode-Expansion method for calculating electromagnetic waves scattered by objects on rough ocean surfaces. IEEE Trans. Antennas Propagat.,2005,53(5):1631-1639.
    [151]F. S. Deng et al. Numerical simulation of vector wave scattering from the target and rough surface composite model with 3-D multilevel UV method. IEEE Trans Antennas Propagat., 2010,58(5):1625-1634.
    [152]M. Zhang, L.-W. Li and Y.-F. Tian, An efficient approach for extracting poles of Green's functions in general multilayered media. IEEE Trans Antennas Propagat.,2008,56(1): 269-273.
    [153]M. Zhang, L.-W. Li, L.-C. Li and Z.-S. Wu, An efficient approach and application of the Green's functions in spatial domain in multilayered media. Science in China, Series F-Information Sciences,2008,51(4):394-407.
    [154]M. Zhang, W. Luo, J.-T. Liu, L. Bai and P. Zhou. Method of fundamental solution for composite electromagnetic scattering from two-dimensional object located on a rough surface. CHIN. PHYS. LETT.,2010,27(1):014101.
    [155]J. T. Johnson. A numerical study of scattering from an object above a rough surface. IEEE Trans. Geosci. Remote Sens.,2002,50(10):1361-1367.
    [156]T. Chiu and K. Sarabandi. Electromagnetic scattering interaction between a dielectric cylinder and slightly rough surface. IEEE Trans Antennas Propagat.,1999,47(5):902-913.
    [157]崔凯,许小剑,毛士艺.基于高频混合方法的海上目标电磁散射特性分析.电子与信息学报,2008,30(6):1500-1503.
    [158]许小剑,姜丹,李晓飞.时变海面舰船目标动态雷达特种信号模型.系统工程与电子技术,2011,33(1):42-47.
    [159]D. T. Gjessing, J. Hjelmstd and T. Lund. A multifrequency adaptive radar for detection and identification of objects:results on preliminary experiments on aircraft against a sea-clutter background. IEEE Trans Antennas Propagat.,1982,30(3):351-365.
    [160]R. J. Burkholder, M. R. Pino and F. Obelleiro. Low angle scattering from 2-D targets on a time-evolving sea surface. IEEE Trans. Geosci. Remote Sens.,2002,40(5):1185-1190.
    [161]K. Jamil and R. J. Burkholder. Radar scattering from a rolling target floating on a time-evolving rough sea surface. IEEE Trans. Geosci. Remote Sens.,2006,44(11): 3330-3337.
    [162]P. Liu and Y. Q. Jin. Numerical simulation of bistatic scattering from a target at low altitude above rough sea surface under an EM-Wave incidence at low grazing angle by using the finite element method. IEEE Trans. Geosci. Remote Sensing,2004,52(5):1205-1220.
    [163]刘鹏,金亚秋.动态起伏海面上低飞目标电磁散射Doppler频谱的有限元-区域分解法数值模拟.中国科学G,2004,34(3):265-278.
    [164]朱国强等.平板目标与随机粗糙面对电磁波的复合散射.武汉人学学报,2000,46(1):99—103.
    [165]M. Zhang, L. Zhu, P. Zhou and X.-Y. Zhang. Time-domain techniques for transient scattering from dielectric bodies and sea surface governed by Jonswap's sea spectra. CHIN.PHYS.LETT.,2009,26(8):084101.
    [166]H. Chen, M. Zhang, Y. W. Zhao and W. Luo. An efficient slope-deterministic facet model for SAR imagery simulation of marine scene. IEEE Trans Antennas Propagat.,2010,58(11): 3751-3756.
    [167]Y. W. Zhao, M. Zhang and H. Chen. An efficient ocean SAR raw signal simulation by employing fast Fourier transform. Journal of Electromagnetic Waves and Application,2010, 24:2273-2284.
    [168]M. Zhang, Y. W. Zhao, H. Chen and W. Q. Jiang. SAR imaging simulation for composite model of ship on dynamic ocean scene. Progress In Electromagnetics Research,2011,113: 395-412.
    [169]E. R. Jeferys. Directional seas should be ergodic. Applied Ocean Research,1987,9(4): 186-191.
    [170]B. J. West et al. A new numerical method for surface hydrodynamics. J. Geophys. Res.,1987, 92(C11):11803-11824.
    [171]C. Bourlier and N. Pinel. Low-frequency limit of unified models for backscattering from oceanlike surfaces. IEEE Geoscience and Remote Sensing Letters,2010,7(3):506-510.
    [172]张延冬.海面电磁与光散射特性研究.西安电子科技大学博士论文.2004.
    [173]A. Khenchaf. Bistatic scattering and depolarization by randomly rough surfaces: Application to thenatural rough surfaces in X-band. Waves in Random Media,2001,11:61-89.
    [174]G. Brown. Backscattering from a Gaussian-Distributed Perfectly Conducting Rough Surface. IEEE Trans Antennas Propagat.,1978,26(3):472-482.
    [175]A. Arnold-Bos, A. Khenchaf and A. Martin. Bistatic radar imaging of the marine environment—part Ⅰ: theoretical background. IEEE Trans. Geosci. Remote Sensing,2007, 45(11):3372-3383.
    [176]N. Liu et al. A modified two-scale scattering model for randomly rough surface. I. The scattering field and the scattering coefficient. Antennas, Propagation and EM Theory,2000. Proceedings,2000, pp.390-393.
    [177]A. G. Voronovich. On the theory of electromagnetic waves scattering from the sea surface at low grazing angles. Radio Sci.,1996,31(6):1519-1530.
    [178]G. Franceschetti. On ocean SAR raw signal simulation. IEEE Trans. Geosci. Remote Sensing, 1998,36(1):84-100.
    [179]W. J. Plant. Microwave sea return at moderate to high incidence angles. Waves in Random and Complex Media,2003,13(4):339-354.
    [180]A. G. Voronovich and V. U. Zavorotny. Theoretical model for scattering of radar signals in Ku- and C-bands from a rough sea surface with breaking waves. Waves in Random Media, 2001,11(3):247-269.
    [181]W. L. Jones et al. Aircraft measurements of the microwave scattering signature of the ocean. IEEE Trans Antennas Propagat.,1977,25(1):52-61.
    [182]L. C. Schroeder, D. H. Boggs and G. Dome. The relationship between wind vector and normalized radar cross section used to derive SEASAT-A satellite scatterometer winds. J. Geophys. Res.,1982,87(C5):3318-3336.
    [183]C. Bourlier, G. Berginc and J. Saillard. Bistatic scattering coefficient from one- and two-dimensional random surfaces using the stationary phase and scalar approximation with shadowing effect: comparisons with experiments and application to the sea surface. Waves in Random and Complex Media,2001,11(2):119-147.
    [184]J. M. Sturm and J. C. West, Numerical study of shadowing in electromagnetic scattering from rough dielectric surfaces. IEEE Trans. Geosci. Remote Sens.,1998,36(5):1477-1484.
    [185]N. Okino, Y. Kakazu and M. Morimoto. Extended depth-buffer algorithms for hidden-surface visualization, IEEE Computer Graphics and Applications,1984,4:79-88.
    [186]L. Tsang, C. H. Chan and K. Pak, Backscattering enhancement of a two-dimensional random rough surface (three-dimensional scattering) based on Monte Carlo simulations. J. Opt. Soc. Am. A,1994,11(2):711-715.
    [187]J. V. Toporkov, Study of electromagnetic scattering from randomly rough ocean-like surfaces using Integral-Equation-Based numerical technique. PhD dissertation of Virginia Polytechnic Institute and State University,1998.
    [188]叶红霞.随机粗糙面与目标复合电磁散射的数值计算方法.复旦大学博士论文,2007.
    [189]N. W. Guinard and J. T. Ransone. NRL terrain clutter study, phase I. Naval Research Laboratory report,1967, pp.55-60.
    [190]F. E. Nathanson. Radar Design Principles. New York:McGraw-Hill,1969.
    [191]G. V. Trunk. Detection of targets in non-Gaussian sea clutter. IEEE Trans. AES.,1970,6(5): 620-628.
    [192]F. A. Fay, J. Clarke and R. S. Peters. Weibull distribution applied to sea clutter. IEE Electromagnetic Wave Series,1985, pp.236-239.
    [193]E. Jakeman and P. N. Pusey. A model for non-Rayleigh sea echo. IEEE Trans. Antennas Propagat.,1976,24(6):806-814.
    [194]R. F. Millar, An approximate theory of the diffraction of an electromagnetic wave by an aperture in a plane screen, Proc. IEE-Part C:Monographs,1956,103(3):177-185.
    [195]C. Jr. Ryan and L. Jr. Peters. Evaluation of edge diffracted fields including equivalent currents for caustic regions. IEEE Trans. Antennas Propagat.,1969,17(3):292-299.
    [196]A. Michaeli, Equivalent edge currents for arbitrary aspects of observations. IEEE Trans. Antennas Propagat.,1981,32(3):252-258.
    [197]崔索民.混合法和等效边缘电磁流法及其在电磁散射中的应用.西安电子科技大学博十论文,1995.
    [198]崔索民,吴振森,方大纲.一种计算多面体目标RCS的等效边缘电磁流公式.微波学报,1997,13(1):20-25.
    [199]聂在平主编.口标与环境电磁散射特性建模:理论、方法与实现.基础篇.北京:国防工业出版社,2009.
    [200]B. J. Lipa and D. E. Barrick. Extraction of sea state from HF radar sea echo:mathematical theory and modeling. Radio Sci.,1986,21:81-100.
    [201]Z. S. Wu, L. X. Guo. Improved algorithm for electromagnetic scattering of plane waves and shaped beams by multilayered spheres. Applied Opt.,1997,36(21):5188-5198.
    [202]Y. Marechal, J. L. Coulomb and G. Meunier. Use of the diffuse element method for electromagnetic field computation. IEEE Transactions on Magnetics,1993,29(2): 1475-1493.
    [203]S. A. Viana, D. Rodger and H. C. Lai. Meshless local Petrov-Galerkin method with radial basis functions applied to electromagnetics. IEE Proc.-Sci. Measurements and Technology, 2004,151(6):449-451.
    [204]M. T. Ahmed, J. D. Lavers and P. E. Burke. Skin and proximity effect calculation using the method of fundamental solutions(MFS). IEEE Transactions On Magnetics,1988,24(6): 2667-2669.
    [205]H. T. Anastassiu, D. I. Kaklamani and D. P. Economou. Electromagnetic scattering analysis of coated conductors with edges using the method of auxiliary sources (MAS) in conjunction with the standard impedance boundary condition (SIBC). IEEE Trans. Antennas Propagat., 2002,50(1):59-66.
    [206]D. Colak, R. J. Burkholder and E. H. Newman. Multiplesweep method of moments (MSMM) analysis of electromagnetic scattering from targets on ocean-like rough surfaces. IEEE Antennas and Propagation Society Int. Symp.,2000,4:2124-2127.
    [207]F. Xu and Y. Q. Jin. Bidirectional analytic ray tracing for fast computation of composite scattering from electric-large target over a randomly rough surface. IEEE Trans. Antennas Propagat.,2009,57(5):1495-1505.
    [208]W. C. Anderson. Consequences of nonorthogonality on the scattering properties of dihedral reflectors. IEEE Trans. Antennas Propagat.,1987,35(10):1154-1159.
    [209]F. Obelleiro, J. L. Rodriguez and R. J. Burkholder. An iterative physical optics approach for analyzing the electromagnetic scattering by large open-ended cavities. IEEE Trans. Antennas Propagat.,1995,43(4):356-361.
    [210]D. B. Trizna, A model for Doppler peak spectral shift for low grazing angle sea scatter, IEEE Journal of Oceanic Engineering,1985, OE-10(4):368-375.
    [211]J. V. Bladel, Electromagnetic fields in the presence of rotating bodies, Procedings of the IEEE,1976,64(3):301-318.
    [212]A. Papoulis, Probability, Random Variables, and Stochastic Processes. New York: McGraw-Hill,1991.
    [213]郭立新,王蕊,王运华,吴振森.二维粗糙海面散射回波多普勒谱频移及展宽特征.物理学报,2008,57(6):3464-3472.
    [214]G. G. Stokes. On the theory of oscillatory waves. Transactions of the Cambridge Philosophical Society,1847,8(4):441-455.
    [215]M. S. Longuet-Higgins, The generation of capillary waves by steep gravity waves. J. Fluid Mech.,1963,16:138-159.
    [216]B. Kinsman, Wind Waves, Englewood Cliffs, NJ: Prentice-Hall,1965.
    [217]A. D. Rozenberg, D. C. Quigley and W. K. Melville, Laboratory study of polarized scattering by surface waves at grazing incidence: partⅠ—wind waves. IEEE Trans. Geosci. Remote Sens.,1995,33(4):1037-1046.
    [218]J. B. Billingsley. Measurements of L-band inland-water surface-clutter Doppler spectra. IEEE Trans. AES.,1998,34:378-390.
    [219]T. L. Smith. Doppler spectra of laboratory wind waves at low grazing angle. Waves in Random Media,2000,10(1):33-41.
    [220]P. H. Y. Lee et al. Scattering from breaking gravity waves without wind, IEEE Trans. Antennas Propagat.,1998,46(1):14-26.
    [221]A. T. Jessup, W. K. Melville and W. C. Keller. Breaking waves affecting microwave backscatter,1. detection and verification. J. Geophys. Res.,1991,96(C11):20547-20559.
    [222]D. Walker. Doppler modelling of radar sea clutter. IEE Proceedings-Radar, Sonar and Navigation,2001,148(2):73-80.
    [223]T. L. Smith. Azimuth dependence of Doppler spectra of sea clutter at low grazing angle. IET Radar Sonar Navig.,2008,2(2):97-103.
    [224]O. M. Phillips. Radar returns from the sea surface Bragg scattering and breaking waves. J. Phys. Oceanogr.,1988,18(8):1065-1074.
    [225]V. D. Kudryavtsev et al. A semiempirical model of the normalized radar cross-section of the sea surface 1. Background model. J. Geophys. Res.,2003,108(C3):1-24.
    [226]A. I. Kalmykov and V. V. Pustovoytenko. On polarization features of radio signals scattered from the sea surface at small grazing angles. J. Geophys. Res.,1976,81(12):1960-1964.
    [227]D. S. W. Kwoh and B. M. Lake. A deterministic, coherent, and dualpolarized laboratory study of microwave backscattering from water waves, part I:short gravity waves without wind. IEEE J. Oceanic Eng.,1984, OE-9(5):291-308.
    [228]E. A. Ericson and D. R. Lyzenga, Performance of a numerical iterative solution of the surface current integral equation for surfaces containing small radii of curvature. Radio Sci., 1998,33(2):205-217.
    [229]D. R. Lyzenga and E. A. Ericson. Numerical calculations of radar scattering from sharply peaked ocean waves. IEEE Trans. Geosci. Remote Sens.,1998,36(2):636-646.
    [230]楼顺里,曹露洁,田纪伟.深水破碎波判据的研究Ⅰ.破碎波判据的研究概括及计算方法.海洋学报,1996,18(3):13-20.
    [231]D. Xu, X. Liu and D. Yu. Probability of wave breaking and whitecap coverage in a fetch-limited sea. J. Geophys. Res.,2000,105(C6):14253-14259.
    [232]X. Z. Huang and Y. Q. Jin. Scattering and emission from two-scale randomly rough sea surface with foam scatters. IEE Pro-Microwaves Antennas Propag.,1995,142(2):109-114.
    [233]刘文通等.深水波浪破碎特征量与风速和摩擦风速的关系.海洋学波,1990,14(3):142-148.
    [234]E. C. Monahan and I. OMuircheartaigh. Optimal power-law description of oceanic whitecap coverage dependence on wind speed. J. Phys. Oceanogr.,1980,10(12):2094-2099.
    [235]J. J. Bowman, T. B. A. Senior and P. L. E. Uslenghi. Electromagnetic and Acoustic Scattering by Simple Shapes. London: Taylor & Francis,1987.
    [236]匡葵,常满.海面的电磁散射模型及应用.海洋学报,1992,14(5):34-44.
    [237]田纪伟等.海浪破碎对海面微波后向散射系数的影响.中国科学D,2001,31(4):342-352.
    [238]E. A. Ericson, D. R. Lyzenga and D. T. Walker. Radar backscattering from stationary breaking waves. J. Geophys. Res.,1999,104:29679-29695.
    [239]C. M. H. Unal, P. Snoeij and P. J. F. Swart. The polarization-dependent relation between radar backscatter from the ocean surface and surface vector at frequencies between 1 and 18 GHz. IEEE Trans. Geosci. Remote Sens.,1991,29(4):621-626.
    [240]H. Masuko et al. Measurements of microwave backscattering of the ocean surface using X band Ka band Airborne Scatterometers. J. Geophys. Res.,1986,91(C11):13065-13083.
    [241]T. L. Smith, T. Waseda and C. K. Rheem. Measurements of the Doppler spectra of breaking waves. IET Radar Sonar Navig.,2007,1(2):149-157.
    [242]M. Shakeri. An experimental 2D+T investigation of breaking bow waves. PhD dissertation of University of Maryland,2005.
    [243]J. H. Duncan. The breaking and non-breaking wave resistance of a two-dimensional hydrofoil. Journal of Fluid Mechanics,1983,126:507-520.
    [244]H. Miyata and T. Inui. Nonlinear ship waves. Advances in Applied Mechanics,1984,24: 215-288.
    [245]J. D. Lyden et al. SAR imaging of surface ship wakes. J. Geophys. Res.,1988,93(C10): 12293-12303.
    [246]B. A. Hughes and T. W. Dawson. Joint Canada-U. S. Ocean Wave Investigation Project: an overview of the Georgia strait experiment. J. Geophys. Res.,1988,93(C10):12219-12234.
    [247]王爱明.海洋舰船尾迹合成孔径雷达成像仿真研究.中国科学院博十论文,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700