粗糙面及其与目标复合电磁散射中的相关问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文就粗糙面及其与目标的复合电磁散射中的相关问题开展了系统的理论研究工作。主要包括单层及分层随机粗糙面的电磁散射;有耗介质粗糙面与全埋、半掩埋目标的复合电磁散射;矩量法结合基尔霍夫近似的混合算法、互易性定理在粗糙面与上方目标复合电磁散射中的应用以及粗糙面与目标复合脉冲电磁散射的研究。论文主要工作如下:
     1.将锥形入射波引入到传统的基尔霍夫近似中,研究了考虑遮蔽效应时一、二维随机粗糙面的电磁散射问题。通过将数值结果与矩量法的结果对比发现,本文方法的计算结果与矩量法吻合较好,较传统基尔霍夫近似的计算结果更为准确。
     2.利用矩量法结合锥形波入射下的基尔霍夫近似研究了分层粗糙面的电磁散射。利用矩量法计算了上层粗糙面的散射场,利用基尔霍夫近似计算了从下层粗糙面进入自由空间的透射场。数值结果以高斯粗糙面为例,计算了不同极化状态下分层高斯粗糙面双站散射系数的角分布。
     3.推导了一维有耗介质粗糙面与半掩埋、全掩埋目标复合电磁散射系数的计算公式,并利用矩量法对其进行计算。讨论了粗糙面的均方根高度及相关长度、介质的介电常数、目标埋藏深度及大小对复合散射系数的影响。
     4.提出了将矩量法结合基尔霍夫近似的混合算法分析了一维随机粗糙面与上方二维无限长任意截面导体目标的复合电磁散射。混合算法将电磁散射区域分别划分为KA区域和MOM区域,其运算时间和对计算机内存的需求主要取决于目标的网格划分情况。通过与MOM结果比较表明混合算法具有较高的计算精度和计算效率,最后给出了不同极化状态下粗糙面的粗糙度、目标尺寸及高度对双站复合散射系数的影响。
     5.将互易性定理在两相邻目标散射中的理论扩展到求解时变介质海面与其上方运动导体平板的耦合场中。应用基尔霍夫近似求解了海面后向散射场,利用物理光学法求解了海面表面电磁流及上方导体板的散射场,同时应用互易性定理求解了海面与平板之间的耦合散射场,对后向复合电磁散射场及多普勒谱特性进行了详细讨论。
     6.利用时域积分方程方法计算了一维高斯导体粗糙面的瞬态电磁散射及其与上方二维无限长任意截面目标的瞬态复合电磁散射,在时域电场积分方程的基础上给出了显式及隐式MOT步进方程,数值计算并分析了复合散射模型中粗糙面中心点的电流及远场电场随时间的响应,并将计算结果与矩量法结合离散傅立叶逆变换进行了对比,验证了本文方法的有效性。最后,详细分析了入射角、目标大小及位置对电流及电场远场响应的影响。
This dissertation presents the theoretical studies of electromagnetic (EM) scattering from the rough surface and the composite scattering from the rough surface with the target. Emphasis is put on studying the EM scattering from the single and layered random rough surface, the composite EM scattering from the buried and partially buried target at the rough surface, the hybrid method combining the moment of method (MOM) with the Kirchhoff approximation (KA) and the reciprocity theorem applied to the composite EM scattering from the target above the rough surface, as well as the investigation on the composite transient scattering from the rough surface and the target. The main works are as follows:
     1. The tapered incident wave is introduced into the classical KA to study the scattering from the 1- and 2-D randomly rough surface with the consideration of the shadowing effect. The numerical results are compared with those obtained by classical KA and MOM, which shows our results is in good agreement with those by MOM, and has a higher accuracy than the classical KA.
     2. MOM combining with KA considering the tapered incident wave for the analysis of the EM scattering from layered rough surface is investigated The scattered field from the upper rough surface is solved by MOM and the transmitted field from the lower rough surface into the free space is obtained by KA with neglecting the multiple scattering. The influence of the relative parameters on the bistatic scattering coefficient of Gaussian rough surface for different polarizations is discussed in detail.
     3. The formula for calculating the composite scattering coefficient of the buried and partially buried targets at 1-D dielectric random rough surface with lossy media is derived and solved by MOM with point matching. The effects of the root-mean-square height, the correlative length of the rough surface, the relative permittivity, the depth, as well as the size of the target on the bistatic scattering coefficient are also investigated.
     4. The hybrid method combining MOM with KA is proposed for the analysis of the bistatic composite EM scattering interaction between the 2-D infinitely long conducting target with arbitrary cross section and the 1-D random rough surface. The EM scattering region is divided into KA and MOM region. The computational time and memory requirements of the hybrid method mainly depend on the number of unknowns of the target. The numerical results are compared and verified with those obtained by MOM, which shows the higher accuracy and efficiency of the hybrid method than that of MOM. Finally, the influence of the surface roughness, the size and the height of the target on the bistatic scattering coefficient for different polarizations is examined.
     5. The reciprocity theorem used in the scattering between two adjacent targets is extended to solve the coupling field between the time-varying lossy dielectric ocean and a moving conducting plate. The backscattered field from the ocean is evaluated by the KA method. The surface electric and magnetic currents on the ocean, as well as the scattered field from the conducting plate, are evaluated by the Physical Optics method. Meanwhile, the coupling field between the ocean and the plate can be obtained by the reciprocity theorem. Finally, the characteristics and the Doppler spectrum of the composite backscattered field are discussed in detail.
     6. The Time-Domain-Integral-Equation method is proposed to study transient composite EM scattering from the 1-D perfect electric conducting (PEC) Gaussian rough surface and the 2-D infinitely long conducting target with an arbitrary cross section. Based on the electric field integral equation in time domain, the explicit and implicit solutions of Marching-on-Time (MOT) are presented. The current response at the center of the rough surface and the far electric field response with the time in the composite scattering model are calculated and analyzed. The numerical results are compared and verified with those obtained by conventional MOM-IDFT. Finally, the influence of the incident angle, the size and the location of the target on the current and the far electric field response is analyzed in detail.
引文
[1] F. T. Ulaby, R. K. Moore and A. K. Fung. Microwave Remote Sensing (Vol. II) London: Addision-Wesbey Publishing, 1982
    [2] A. Ishimaru. Wave Propagation and Scattering in Random Medium. New York: Academic Press, 1978
    [3] A. K. Fung. Microwave Scattering and Emission Models and Their Applications. London: Artech House, 1994
    [4] J. A. Ogilvy. Theory of Wave Scattering from Random Rough Surface. Bristol: institute of physics Publishing, 1991
    [5] P. Beckman and A.Spizzichino. The Scattering of Electromagnetic Waves from Rough Surfaces. London: Oxford: Pergamon, 1963
    [6] A. G. Voronovich. Wave Scattering from Rough Surfaces, 2nd ed. Berlin: Springer- Verlag, 1999
    [7] F. G. Bass and I. M. Fuks. Wave Scattering from Statistically Rough Surfaces. Oxford: Pergamon, 1979
    [8]郭桂蓉,庄钊文,陈曾平.电磁特征抽取与目标识别.长沙:国防科技大学出版社, 1996
    [9]陈向东.微波被动遥感在海况监测中的应用.北京:测绘出版社, 1992
    [10]谢寿生,徐永进.微波遥感技术与应用.北京:电子工业出版社, 1987
    [11] K. Sarabandi and T. Chiu. Electromagnetic scattering from slightly rough surfaces with inhomogeneous dielectric profiles. IEEE Trans. on Antenna and Propagat., 1997, 45(9): 1419-1430
    [12] D. E. Lawrence and K. Sarabandi. Electromagnetic scattering drom a dielectric cylinder buried beneath a slightly rough surface. IEEE Trans. on Antenna and Propagat., 2002, 50(10): 1368-1376
    [13] T. Chiu and K. Sarabandi. Electromagnetic scattering interaction between a dielectric cylinder and slightly rough surface. IEEE Trans. on Antenna and Propagat., 1999, 47(5): 902-913
    [14] D. E. Freund, et al. Forward radar rropagation over a rough sea surface: a numerical assessment of the miller-brown approximation using a horizontally polarized 3-GHz line source. IEEE Trans. on Antennas and Propagat., 2006, 54(4): 1292-1304
    [15] K. Jamil and R. J. Burkholder. Radar scattering from a rolling target floating on atime-evolving rough sea surface. IEEE Trans. Geosci. Remote Sensing, 2006, 44(11): 3330-3337
    [16] N. Reul, et al. Modeling sun glitter at L-Band for sea surface salinity remote sensing with SMOS. IEEE Trans. Geosci. Remote Sensing, 2007, 45(7): 2073-2087
    [17] Y. Shi and C. H. Liang. Application of the spatial–spectral CG-FFT method for the solution of electromagnetic scattering by buried flat metallic objects. IEEE Trans. Geosci. Remote Sensing letters, 2007, 4(1): 37-40
    [18] H. X. Ye and Y.-Q. Jin. A hybrid analytic-numerical algorithm of scattering from an object above a rough surface. IEEE Trans. Geosci. Remote Sensing, 2007, 45(5): 1174-1180
    [19] L. Kuang and Y.-Q. Jin. Bistatic scattering from a three-dimensional object over a randomly rough surface using the FDTD algorithm. IEEE Trans. on Antennas and Propagat., 2007, 55(8): 2302-2312
    [20] Bass. Wave Seattering from Statistcally Rough Surfaces. Oxford: Pergamon, 1979
    [21] K. S. Chen and A. K. Fung. A comparison of backscattering models for rough surfaces. IEEE Trans. Geosci. Remote Sensing, 1995, 33(1): 195-200
    [22] A. K. Fung, Z. Li and K. S. Chen. Backscattering from a randomly rough dielectric surface. IEEE Trans. Geosci. Remote Sensing, 1992, 30(2): 356-369
    [23] A. K. Fung and M. F. Chen. Numerical simulation of scattering from simple and composite random surfaces. J. Opt. Soc. Am., 1985, 2(12): 2274-2284
    [24] R. M. Axline and A. K. Fung. Numerical computation of scattering from a perfectly conducting random surface. IEEE Trans. Antennas Propagat., 26(3): 482-488
    [25] A. Ishimaru and J. S. Chen. Scattering from very rough surfaces based on the modified second-order Kirchhoff approximation with angular and propagation shadowing. J. Acoust. Soc. Am., 1990, 88: 1877-1883
    [26] A. Ishimaru, L. Ailes-Sengers and P. P. e. al. Pulse broadening and two-frequency mutual coherence function of the scattered wave from rough surfaces. Waves in Random Media, 1994, 4: 139-148
    [27] L. C. Schroeder, P. R. Schaffner and J. L. M. et al. AAFE RADSCAT 13.9-GHz measurements and analysis: wind-speed signature of the ocean. IEEE J. Oceanic Eng., 1985, 10(4): 346-357
    [28] W. L. Jones, L. C. Schroeder and D. H. B. et al. The SEASAT-A satellite scatterometer: the geophysical evaluation of remotely sensed wind vectors over the ocean. J. Geophys. Res., 1982, 87(c5): 3297-3317
    [29] S. V. Nghiem, F. K. Li and G. Neumann. The dependence of ocean backscatter at Ku-band on oceanic and atmospheric parameters. IEEE Trans. Geosci. Remote Sensing, 1997, 35(3): 581-600
    [30]金亚秋,黄兴忠,殷杰羿.具有泡沫白帽的粗糙海面的后向散射.海洋学报, 1994, 16(4): 63-72
    [31]金亚秋.电磁散射和热辐射的遥感理论.北京:科学出版社, 1993
    [32]金亚秋,李中新.下视雷达对海杂波中船目标监测的散射回波数值模拟.科学通报, 2002, 47(16): 1211-1216
    [33]金亚秋,刘鹏,叶红霞.随机粗糙面与目标复合散射数值模拟理论与方法.北京:科学出版社, 2008
    [34]康士峰,张忠治,葛德彪. L波段HH极化机载雷达杂波特性分析.电子学报, 2001, 29(12): 1608-1610
    [35] M. Y. Xia, et al. An efficient algorithm for electromagnetic scattering from rough surfaces using a single integral equation and multilevel sparse-matrix canonical-grid method. IEEE Trans. on Antennas and Propagat., 2003, 51(6): 1142-1149
    [36] M. Y. Xia and C. H. Chan. Parallel analysis of electromagnetic scattering from random rough surfaces. Electronics Letters, 2003, 39(9): 710-712
    [37]夏明耀,伍振兴.基于单积分方程矩量法的海洋表面微波散射模拟.电子学报, 2005, 33(3): 385-388
    [38]薛谦忠,吴振森.粗糙介质面对高斯波束的散射.电子与信息学报, 2000, 22(5): 875-880
    [39] W. Zhensen, S. Kun and Q. Liyan. Experimental study of laser bistatic scattering from random deeply rough surface and backscattering enhancement. Int. J. IR and Mill. Waves., 2000, 21(2): 247-254
    [40]郭立新,徐燕,吴振森.分形粗糙海面高斯波束散射特性模拟.电子学报, 2005, 33(3): 534-537
    [41]郭立新,任玉超.动态分形粗糙海面散射遮蔽效应和多普勒谱研究.电子与信息学报, 2005, 27(10): 1666-1670
    [42] D. Z.-H. Gu and A. A. Maradudin, Correlation effects in multiple scattering from random rough surface. 1998, U. S. Army Research Office.
    [43] X. Zheng-Wen, W. Jian and W. Zhen-Sen. Statistical temporal behaviour of pulse wave propagation through continuous random media. Waves Random Media, 2003, 13(1): 59-73
    [44] X. Zhengwen, et al. Temporal broadening of pulsed waves propagating throughturbulent media. Science in China, Series G: Physics Astronomy. , 2003, 46(4): 1
    [45] W. Ken. Two-frequency mutual coherence function for electromagnetic pulse propagation over rough surfaces. Waves in Random and Complex Media, 2005, 15(2): 127-143
    [46] C. Hui, W. Zhensen and B. Lu. Infrared laser pulse scattering from randomly rough surfaces. International Journal of Infrared and Millimeter Waves, 2004, 25(8): 1211-1219
    [47] G. Li-Xin and K. Che Young. Two-frequency scattering cross section and pulse broadening for the fractal sea surface with pulse beam incidence. Journal of Infrared and Millimeter Waves, 2003, 22(2): 132-136
    [48]汪茂光.几何绕射理论(第二版).西安:西安电子科技大学出版社, 1994
    [49] D. Holliday. Resolution of a controversy surrounding the Kirchhoff approach and the small perturbation method in rough surface scattering theory. IEEE Trans. Antennas Propagat., 1987, 35(1): 120-122
    [50] A. Ishimaru and J. S. Chen. Scattering from very rough metallic and dielectric surfaces: a theory based on the modified Kirchhoff approximation. Waves in Random Media, 1991, 1(1): 21-34
    [51] E. I. Thorsos. The validity of the perturbation approximation for rough surface scattering using a Gaussian roughness spectrum. J. Acoust. Soc. Am. , 1989, 86(1): 261-277
    [52] J. M. Soto-Crespo, M. Nieto-Vesperinas and A. T. Friberg. Scattering from slightly rough random surfaces: a detailed study on the validity of the small perturbation method. J. Opt. Soc. Am. A. , 1990, 7(7): 1185-1201
    [53] A. K. Fung. Review of random surface scatter models. in Proceeding of SPIE. 1982. p. 87- 98.
    [54] A. G. Voronovich. Small-slope approximation for electromagnetic wave scattering at a rough interface of two dielectric half-spaces. Waves in Random Media, 1994, 4: 337-367
    [55] M. S. Gilbert and J. T. Johnson. A study of rough surface scattering effects using the higher-order small slope approximation. in International Antennas and Propagation Symposium. 2003. p. 557-560.
    [56] J. T. Johnson and R. T. Shin. A numerical study of the composite surface model for ocean backscattering. IEEE Trans. Geosci. Remote Sensing, 1998, 36(1): 72-83
    [57] S. L. Durden and J. F. Vesecky. A numerical study of the separation wavenumber in the two scale scattering approximation. IEEE Trans. Geosci. Remote Sensing, 1990,28(2): 271-272
    [58] M. Nieto-Veperinas. Depolarization of electromagnetic waves scattered from slightly rough random surfaces: a study by means of the extinction theorem. J. Opt. Soc. Am. A. , 1982, 72(5): 539-547
    [59] E. Bahar and B. S. Lee. Radar scatter cross sections for two-dimensional random rough surfaces-Full wave solutions and comparisons with experiments. Waves in Random Media., 1996, 6(1): 1-23
    [60] D. Winebrenner and A. Ishimaru. Application of the phase perturbation technique to randomly rough surfaces. J. Opt. Soc. Am. A., 1985, 2(12): 2285-2294
    [61] K. Ivanova, M. A. Michalev and O. I. Yordanov. Study of the phase perturbation technique for scattering of waves by rough surfaces at intermediate and large values of the roughness parameter. J. Electrom. Waves and Appl., 1990, 4(5): 401-414
    [62] A. K. Fung and G. Pan. An integral equation method for rough surface scattering, in Proc. Int. Symp. on Multiple Scattering of Waves in Random Media and Random Surface. 1986. p. 701-714.
    [63] K. F. Warnick and W. C. Chew. Numerical simulation methods for rough surface scattering. Waves in Random Media, 2001, 11: 1-30
    [64] A. K. Fung, M. R. Shah and S. Tjuatja. Numerical simulation of scattering from three-dimensional randomly rough surfaces. IEEE Trans. Geosci. Remote Sensing, 1994, 32(5): 986-994
    [65]高本庆,刘波.电磁场时域数值技术新进展.北京理工大学学报, 2002, 22(4): 401-406
    [66]胡来平,刘占军.电磁学计算方法的比较.现代电子技术, 2003, 10: 75-78
    [67] K. S. Yee. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media. IEEE Trans. Antennas Propagat., 1966, 14(5): 302-307
    [68] A. K. Fung, S. Tjuatja and C. Terre. Numerical simulation of omnidirectional scattering from three-dimensional randomly rough dielectric surfaces, in International Geoscience and Remote Sensing Symposium. 1994: 261-263.
    [69]葛德彪,闫玉波.电磁波时域有限差分方法.西安:西安电子科技大学出版社, 2002
    [70] R. F. Harrigton. Field Computation by Moment Method. New York: Macmillan Company, 1968
    [71] D. S. Weile, B. Shanker and E. Michielssen. An accurate scheme for the numericalsolution of the time domain electric field integral equation, in IEEE International Antennas and Propagation Symposium. 2001: 516-519.
    [72] K. W. Lam, L. Z. Zheng and Q. Li. Statistical distributions of fields in scattering by random rough surfaces based on Monte Carlo simulations of Maxwell equations, in IEEE International Antennas and Propagation Symposium. 2003: 573-576.
    [73] W. C. Chew, J. M. Jin, C. C. L. et al. Fast solution methods in electromagnetics. IEEE Trans. Antennas Propagat., 1997, 45(5): 533-543
    [74] L. Tsang, C. H. Chan and K. Pak. Monte-Carlo simulations of large-scale problems of random rough surface scattering and applications to grazing incidence with the BMIA/canonical grid method. IEEE Trans. Antennas Propagat., 1995, 43(8): 851-859
    [75] R. L. Wagner, J. Song and W. C. Chew. Monte Carlo simulation of electromagnetic scattering from two-dimensional random rough surfaces. IEEE Trans. Antennas Propagat., 1997, 45(2): 235-245
    [76] D. J. Donohue, et. al. Application of Iterative Moment-Method Solutions to ocean surface radar scattering. IEEE Trans. Antennas Propagat., 1998, 46(1): 121-132
    [77] J. T. Johnson. A numerical study of low-grazing-angle backscatter from ocean-like impedance surfaces with the canonical grid method. IEEE Trans. Antennas Propagat., 1998, 46(1): 114-120
    [78] J. T. Johnson. On the canonical grid method for two-dimensional scattering problems. IEEE Trans. Antennas Propagat., 1998, 46(3): 297-302
    [79] V. Rokhlin. Rapid solution of integral equations of scattering theory in two dimensions. J. Comput. Phys., 1990, 86(2): 414-439
    [80]聂在平,胡俊,姚海英.用于复杂目标三维矢量散射分析的快速多极子方法.电子学报, 1999, 27(6): 104-109
    [81] C. H. Chan, L. Tsang and Q. Li. Monte Carlo simulations of large-scale one- dimensional random rough-surface scattering at near-grazing incidence: Penetrable case. IEEE Trans. Antennas Propagat., 1998, 46(1): 142-149
    [82] C. C. Lu and W. C. Chew. A multilevel algorithm for solving boundary integral equations of wave equations of wave scattering. Microwave and Opt. Tech. Lett., 1994, 7(10): 466-470
    [83] J. M. Song and W. C. Chew. Multilevel fast multipole algorithm for solving combined field integral equation of electromagnetic scattering. Micro. Opt. Tech. Lett., 1995, 10(1): 14-19
    [84]徐利明,聂在平,胡俊.半空间跨界面目标电磁散射的精确建模与高效计算.电子学报, 2005, 33(3): 389-392
    [85] V. Jandhyala, et al. A combined steepest descent-fast multipole algorithm for the fast analysis. IEEE Trans. Geosci. Remote Sensing, 1998, 36(3): 738-748
    [86] R. L. Wagner and W. C. Chew. A ray-propagation fast multipole algorithm. Microwave and Opt. Tech. Lett. , 1994, 7(10): 435-438
    [87] C. C. Lu and W. C. Chew. Fast far field approximation for calculating the RCS of large objects. Microwave and Opt. Tech. Lett., 1995, 8(5): 238-241
    [88] T. J. Cui, et al. Efficient MLFMA, RPFMA, and FAFFA Algorithms for EM Scattering by Very Large Structures. IEEE Trans. Antennas Propagat., 2004, 52(3): 759-769
    [89] T. J. Cui and W. Wiesbeck. Electromagnetic scattering by multiple three- dimensional scatterers buried under multilayered media-part II theory. IEEE Trans. Geosci. Remote Sensing, 1998, 36(2): 535-546
    [90] X. Q. Sheng and E. K. N. Yung. Implementation and experiments of a hybrid algorithm of the MLFMA enhanced FE-BI method for open-region inhomogeneous electromagnetic problems. IEEE Trans. on Antennas Propagat., 2002, 50(2): 163-167
    [91] W. D. Li, H. W and Z. H. X. Integral equation based overlapped domain decomposition method for the analysis of electromagnetic scattering of 3D conducting objects. Microwave Opt .Technol . Lett., 2007, 49(2): 265-274
    [92] W. Zhuang, et al. An improved adaptive integral method (AIM) with far-field expansion for analysis of microstrip structures, in IEEE AP-S. 2005: Washington, DC, USA. p. 387-390.
    [93] M. El-Shenawee. Scattering from multiple objects buried beneath two-dimensional random rough surface using the steepest descent fast multipole method. IEEE Trans. Antennas Propagat., 2003, 51(4): 802-809
    [94] N. Déchamps, Numerical simulations of scattering from multilayers separated by one-dimensional rough interfaces, in IGARSS '03. Proceedings. 2003 IEEE International. 2003: 118-120.
    [95] B. Hu and W. C. Chew. Fast inhomogeneous plane wave algorithm for electromagnetic solutions in layered medium structures: 2-D case. Radio Sci.. 2000, 35(1): 31-43
    [96] E. Simsek, J. Liu and Q. H. Liu. A spectral integral method (SIM) for layered media. IEEE Trans. Antennas Propagat., 2006, 54(6): 1472-1479
    [97] A. Tabatabaeenejad and M. Moghaddam. Bistatic scattering from three-dimensional layered rough surfaces. IEEE Trans. Geosci. Remote Sensing, 2006, 44(8): 2102-2114
    [98] C. H. Kuo and M. Moghaddam. Scattering from multilayer rough surfaces based on the extended boundary condition method and truncated singular value decomposition. IEEE Trans. Antennas Propagat., 2006, 54(10): 2917-2929
    [99] G. Franceschetti, et al. Scattering from layered medium with one rough interface: comparison and physical interpretation of different methods, in Proc. IEEE IGARSS. 2003: Toulouse, France: 2912-2914.
    [100] K. A. Michalski and D. Zheng. Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media: part I: theory. IEEE Trans. Antennas Propagat., 1990, 38: 335-344
    [101] M. El-Shenawee. Polarimetric scattering from two-layered two-dimensional random rough surfaces with and without buried objects. IEEE Trans. Geosci. Remote Sensing, 2004, 42(1): 67-76
    [102] X. C. Ren and L. X. Guo. Study on optical wave scattering from slightly Gaussian rough surface of layered medium. Chinese Optics Letters, 2007, 5(10): 605-608
    [103] X. Zhu and L. Carin. Scattering from very large randomly rough surfaces using a Markov random field equivalent current. IEEE Trans. on Antennas and Propagat., 2008, 56(1): 204-214
    [104] J. T. Johnson. A study of the four-path model for scattering from an object above a half space. Microwave and Opt. Tech. Lett., 2001, 30(2): 130-134
    [105] M. R. Pino, et al. The generalized forward-backward method for analyzing the scattering from targets on ocean-like rough surfaces. IEEE Trans. Antennas Propagat., 1999, 47(6): 961-968
    [106] L. Li, et al. MLFMA analysis of scattering from multiple targets in the presence of a half-space. IEEE Trans. Antennas Propagat., 2003, 51(4): 810-819
    [107]李中新,金亚秋.双网格前后向迭代与谱积分法计算分形粗糙面的双站散射与透射.物理学报, 2002, 51(7): 1403-1411
    [108] P. Liu and Y.-Q. Jin. Numerical simulation of bistatic scattering from a target at low altitude above rough sea surface under an EM-Wave incidence at low grazing angle by using the finite element method. IEEE Trans Geosci Remote Sensing, 2004, 52(5): 1205-1220
    [109]刘鹏,金亚秋.动态起伏海面上低飞目标电磁散射Doppler频谱的有限元-区域分解法数值模拟.中国科学(G辑物理学,力学天文学), 2004, 34(3): 265-278
    [110]康士峰,王显德.粗糙面与目标电磁散射统计特性分析.微波学报, 2004, 20(3): 43-46
    [111]朱国强,孙劲,郑立志等.平板目标与随机粗糙面对电磁波的复合散射.武汉大学学报, 2000, 46(1): 99-103
    [112]向长青,朱国强,杨河林.平板与正弦型组合粗糙面的电磁波复合散射.电波科学学报, 1998, 13(3): 256-260
    [113]朱国强,杨河林.导体条带与周期粗糙面对电磁波的复合散射.武汉大学学报, 1999, 33(3): 103-107
    [114]逯贵祯,冯.峰,宁曰民.小波变换与高斯粗糙表面的电磁散射研究.北京广播学院学报(自然科学版), 2004, 11(3): 1-5
    [115] T. Chiu and S. K. Electromagnetic scattering interaction between leaves and thin. IEEE Trans. Antennas Propagat., 1998, 46: 300-302
    [116]王运华.海面及其与上方目标的复合电磁散射研究.西安电子科技大学博士论文, 2006.8
    [117]郭立新,王运华,吴振森.二维导体微粗糙面与其上方金属平板的复合电磁射研究.物理学报, 2005, 54(11): 5130-5139
    [118]郭立新,王运华,吴振森.等效原理和互易性定理在两个相邻球形目标电磁散射中的应用.物理学报, 2006, 55(11): 5815-5823
    [119] H. X. Ye and Y.-Q. Jin. Fast iterative approach to electromagnetic scattering from the target above a rough surface. IEEE Trans. Geosci. Remote Sens., 2006, 44(1): 108-115
    [120] Y.-Q. Jin and H. Ye, Bistatic scattering from a 3D target above randomly rough surface, in Geoscience and Remote Sensing Symposium, 2007. IGARSS 2007. IEEE International. 2007: 57-60.
    [121]王蕊,郭立新,秦三团,吴振森.粗糙海面及其上方导体目标复合电磁散射的混合算法研究.物理学报, 2008 57(6): 3473-3480
    [122] V. U. Zavorotny and A. G. Voronovich. Two-scale model and ocean radar doppler spectra at moderate and low- grazing angles. IEEE Trans. Antennas Propagat., 1998, 46(1): 84-91
    [123] D. E. Barrick. First-order theory and analysis of MF/HF/VHF scatter from the sea. IEEE Trans. Antennas Propagat., 1972, 20(1): 2-10
    [124] F. G. Bass, et al. Very high frequency radio wave scattering by a disturbed sea surface. IEEE Trans. Antennas Propagat., 1968, 16(5): 554-568
    [125] D. B. Trizna. A model for Doppler peak spectral shift for low grazing angle sea scatter. IEEE J. Oceanic Eng., 1985, 10(4): 368-375
    [126] P. H. Y. Lee, et al. Wind-speed dependence of small-grazing-angle microwave backscatter from sea surfaces. IEEE Trans. Antennas Propagat., 1996, 44(3): 333-340
    [127] A. D. Rozenberg, D. C. Quigley and W. K. Melville. Laboratory study of polarized microwave scattering by surface waves at grazing incidence: the influence of long waves. IEEE Trans. Geosci. Remote Sensing, 1996, 34(6): 1331-1342
    [128] D. Walker., Experimentally motivated model for low grazing angle radar Doppler spectra of the sea surface, in IEE Proc.-Radar. Sonar Navig. 2000: 114-120.
    [129] F. G. Bass, et al. Very high frequency radio wave scattering by a disturbed sea surface. IEEE Trans. Antennas Propagat., 1968, 16(5): 554-568
    [130] J. V. Toporkov and G. S. Brown. Numerical simulations of scattering from time-varying randomly rough surfaces. IEEE Trans. Geosci. Remote Sensing, 2001, 38(4): 1616-1625
    [131] A. D. Rozenberg, D. C. Quigley and W. K. Melville. Laboratory study of polarized micro-wave scattering by surface waves at grazing incidence: Part I-wind waves. IEEE Trans. Geosci. Remote Sensing, 1995, 33(4): 1037-1046
    [132]郭立新,王蕊,王运华,吴振森.二维粗糙海面散射回波多普勒谱频移及展宽特征研究.物理学报, 2008, 57(6): 3464-3471
    [133] E. Thorsos. The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum. J. Acoust. Soc.Am., 1988, 83: 78-91
    [134] X. Wang, C. F. Wang and Y. B. Gan. Electromagnetic scattering from a circular target above or below rough surface. Progress In Electromagnetics Research, 2003, 40: 207-227
    [135] L. Tsang, J. A. Kong and K. H. Ding. Scattering of Electromagnetic Waves. United States of America: John Wiley & Sons. Inc, 2001
    [136] H. X. Ye, Ya-Qiu J. Parameterization of the tapered incident wave for numerical simulation of electromagnetic scattering from rough surface. IEEE Trans. Antennas Propagat., 2005, 53(3): 1234-1237
    [137] C. Bourlier, G. Berginc and J. Saillard. Theoretical study on two-dimensional Gaussian rough sea surface emission and reflection in the infrared frequencies with shadowing effect. IEEE Trans. on Geosci. and Remote Sensing, 2001, 39(2): 379-392
    [138] C. Bourlier, J. Saillard and G. Berginc. Effect of correlation between shadowingand shadowed points on the Wagner and Smith monostatic one-dimensional shadowing functions. IEEE Trans. on Antennas and Propagat., 2000, 48: 1154 -1160
    [139] C. Bourlier and G. Berginc. Shadowing function with single reflection from anisotropic Gaussian rough surface: application to Gaussian, Lorentzian and sea correlations. Waves Random Media, 2003, 13: 27-58
    [140] C. Bourlier, G. Berginc and J. Saillard. Bistatic scattering coefficient from one-and two-dimensional random surfaces using the stationary phase and scalar approximation with shadowing effect: comparisons with experiments and application to the sea surface. Waves in Random Media, 2001, 11: 119-147
    [141] C. Bourlier, G. Berginc and J. Saillard. One and two-dimension shadowing functions for height and slope stationary uncorrelated surface in the monostatic and bistatic configration. IEEE Trans. on Antennas and Propagat., 2002, 50: 312-324
    [142] M. I. Sancer. Shadow-corrected electromagnetic scattering from a randomly rough surface. IEEE Trans. Antennas Propagat., 1969, 17: 577-85
    [143] R. J. Wagner. Shadowing of randomly rough surfaces. J. Opt. Soc. Am., 1986, 41: 138-147
    [144] B. G. Smith. Lunar surface roughness, shadowing and thermal emission. J. Geophys. Res., 1967, 72: 405-67
    [145] C. Bourlier, G. Berginc and J. Saillard. Monostatic and bistatic statistical shadowing functions from a one-dimensional stationary randomly rough surface according to the observation length: I. Single scattering. Waves Random Media, 2002, 12: 145-173
    [146] V. Wismann, et al. Radar signatures of marine mineral oil spills measured by an airborne multi-radar. Int. J. Remote Sens., 2005, 19(3): 3607-3623
    [147] D. G. Blumberg, et al. Soil moisture assessment by an airborne scatterometer in Chernobyl disaster area and Negev Desert, in IGARSS 2000. IEEE 2000 International. 2000. p. 2011-2013.
    [148] I. M. Fuks and A. Voronovitch. Wave diffraction by rough interfaces in an arbitrary plane-layered medium. Waves in Random Media, 2000, 10: S253-S272
    [149] N. Pinel and C. Bourlier. Scattering from very rough layers under the geometric optics approximation: further investigation. Journal of the Optical Society of America A, 2008, 25(6): 1293-1306
    [150] F. Berizzi and E. D. Mese. Scattering from a 2-D sea fractal surface: fractalanalysis of the scattered singal. IEEE Trans. Antennas. Propagat, 2002, 50(7): 912-925
    [151] R. Firoozabadi, E. L. M. C. M. Rappaport and A. W. Morgenthaler. Subsurface sensing of buried objects under a randomly rough surface using scattered electromagnetic field data. IEEE Trans. Geosci. Remote Sensing, 2007, 45(1): 104-117
    [152] L. Zhong-Xin. Bistatic scattering from rough dielectric soil surface with a conducting object partially buried by using the GFBM/SAA method. IEEE Trans. Antennas Propagat., 2006, 54(7): 2072-2080
    [153] Y. Altuncu, I. Akduman and A. Yapar. Detecting and locating dielectric objects buried under a rough interface. IEEE Trans. Geosci. Remote Sensing, 2007, 45(2): 251-255
    [154] O. Cmielewski, et al. On the characterization of buried targets under a rough surface using the wigner-ville transformation. IEEE Trans. Geosci. Remote Sensing letters, 2006, 3(4): 442-446
    [155] K. Sarabandi, M. Dehmollaian and H. Mosallaei. Hybrid FDTD and single- scattering theory for simulation of scattering from hard targets camouflaged under forest canopy. IEEE Trans. Geosci. Remote Sensing, 2006, 44(8): 2072-2082
    [156] J. R. Burkholder, M. R. Pino and F. Obelleiro. A Monte Carlo study of the rough-sea-surface influence on the radar scattering from two-dimensional ships. IEEE Antennas and Propagat., 2001, 43(2)
    [157] J. R. Wang and T. J. Schmugge. An empirical model for the complex dielectric permittivity of soils as a function of water content. IEEE Trans. on Geosci. and Remote Sensing, 1980, 18: 288-295
    [158]姚继欢.粗糙海面的电磁散射研究.西安电子科技大学博士论文, 2000.1
    [159] N. Déchamps and C. Bourlie. Electromagnetic scattering from a rough layer: propagation-inside-layer expansion method combined to an updated BMIA/CAG approach. IEEE Trans. on Antenna and Propagat., 2007, 55(10): 2790-2802
    [160]王蕊,郭立新,王运华.海面与其上方二维目标的复合电磁散射.西安电子科技大学学报(自然科学版), 2007, 34(6): 958-963
    [161] U. Jakobus and F. M. Landstorfer. Improvement of the PO-MM hybrid method by accounting for effects of perfectly conducting wedges. IEEE Trans. Antennas Propagat., 1995, 43(10): 1123-1129
    [162]吴季.电磁波理论.北京:电子工业出版社, 2003
    [163] J. T. Johnson. A numerical study of scattering from an object above a roughsurface. IEEE Trans. Antennas Propagat., 2002, 50(10): 1361-1367
    [164] J. A. Kong. Electromagnetic Wave Theory. New Yark: John Wiley & Sons, 1986
    [165]郭华东等.雷达对地观测理论与应用.北京:科学出版社, 2000,12
    [166]王悦泉,金亚秋.陆地表面粗糙度和土壤湿度多维参数同时反演得遗传算法.遥感学报, 2000, 4(2): 90-94
    [167] K. S. Chen, Y. Z. Tzeng and P. C. Chen. Retrieval of ocean winds from satellite scatterometer by a neural network. IEEE Trans. Geosci. Remote Sensing, 1999, 37(1): 247-256
    [168] M. S. Dawson, et al. Inversion of surface parameters using fast learning neural networks. in Proceedings IGSRSS’92, IEEE, NewYork: 910-912
    [169] Y. Zhang, O. P. Malik and G. P. Chen. Artificial neural network power system stabilizers in multi-machine power system environment. IEEE Trans. on Energy Conversion, 1995, 10(1): 147-155
    [170] K. Sarabandi, E. S. Li and A. Nashashibi. Modeling and measurements of scattering from road surfaces at millimeter-wave frequencies. IEEE Trans. on Antennas and Propagat., 1997, 45(11): 1679-1688
    [171] K. G. Zhao, et al. Retrieval of bare soil surface parameters from simulated data using neural networks combined with IEM, in IEEE2003. 2003. p. 3881~3883.
    [172] Savastano.M, et al. Use of artificial neural networks for optimal sensing in complex structures analysis, in Instrumentation and Measurement Technology Conference,1994 IEEE,. 1994. p. 127-130.
    [173] Y. Guo, et al. Evolutionary neural networks applied to land-cover classification in Zhaoyuan, China, in IEEE Symposium on Computational Intelligence and Data Mining. 2007: 499-503.
    [174] T. Dogaru and L. Carin. Time-domain sensing of targets buried under a rough air- ground interface. IEEE Trans. on Antennas and Propagat., 1998, 46(3): 360-372
    [175] A. V. Merwe and J. G. I. A novel signal processing technique for clutter reduction in GPR measurements of small, shallow land mines. IEEE Trans. on Geosci. and Remote Sensing, 2000, 38(6): 2627-2637
    [176] M. A. Sletten, D. B. Trizna and J. P. Hansen. Ultrawide-band radar observations of multipath propagation over the sea surface. IEEE Trans. on Antennas and Propagat., 1996, 44(5): 646-651
    [177]郭立新,柯熙政,吴振森.一维随机粗糙面电磁散射的小波矩量解.西安电子科技大学学报(自然科学版), 2000, 27(5): 586-589
    [178] W. Yunhua, G. Li-xin and W. Qiong. Electromagnetic scattering from two parallel2-D targets arbitrarily located in a Gaussian beam. Chinese Physics, 2006, 15(8): 1755-1765
    [179] D. A. Kapp and G. S. Brown. A new numerical method for rough surface scattering calculations. IEEE Trans. Antennas Propagat., 1996, 44(5): 711-721
    [180] J. V. Toporkov, R. T. Marchand and G. S. Brown. On the discretization of the integral equation describing scattering by rough conducting surface. IEEE Trans. Antennas Propagat., 1998, 46(1): 150-161
    [181] Z. Li. and J. Y. Q. Bistatic scattering and transmitting through a fractal rough surface with high permittivity using the physics based two-grid method in conjunction with the forward-backward method and spectrum acceleration algorithm. IEEE Trans. on Antennas and Propagat., 2002, 50(9): 1323-1327
    [182] P. Liu and Y. Q. Jin. The finite-element method with domain decomposition for electromagnetic bistatic scattering from the comprehensive model of a ship on and a target above a large scale rough sea surface. IEEE Trans. on Geosci. and Remote Sensing, 2004, 42(5): 950-956
    [183] Z. Liu, R. J. Adams and L. Carin. Well-conditioned MLFMA formulation for closed PEC targets in the vicinity of a half space. IEEE Trans. on Antennas and Propagat., 2003, 51(10): 2822-2829
    [184] J. A. Kong. Electromagnetic Wave Theory. New York: Wiley & Sons, 2000
    [185] K. Sarabandi and P. F. Polatin. Electromagnetic scattering from two adjacent objects. IEEE Trans. Antennas Propagat., 1994, 42(4): 510-517
    [186] T. Johnson J, T. J. V and B. G. S. A numerical study of backscattering from time- evolving sea surfaces: Comparison of hydrodynamic models. IEEE Trans. on Geosci. and Remote Sensing, 2001, 39(11): 2411-2419
    [187] Ji Chen, et al. The use of fractal for modeling EM waves scattering from rough sea surface. IEEE Trans. on Geosci. and Remote Sensing, 1996, 34(4): 966-972
    [188] J. C. Chao, et al. General formulation for light scattering by a dielectric body near a perfectly conducting surface. J. Opt. Soc. Am.. A, 1996, 13(2): 338-344
    [189] P. Xu and T. L. Scattering by rough surface using a hybrid technique combining the multilevel UV method with the sparse matrix canonical grid method. Radio Sci., 2005, 40(4): 1-17
    [190] M. R. Pino, et al. Application of the fast multipole method to the generalized forward-backward iterative algorithm. Microwave and Optical Technology Letters, 2000, 26(2): 78-83
    [191] Z. Q. Zhao, et al. Analysis of scattering from very large three-dimensional roughsurfaces using MLFMM and ray-based analyses. IEEE Antennas and Propagat. Magazine, 2005, 47(3): 20-30
    [192] B. P. Rynne. Time domain scattering from arbitrary surfaces using the electric field integral equation. J. Electromagnetic Waves Appl., 1991, 5: 93-112
    [193] Rynne B P and S. P. D. Stability of time marching algorithms for the electric field integral equation. J. Electromagn. Waves Appl., 1990, 4(12): 1181-1205
    [194] Rao S M and S. T. K. Time domain modeling of two dimensional conducting cylinders utilizing an implicit scheme-TM incident. Microwave Opt. Technol. Lett., 1997, 15(6): 342-347
    [195] S. M. Rao, D. A. Vechinski and T. K. Sarkar. Transient scattering by conducting cylinders-implicit solution for the transverse electric case. Microwave Opt. Technol. Lett., 1999, 21(2): 129-134
    [196] M. D. Pocock, M. J. Bluck and S. P. Walker. Electromagnetic scattering from 3-D curved dielectric bodies using time-domain integral equations. IEEE Trans. Antennas Propagat., 1998, 46: 1212-1219
    [197] D. A. Vechinski and S. M. Rao. A stable procedure to calculate the transient scattering by conducting surfaces of arbitrary shape. IEEE Trans. Antennas Propagat., 1992, 40(6): 661-665
    [198] S. M. Rao and W. D. R. Transient scattering by conducting surfaces of arbitrary shape. IEEE Trans. Antennas Propagat., 1991, 39(1): 56-61
    [199] S. M. Rao. Time domain electromagnetic. San Diego Academic Press, 1999
    [200]任玉超,郭立新.双频互相干函数及在粗糙面脉冲散射中的应用.中国科学G辑:物理学,力学,天文学, 2007, 37(5): 582-589
    [201] D. R. Wilton, S. M. Rao and A. W. Glisson. Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains. IEEE Trans. Antennas Propagat., 1984, 32(3): 276-281
    [202] W. C. Chew, Waves and fields in inhomogeneous media, in IEEE Press 1995. 1995: New York.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700