高频电磁散射建模方法及工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目标与环境电磁散射特性是军事信息中最重要、最基本的资源之一,而电磁散射建模是获取这种特性的一种重要手段。与数值方法相比,高频近似方法在计算复杂电大目标电磁散射特性方面具有物理意义清晰、计算效率高等显著的优势。本文围绕实际工程应用中所关注的雷达散射截面(RCS)、宽带雷达回波以及雷达目标角闪烁等特征的快速、高效、准确建模问题,对高频方法的关键技术、工程实现和方法的适用性等问题展开了系统的研究。
     首先综述了电磁散射建模的数值方法,时、频域高频方法以及角闪烁建模方法的发展现状,指出了电磁散射建模的应用方向以及需要解决的问题。
     围绕目标几何建模的工程化要求,研究了复杂目标的CAD建模方法、三角平面元网格和参数曲面网格的模型生成和处理技术,比较了各种几何建模技术的优缺点。针对电大复杂目标的电磁散射计算问题,研究了复杂目标电磁散射的频域高频建模理论和实现方法,主要包括基于三角平面元模型的一次反射、一次绕射和多次反(绕)射的的计算方法和工程实现,基于板块模型的区域投影法以及基于NURBS参数曲面模型的物理光学(PO)计算方法,并对这三类方法的适用范围及其工程应用方向进行了分析。
     针对雷达目标宽带RCS的快速计算和宽带雷达回波实时仿真等工程需求,研究了复杂目标电磁散射的时域高频建模理论和计算方法,提出了具有极高的效率的短脉冲等效和欠采样加速的计算方法。
     针对复杂目标角闪烁建模的问题,依据电磁散射理论,推导了相位梯度法(PGM)、坡印亭矢量法(PVM)以及基于单脉冲雷达测角原理的角闪烁一般计算公式,首次将天线的极化效应引入到角闪烁计算的PVM中。在此基础上,比较了三种方法之间的等价关系,从而完善了对角闪烁产生机理的解释。
     通过对上述成果的集成,开发了两套软件系统,即雷达目标特性预估系统和靶标目标特性分析系统,简要介绍了软件的功能、设计思想以及工程用例。目前,这两套软件已在实际工程中获得应用和持续的验证。最后,对本文的工作进行了总结,并指出了今后需要进一步完善和深入研究的工作。
The electromagnetic (EM) scattering features of target and environment are one of the most important and essential resources for the martial information, and EM modeling is an important mean to obtain these features. Compared with the numerical method, high frequency method has the dominant advantages of clearer physical meaning and higher efficiency for the computation of EM scattering feature of electrically large complex target. Concerning the fast, efficient and accurate modeling of radar cross section (RCS), wide-band radar echo and radar target glint in actual engineering application, the key technique, realization and the applicability of high frequency method are studied by the numbers in this paper.
     Firstly, the status quo of numerical method, time and frequency domain high frequency methods, and computation of angular glint is summarized, and the applied fields and problems to be solved of EM modeling are presented.
     Concerning the engineering need of geometrical modeling, the CAD modeling method of complex target and the creating and handling techniques of the mesh based on the triangle plates and the parametric curved surfaces are studied, and the merits and demerits of these methods are compared.
     Aimed at the computation of scattering for the electrically large complex target, the theory and realization of high frequency method, including the computation and implementation of primary and multiple reflections, and diffractions, the region projection method based on polygon model, and physical optic (PO) method based on NURBS parametric surface model, is studied. Furthermore, the scope of application and the practical aspect of these methods are analyzed in detail.
     Concerning the fast computation of wide-band RCS for radar target and real time simulation of wide-band radar echo, the time domain high frequency method is researched. Furthermore, a high efficient method based on short pulse equivalence and subsampling acceleration is presented.
     For the computation of the complex target angular glint, the gengral formulaes of phase gradient method (PGM), poynting vector method (PVM) and monopulse radar angular glint base on angular measurement theory is deduced base on electromagnetic scattering theory. The polarization effect of the receiving antenna is firstly introduced into the PVM for angular glint computation to consummate three methods are compared and alalyzed.
     Two software suits, radar target signature prediction system and drones features analyzing system, have been developed by integrating all the theory mentioned above. The basic function, considerations in design and some example abe briefly introduced. At present, the software suites have been applied and verified in engineering practice.
     Finally, all works mentioned above are concluded and future researches are also addressed.
引文
1.黄培康等,雷达目标特征信号,北京:宇航出版社,1993年.
    2.黄培康等,雷达目标特性,北京:电子工业出版社,2004.
    3. E.F克拉特等著,阮颖铮译.雷达散射截面——预估、测量和减缩,北京:电子工业出版社,1988.
    4.阮颖铮,雷达截面与隐身技术,北京:国防工业出版社,2001.
    5.庄钊文,袁乃昌,雷达散射截面测量-紧凑场理论与技术,长沙:国防科技大学出版社,2000.
    6.楼仁海,工程电磁理论,国防工业出版社,1991.
    7. R. F. Harrington, Time-Harmonic Electromagnetic Field, McGraw-Hill, New York, 1961.
    8. J. J. H. Wang, Generalized Moment Method in Electromagnetics: Formulation and Computer solution of Integral Equation, J. Wiley, 1990.
    9.盛新庆著,计算电磁要论,北京:科学出版社,2004.
    10. R. F. Harrington, Field Computation by Moment Methods, Macmillan, New York, 1968.
    11. E. K. Miller, L. M. Mitschang and E. H. Newman, Computational Electromagneties: Frequeney- Domain Method of Moments, NewYork: IEEE Press, 1992.
    12. S. M. Rao, D. R. Wilton and A. W. Glisson, Electromagnetic Scattering by Surfaces of Arbitrary Shape, IEEE Trans. Antennas Propagat. 1982 32(5) : 409-418.
    13. S. M. Rao, Electromagnetic scattering and radiation of arbitrary shape surfaces by triangular patch modeling, Ph. D. Dissertation, University of Mississippi, August 1980.
    14. K. Umashankar, A. Taflove, S. M. Rao, Electromagnetic Scattering by Arbitrary Shaped Three-Dimensional Homogeneous Lossy Dielectric Objects, IEEE Trans. Antennas Propagat. , 1986, 34(6) : 758-765.
    15. D. H. Schaubert, D. R. Wilton and A. W. Glisson, A Tetrahedral Modeling for Electromagnetic Scattering by Arbitrary Shaped Homogeneous Dielectric Bodies, IEEE Trans. Antennas Propagat. 1984, 32(1) : 77-85.
    16. L. Valle, F. Rivas, M. F. Catedra, Combining the Moment Method with Geometrical Modeling by NURBS Surface and Bézier Patches, IEEE Trans. Antennas Propagat., 1994, 42(4) : 373-381.
    17. S. Wandzura, Electric current basis functions for curved surfaces, Electromagnetics, 1992,12 : 77-91.
    18.葛德彪,闫玉波.电磁波时域有限差分方法,西安:西安电子科技大学出版社, 2002.
    19. A. Taflove. Advances in Computational Electromagnetics: The FDTD Method. Norwood, MA: Artech House, 1998
    20. A. Taflove, Compuitational Electrodynamics: The Finite-Difference Time-Domain Method. Norwood, MA: Artech House, 1995.
    21.高本庆.时域有限差分法.北京:国防工业出版社,1995。
    22. Jin J M. The Finite Element Method in Electromagnetics. New York: Wiley, 1993。
    23.金建铭著,王建国译,葛德彪校,电磁场有限元方法,西安:西安电子科技大学出版社, 1998。
    24. A. Chatterjee A, J. M. Jin and J. L. Vol.akis, Edge-based finite elements and vector ABCs applied to 3D scattering, IEEE Trans. Antennas Propagat. 1993, 41(2) : 221-226.
    25. V. Rokhlin. Rapid solution of integral equations of scattering theory in two dimensions. Journal of Computational physics, 1990, 86: 414-439.
    26. N. Engheta. W. D.Murphy, V. Rokhlin, etc. The fast multipole method(FMM) for electromagnetic scattering problems. IEEE Trans Antennas Propagat. 1992, 40(6) : 634-641.
    27. J. M. Song and W. C. Chew. Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering. Microwave and Optical Tech. Letter, 1995, 10 : 14-19.
    28. J. M. Song, C. C. Lu, W. C. Chew and S. W. Lee. Introduction to Fast Illinois Solver Code (FISC). IEEE Antennas Propagation Symposium, 1997:48-51.
    29. J. M. Song, C. C. Lu., W.C. Chew, S.W. Lee, Fast Illinois Solver Code (FISC), IEEE Antennas and Propagation Magazine, 1998, 40(3).
    30. C. C. Lu, W. C. Chew. Fast algorithm for solving hybrid integral equations. IEE PROCEEDINGS-H, 1993, 140(5) : 455-460.
    31. R. Coifman, V. Rokhlin, S. Wandzura, The fast multipole method for the wave equation: a pedestrian prescription, IEEE On Antennas and Propagation Magazine, 1993, 35(3): 7-12.
    32. C. Y. Shen, K. J. Glover, M. I. Sancer, A. D. Varvatsis. The Discrete Fourier Transform Method of Solving Differential-Integral Equations in Scattering Theory. IEEE Trans. Antennas Propagat.,1989, 37(8):1032-1041.
    33. M. F. Catedra, E. Cago, L. Nuno. A Numerical Scheme to Obtain the RCS of Three-Dimensional Bodies of Resonant Size Using the Conjugate Gradient Method and the Fast Fourier Transform. IEEE Trans. Antennas and Propagat.,1989, 37(5): 528-537.
    34. M. F. Catedra, R. P. Torres, J. Basterrechea, E. Cago, The CG-FFT Method: Application of Signal Processing Techniques to Electromagnetics. Artech House, 1995.
    35. E. Bleszynski, M. Bleszynski, andT. Jaroszewicz. AIM: Adaptive integral method for solving large-scale electromagnetic scatting and radiation problems, Radio Science, 1996, 31: 1225-1251.
    36. F. Ling, C. F. Wang, J. M. Jin, Application of adaptive integral method to scattering and radiation analysis of arbitrarily shaped planar structures, J. Electromagn. Waves Appl., 1998, 12: 1021-1037.
    37. V. V. S. Prakash and R. Mittra, Characteristic basis function method: A new technique for efficient solution of method of moment matrix equation, Microw. Opt. Techno. Lett. 2003 36(2): 95–100.
    38. E. Lunente, A. Monorchio, and R. Mittra, An iteration-free MoM approach based on excitation independent characteristic basis functions for solving large multiscale electromagnetic scattering problems, IEEE Trans. Antennas Propagat., 2008, 56(4): 999-1007.
    39. C. Delgado, M. F. Cátedra and R. Mittra, Application of the Characteristic Basis Function Method Utilizing a Class of Basis and Testing Functions Defined on NURBS Patches, IEEE Trans Antennas Propagat., 2008, 56(3): 784-791.
    40. C. Delgado, M. F. Cátedra, and R. Mittra, Efficient Multilevel Approach for the Generation of Characteristic Basis Functions for Large Scatters, IEEE Trans Antennas Propagat. 2008, 56(7): 2134-2137.
    41. M. Djordjevic, B. M. Notaros, Double Higher Order Method of Moments for Surface Integral Equation Modeling of Metallic and Dielectric Antennas and Scatterers, IEEE Trans Antennas Propagat., 2004, 52(8): 2118-2129.
    42. R. D. Graglia D. R. Wilton and A. F. Peterson, Higher Order Interpolatory Vector Bases for Computational Electromagnetics, IEEE Trans. Antennas Propogat., 1997, 45(3): 329-342.
    43. E. Jorgensen, J. L. Volakis, P. Meincke and O. Breinbjerg, Higher Order Hierarchical Legendre Basis Functions for Electromagnetic Modeling, IEEE Trans. AntennasPropogat., 2004, 52(11) : 2985-2994.
    44.王新民,合成孔径雷达原始回波模拟的研究[博士论文],中国科学院电子学研究所,2007.
    45. P. A. Lees and M. R. Davies, Computer prediction of RCS for military targets, IEE Proc. 1990, 137(F4): 229-236.
    46. N. N. Youssef, Radar Cross Section of Complex Targets, Proceeding of The IEEE, 1989, 77(5): 722-734.
    47. E. F. Knot, A Progression of High-Frequency RCS Prediction Techniques, Proceeding of IEEE, 1985, 73(2): 252-264.
    48. James M. Roedder, CADDSCAT Version 2.3: A High-Frequency Physical Optics Code Modified for Trimmed IGES B-Spline Surfaces, IEEE Antennas and Propagation Magazine, 1999, 41(3): 73-79.
    49. M. Domingo, F. Rivas, Computation of the RCS of Complex Bodies Modeled Using NURBS Surfaces, IEEE Antennas and Propagate Magazine, 1995, 37(6): 36-47.
    50. John L. Volakis, XPATCH: A High-Frequency Electromagnetic-Scattering Prediction Code and Environment for complex Three-Dimensional Objects, IEEE Antennas and Propagation Magazine, 1994, 36(1): 65-69.
    51. D. Andersh, J. Moore, Xpatch 4: The Next Generation in High Frequency Electromagnetic Modeling and Simulation Software, IEEE International Radar Conference, 2000: 844-849.
    52. D. M. Elking, J. M. Roedder, D. D. Car, and S. D. Alspach, A Review of High-Frequency Radar Cross Section Analysis Capabilities at McDonnel Douglas Aerospace, IEEE Antennas and Propagation Magazine, 1995, 37(5): 33-43.
    53. S. D. Turner, RESPECT: Rapid electromagnetic scattering predictor for extremely complex targets, IEE Proc. Part F, 1990, 137(4).
    54. J. M. Rius, M. Ferrando and L. Jofre, GRECO: Graphical Electromagnetic computing for RCS Prediction in Real Time, IEEE Antennas and Propagation Magazine, 1993, 35(2): 7-17.
    55. W. C. Chew, J. M. Jin, E. Michellsen, and J. M. Song, Fast and Efficient Algorithms in Computational Electromagnetics. Boston: Artech House Publishers, July 2001.
    56.曾余庚,刘京生,张雪阳,边界元与有限元,西安:西安电子科技大学出版社,1991.
    57. A. Deshamps, Ray Technique in Electromagnetics, Proceedings of the IEEE, 1972, 60(9).
    58.汪茂光,几何绕射理论(第二版),西安:西安电子科技大学出版社, 1994。
    59. A. Michaeli, Equivalent Edge Currents for Arbitrary Aspects of Observation, IEEE Trans Antennas Propaga., 1984, 32(3): 252-258.
    60. A. Michaeli, Elimination of infinities in equivalent edge currents, Part 1: Fringe current components, IEEE Trans. Antennas Propagat., 1986, 34(7): 912-918.
    61. E. F. Knott, The Relationship between Mitzner’s ILDC and Michaeli’s Equivalent Currents, IEEE Trans Antennas Propaga., 1985, 33(1): 112-114.
    62. E. F. Knott and T. B. A. Senior, Comparison of Three High-Frequency Diffraction Techniques, Proceeding of The IEEE, 1974, 62(11).
    63. R. G. Kouyoumjian and P. H. Pathak, A Uniform Geometrical Theory of Diffraction for an Edge in a Perfectly Conducting Surface, Proceeding of IEEE, 1974, 62(11):.1448-1461.
    64. U. Jakobus and F. M. Landstorfer, Improved PO-MM hybrid formulation for scattering from three-dimensional perfectly conducting bodies of arbitrary shape, IEEE Trans Antennas Propaga., 1995, 43(2): 162-169.
    65. U. Jakobus and F. M. Landstorfer, Improvement of the PO-MM hybrid method by accounting for effects of perfectly conducting wedges, IEEE Trans Antennas Propaga., 1995, 43(12): 1123-1129.
    66. J. M. Taboada, and P. Obelleiro, Including multibounce effects in the moment-method physical-optics (MMPO) method, Microwave Optical Tech. Letter, 2002, 20(3): 435-439.
    67. Geng Fangzhi, Dong Chunzhu, et al, A Hybrid SBR/PO-MoM Technique for Analysis of Scattering from Complex Conducting Target, IEEE AP-S International Symposium 2007, Hawaii, USA, June 10-15.
    68. R. E. Hodges, A Current-Based Hybrid Method for Electromagnetic Modeling of Complex Structures. PhD thesis, Univ. California, Los Angeles, USA, 1996.
    69. D. H. Han, Finite Element-Based Hybrid Electromagnetic Methods for Electrically Large, Complex Scattering and Radiation Structures, PhD thesis, Arizona State University, USA, 2001.
    70.施法中,计算机辅助几何设计与非均匀有理B样条(CAGD&NURBS),北京:北京航空航天大学出版社,1994.
    71.朱心雄,自由曲线曲面造型技术,北京:科学出版社,2000.
    72. En-Yuan Sun and W. V. T. Rusch, Time-domain physical optics, IEEE Trans. Antennas Propagat., 1994, 42(1): 9-14.
    73. En-Yuan Sun, Transient analysis of large paraboloidal reflector antennas, IEEE Trans. Antennas. Propagat. , 1994, 43(12): 1491-1496.
    74. T. W. Verutipong, Time domain version of the uniform GTD, IEEE Trans. Antennas Propagat. 1990, 38(11): 1757-1764.
    75. P. M. Johansen, Time-Domain version of the physical theory of diffraction, IEEE Trans. Antennas Propagat. 1999, 47(2): 261- 270.
    76. A. Altintas and P. Russer, Time-Domain Euqivalent Edge Currents for Transient Scattering”, IEEE Trans. Antennas Propagat. 2001, 49(4): 602-606.
    77. D. K. Barton, Modern Radar System Analysis, Dedham, MA: Artech House, 1988.
    78.黄培康,殷红成,扩展目标的角闪烁,系统工程与电子技术, 1990, 12(1): 1-17.
    79. D. D. Howard, Radar target glint in tracking and guidance system based on echo signal phase distortion, Proc. NEC, 1959, 15: 840-849.
    80. J. H. Dunn and D. D. Howard, Radar target amplitude, angle, and Doppler scintillation from analysis of the echo signal propagating in space, IEEE Trans. on Microwave Theory and Techniques, 1968, 16(9): 716-728.
    81. J. E. Lindsay, Angular glint and the moving, rotating, complex radar target, IEEE Trans. Aerospace and Electronic Systems, 1968, 4(2): 164-173.
    82. L. A. Gram, Modelling methods of determining radar echo characteristics, NATO, AGAGD-LS-59, Sept.1973.
    83.殷红成,邓书辉,阮颖铮等,利用后向散射回波相对相位计算角闪烁的条件,电子学报,1996, 9:36-40.
    84.巢增明,目标角闪烁测试技术,目标与环境特性研究, 1997, 1: 21- 31.
    85. H. C. Yin and P. K. Huang, Unification and comparison between two concepts of radar target angular glint, IEEE Trans Aerospace Electronic Systems, 1995, 31(2): 778-783.
    86.夏应清,杨河林等,雷达目标角闪烁与预估计算,电波科学学报, 2003, 1: 111-115.
    87.方宁,宁焕生等,复杂目标可视化角闪烁偏差计算,北京航空航天大学学报,2006, 32(2): 186-189.
    88. Mittra, R., et al, Analytic Target Modelling, AD-755854, 1972。
    89. P. J. Kajenski, Comparison of two theories of angle glint: polarization consideration, IEEE Trans on Aerospace and Electronic Systems, 2006, 42(1): 206-210.
    90. H C Yin and P. K. Huang, Further comparison between two concepts of radar target angular glint, IEEE Transc on Aerospace and Electronic Systems, 2008, 44(1): 372-380.
    91.王超,殷红成等,从极化的观点讨论复杂目标角闪烁的计算方法,系统工程与电子技术. 2008, 30(7): 1195-1199.
    92.殷红成,黄培康,王超,再论扩展目标的角闪烁,系统工程与电子技术, 2007, 29(4): 499-504.
    93. C. Wang, H. C. Yin, P. K. Huang, Comparison between two concepts of angular glint: general considerations, Journal of Systems Engineering and Electronics, 2008, 19(4): 635-642.
    94. Gabriel Taubin, Estimating the Tensor of Curvature of a Surface from a Polyhedral Approximation, IEEE 5th International Symposium, 325-328, Aug, 2000.
    95.神会存,李建华,周来水,三角网格模型顶点法矢与离散曲率计算,计算机工程与应用2005, 26: 12-15.
    96.曹毓秀,孙廷奎,唐龙,唐泽圣,三角域Bézier算法研究,清华大学学报(自然科学版),2001, 41(7): 83-86.
    97.李华,CAGD中的形状控制与几何连续性,博士论文,中国科学院计算技术研究所,1989。
    98. S. W. Lee, H. Ling and R. Chou, Shooting and Bouncing Rays: Calculating the RCS of an Arbitrarily Shaped Cavity, IEEE Trans Antennas and Propagat, 1989, 37(2): 194-205.
    99. S. W. Lee, Ray-tube integration in shooting and bouncing ray method, Microwave Optical Tech. Letter, 1988, 1(8): 286-289.
    100.孙家广等,计算机图形学,第三版,清华大学出版社, 1998
    101. J. D. Foley, A. v. Dam, S. K. Feiner etc.,计算机图形学原理和实践,机械工业出版社,北京, 2002.
    102. P. Muigg, M. Hadwiger, H. Doleisch and H. Hauser, Scalable Hybrid Unstructured and Structured Grid Raycasting, IEEE Trans Visual Comput. Graph, 2007, 13(6): 1592-1599.
    103. X. Yang, D. Q. Xu, L. Zhao, Ray Tracing Dynamic Scenes using fast KD-tree Base on Multi-Core Architectures, International Conference on Computer Science and Software Engineering, 1120-1123, 2008.
    104. A. Reshetov, Omnidirectional Ray Tracing Traversal Algorithm for kd-trees, IEEESymposium on Interactive Ray Tracint, 57-60, 2006.
    105. W. B. Gordon, Far-Field Approximation to the Kirchoff-helmholtz Representation of scattered Field, IEEE Trans Antennas and Propagat, 1975, 23(7): 590-592.
    106. E. F. Knott, RCS reduction of dihedral corners, IEEE Trans. Antennas Propagat., 1977, 25(3): 406-409.
    107. W. C. Anderson, Consequences of Nonorthogonality on the Scattering Properties of Dihedral Reflectors, IEEE Trans. Antennas Propagat., 1987, 35(10).
    108. C. A. Balanis, L. A. Polka and A. C. Polycarpou, High-frequency Techniques for RCS Prediction of Plate Geometries and a Physical Optics/Equivalent Currents Model for the RCS of Trihedral Corner Reflectors, NASA-CR-195140 NO:TRC-EM-CAB-9402, 1994.
    109. G. Ferrara, F. Mattia and F. Posa, Backscattering study on non-orthogonal trihedral corner reflectors, IEE Porp.-Microw., Antennas Propagat., 1995, 142(6).
    110.应维云,张乐年,Trimmed NURBS曲面造型方法的基础研究,航空精密制造技术, 1997, 33(4).
    111. J. Pérez and M. F. Cátedra, Application of Physical Optics to the RCS Computation of Bodies Modeled with NURBS Surfaces, IEEE Transaction Antennas Propagat, 1994, 42(10): 1404-1411.
    112.费元春,素光穿等,“宽带雷达信号产生技术”,国防工业出版社,北京,2002.
    113. R. J. Sullivan, MicrowaveRadar : imaging and advanced concepts, Artech house,Inc, 2000.
    114.А.И.列昂诺夫,单脉冲雷达,黄虹译,国防工业出版社,1974年。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700