目标与粗糙面复合电磁散射特性的快速数值算法建模
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海面(或地面)环境中目标电磁散射特性,对实际战场环境下军用目标的雷达探测、雷达特性形成以及雷达目标识别等技术具有基础支撑作用;因此,粗糙面环境下目标雷达特性建模与算法研究自然成为既具有重要理论意义,又具有重大实际应用价值的现代计算电磁学前沿应用课题之一。本文分别针对二维和三维目标与粗糙面复合电磁散射问题,在矩量法(MOM)的框架下开展建模和快速数值求解方法研究。求解二维标量波散时,引入多层UV (MLUV)的矩阵分解技术和稀疏矩阵规范网格方法(SMCG)方法加速求解过程,包括矩阵元素快速填充及矩阵方程的快速迭代求解。在三维目标和粗糙面复合电磁散射特性建模时,采用基于表面电流的矢量基函数(RWG)离散表面积分方程,针对此时震荡积分核使传统的UV分解技术失效的问题,提出了基于电磁相互作用的排序粗取样UV分解算法,其中等弧长粗取样算法的自适应特性能满足各种复杂电磁相互作用精确计算的要求,有效地解决了因震荡积分核导致UV分解失效的问题。将原来的标量UV算法发展为三维矢量UV算法,形成了粗糙面环境下目标电磁散射建模的高效、高精度三维矢量多层UV (3DMLUV)建模方法。文中详细分析了目标与粗糙面之间复杂电磁相互作用的机理与对应的物理过程,并通过仿真实例验证了本文建模方法的准确性、有效性。
     本文主要内容包括:
     1)研究了二维目标与一维随机粗糙面复合电磁散射特性的MLUV-SMCG混合算法建模。并针对矩阵方程迭代收敛慢的问题,提出了快速代入迭代(FSIA)过程加速求解,形成了快速的MLUV-SMCG-FSIA混合方法。数值模拟了一维导电P-M海谱粗糙面上方导电圆柱和方柱目标的双站雷达散射截面(Bi-RCS),比较和分析了不同极化入射波下的粗糙面上方不同电尺寸目标的复合电磁散射特性。
     2)研究了PEC情况下三维目标与二维随机粗糙面复合电磁散射特性的算法建模,针对三维矢量波散射,发展了原有的标量UV方法,提出了基于电磁相互作用的高效、精确的3DMLUV建模方法。数值模拟了二维随机粗糙面上方导电立方体、球体以及粗糙面上三维简化船只目标的Bi-RCS;通过与导电平板上相同目标复合散射特性的比较,对电磁相互作用特性进行具体分析;此外还讨论了粗糙面的粗糙度对复合散射的影响。
     3)研究了二维介质粗糙面上任意三维介质/PEC目标复合电磁散射特性的算法建模,针对介质问题,结合快速互耦迭代方法(FIA),提出了3DMLUV-FIA算法建模。数值模拟了单独介质体、单独介质粗糙面和体/面组合散射的双站雷达散射截面,通过与MOM和其它快速算法的比较,表明在介质散射问题求解中,3DMLUV-FIA算法具有稳定、准确和高效的特点。
The study of composite electromagnetic scattering from target and rough surface combined model has wide applications in radar target identification and microwave remote sensing. Therefore, simulation of scattering characteristics from the target under the rough surface environment is of great value in both theory study and practical applications. The scattering from the large size target and rough surface composite model for both two-dimensional and three-dimensional problems is investigated in this paper. For two-dimensional problem, based on the MOM,the multilevel UV (MLUV) matrix decomposition technique is combined with sparse matrix canonical grid (SMCG) method to implement the fast computation of impedance matrix elements and the iterative solution of matrix equation. While for three-dimensional vector wave scattering problems, an EM-interaction-based sampling algorithm is developed to overcome the difficulties brought by the oscillation of the interaction matrix elements which invalidate the conventional UV decomposition technique. The numerical simulation includes the composite radar cross section (RCS) evaluation and the radar wide-band imaging of the target and rough surface model; the complex electromagnetic mutual interactions between the target and the rough surface are analyzed in details and the hybrid method proposed in this paper is verified through the numerical examples.
     The main content of this paper includes the following parts:
     1. The hybrid MLUV-SMCG-FSIA method is proposed for the composite electromagnetic scattering from the 2-D target and rough surface combined model. The bistatic radar cross section (Bi-RCS) of the cylinder and the square cylinder above the P-M rough sea surface is numerically simulated and the composite scattering from different size targets above rough surface under different incident wave polarization is compared and analyzed.
     2. The 3-D multilevel UV method (3DMLUV) is proposed for the vector wave scattering from PEC target and rough surface composite model. The Bi-RCS of a cube and a sphere above the random rough surface and a simple 3-D ship on the rough surface is numerically simulated and compared with target and the planar surface model case. The influence from the roughness of the underlying surface to the scattering is discussed.
     3. The 3DMLUV-FIA method is proposed for the vector wave scattering from the 3-D PEC or dielectric target and dielectric rough surface composite model. The Bi-RCS of single dielectric target, single dielectric rough surface and volume/area combined scattering is numerically simulated. The characteristics of 3DMLUV-FIA method in stability, accuracy and efficiency are demonstrated by comparing with the full method of moment (MOM) and other fast algorithms.
引文
[1]朱国强,曹秦峰,杨河林,“正弦粗糙面上方平板的电磁波散射”,武汉大学学报(自然科学版),1996年第5期.
    [2]M.R. Pino, R.J.Burkholder and F. Obelleiro, "Spectral Acceleration of the Generalized Forward-Backward Method," IEEE Trans. Antennas Propag., vol.50, no.6, pp.785-797,2002.
    [3]J. T. Johnson, "A numerical study of scattering from an object above a rough surface," IEEE Trans. Antennas Propag., vol.50, no.10, pp.1361-1367,2002.
    [4]P., Liu, and Y. Q. Jin, "Numerical simulation of bistatic scattering from a target at low altitude above rough sea surface under an EM-wave incidence at low grazing angle by using the finite element method," IEEE Trans. Antennas Propag., vol.52, no.5, pp.1205-1210,2004.
    [5]Hongxia Ye; Ya-Qiu Jin;, "Fast iterative approach to difference scattering from the target above a rough surface," IEEE Trans. Geosci. Remote Sens., vol.44, no.l, pp.108-115, Jan.2006
    [6]阮颖铮,雷达散射截面与隐身技术,国防工业出版社,2001.
    [7]R. F. Harrington, Field Computation by Moment methods, New York:Macmillan,1968.
    [8]Deng, F.-S.; He, S.-Y.; Chen, H.-T.; Hu, W.-D.; Yu, W.-X.; Zhu, G.-Q.;, "Numerical Simulation of Vector Wave Scattering From the Target and Rough Surface Composite Model With 3-D Multilevel UV Method," IEEE Trans. Antennas Propag., vol.58, no.5, pp.1625-1634, May 2010.
    [9]Broschat, S.L.; "The small slope approximation reflection coefficient for scattering from a "Pierson-Moskowitz" sea surface," IEEE Trans. Geosci. Remote Sens., vol.31, no.5, pp.1112-1114, Sep 1993.
    [10]West, J.C.;"Analysis of the iterative Kirchhoff approximation for rough surface scattering," Geoscience and Remote Sensing Symposium,1999. IGARSS'99 Proceedings. IEEE 1999 International, vol.5, no., pp.2410-2412 vol.5,1999.
    [11]Collaro, A.; Franceschetti, G.; Migliaccio, M.; Riccio, D.; "Gaussian rough surfaces and Kirchhoff approximation," IEEE Trans. Antennas Propag., vol.47, no.2, pp.392-398, Feb 1999.
    [12]Toporkov, J.V.; Brown, GS.; "Numerical study of the extended Kirchhoff approach and the lowest order small slope approximation for scattering from ocean-like surfaces:Doppler analysis," IEEE Trans. Antennas Propag., vol.50, no.4, pp.417-425, Apr 2002.
    [13]Sultan-Salem, A.K.; Tyler, GL., "Validity of the Kirchhoff approximation for electromagnetic wave scattering from fractal surfaces," IEEE Trans. Geosci. Remote Sens., vol.42, no.9, pp.1860-1870, Sept.2004.
    [14]Holliday, D., "Resolution of a controversy surrounding the Kirchhoff approach and the small perturbation method in rough surface scattering theory," IEEE Trans. Antennas Propag., vol.35, no.l, pp.120-122, Jan 1987.
    [15]Tabatabaeenejad, A.; Moghaddam, M.,"Study of Validity Region of Small Perturbation Method for Two-Layer Rough Surfaces," Geoscience and Remote Sensing Letters, IEEE, vol.7, no.2, pp.319-323,Apr.2010.
    [16]Li, Q.; Tsang, L.; Pak, K.; Chi Hou Chan, "Monte-Carlo simulations of emissivities of random dielectric rough surfaces and comparisons with the small perturbation method," Geoscience and Remote Sensing Symposium,1999. IGARSS'99 Proceedings. IEEE 1999 International, vol.5, no., pp.2422-2424.
    [17]Johnson, J.T.;, "An efficient two-scale model for the computation of thermal emission and atmospheric reflection from the sea surface," IEEE Trans. Geosci. Remote Sens., vol.44, no.3, pp. 560-568, March 2006.
    [18]Huang, X.-Z.; Jin, Y.-Q.;, "Scattering and emission from two-scale randomly rough sea surface with foam scatterers, "Microwaves, Antennas and Propagation, IEE Proceedings , vol.142, no.2, pp.109-114,Apr1995.
    [19]Bahar, E.; Fitzwater, M., "Scattering cross sections for composite rough surfaces using the unified full wave approach," IEEE Trans. Antennas Propag., vol.32, no.7, pp.730-734, Jul 1984.
    [20]Bahar, E., "Full wave analysis for rough surface diffuse, incoherent radar cross sections with height-slope correlations included," IEEE Trans. Antennas Propag., vol.39, no.9, pp.1293-1304, Sep 1991.
    [21]Broschat, S.L.; "The phase perturbation approximation for rough surface scattering from a Pierson-Moskowitz sea surface,"IEEE Trans. Geosci. Remote Sens., vol.31, no.1, pp.278-283, Jan 1993.
    [22]Brown, G.;, "A stochastic Fourier transform approach to scattering from perfectly conducting randomly rough surfaces," IEEE Trans. Antennas Propag., vol.30, no.6, pp.1135-1144, Nov 1982.
    [23]Peng Liu; Ya-Qiu Jin;, "An FEM approach with FFT accelerated iterative robin boundary condition for electromagnetic scattering of a target with strong or weak coupled underlying randomly rough surface," IEEE Trans. Antennas Propag., vol.53, no.12, pp.4137-4144, Dec.2005.
    [24]Peng Liu; Ya-Qiu Jin;, "Numerical simulation of bistatic scattering from a target at low altitude above rough sea surface under an EM-wave incidence at low grazing angle by using the finite element method," IEEE Trans. Antennas Propag., vol.52, no.5, pp.1205-1210, May 2004.
    [25]金建铭,电磁场有限元方法[M],西安:西安电子科技大学出版社,1998.
    [26]Hastings, F. D.; Schneider, J.B.; Broschat, S.L.;, "A Monte-Carlo FDTD technique for rough surface scattering," IEEE Trans. Antennas Propag., vol.43, no.11, pp.1183-1191, Nov 1995.
    [27]高本庆,时域有限差分方法[M],北京:国防工业出版社,1995.
    [28]C. H. Chan, S. H. Lou, L. Tsang, and J. A. Kong, "Electromagnetic scattering of waves by random rough surface:a finite-difference time-domain approach," Microw. Opt. Technol. Lett., vol.4, pp. 355-359,1991.
    [29]李世智,电磁辐射与散影问题的矩量法[M],北京:国防工业出版社,1985.
    [30]Shu-Qing Li; Chi Hou Chan; Ming-Yao Xia; Bo Zhang; Leung Tsang;, "Multilevel expansion of the sparse-matrix canonical grid method for two-dimensional random rough surfaces," IEEE Trans. Antennas Propag., vol.49, no.11, pp.1579-1589, Nov 2001
    [31]Qin Li; Leung Tsang; Pak, K.S.; Chi Hou Chan;, "Bistatic scattering and emissivities of random rough dielectric lossy surfaces with the physics-based two-grid method in conjunction with the sparse-matrix canonical grid method," IEEE Trans. Antennas Propag., vol.48, no.1, pp.1-11, Jan 2000.
    [32]Qin Li; Leung Tsang; Jiancheng Shi; Chi Hou Chan;, "Application of physics-based two-grid method and sparse matrix canonical grid method for numerical simulations of emissivities of soils with rough surfaces at microwave frequencies, "IEEE Trans. Geosci. Remote Sens., vol.38, no.4, pp.1635-1643,Jul2000.
    [33]Xia, M.Y.; Chan, C.H.; Li, S.Q.; Zhang, B.; Tsang, L.;, "Simulation of wave scattering from rough surfaces using single integral equation and multilevel sparse-matrix canonical-grid method," Antennas and Propagation Society International Symposium,2001. IEEE, vol.3, no., pp.744-747 vol.3,2001.
    [34]Huang, S.W.; Zhang, G.H.; Xia, M.Y.; Chan, C.H.;, "Numerical Analysis of Scattering by Dielectric Random Rough Surfaces Using Modified SMCG Scheme and Curvilinear RWG Basis Functions," IEEE Trans. Antennas Propag., vol.57, no.10, pp.3392-3397, Oct.2009.
    [35]Yang Du; Yingliang Luo; Jin Au Kong, "Electromagnetic Scattering From Randomly Rough Surfaces Using the Stochastic Second-Degree Method and the Sparse Matrix/Canonical Grid Algorithm," IEEE Trans. Geosci. Remote Sens. vol.46, no.10, pp.2831-2839, Oct.2008.
    [36]Engheta, N.; Murphy, W.D.; Rokhlin, V.; Vassiliou, M.S.;, "The fast multipole method (FMM) for electromagnetic scattering problems," IEEE Trans. Antennas Propag., vol.40, no.6, pp.634-641, Jun 1992.
    [37]Rui, P.L. and R.S. Chen, "Enhanced GMRES method combined with MLFMA for solving electromagnetic wave scattering problems," Microwave Opt. Technol. Lett.,2008.50(5):p. 1433-1439.
    [38]Weng Cho Chew; Tie Jun Cui; Song, J.M.;, "A FAFFA-MLFMA algorithm for electromagnetic scattering," IEEE Trans. Antennas Propag., vol.50, no.11, pp.1641-1649, Nov 2002.
    [39]Tie Jun Cui; Weng Cho Chew; Guang Chen; Song, J.;, "Efficient MLFMA, RPFMA, and FAFFA algorithms for EM scattering by very large structures," IEEE Trans. Antennas Propag., vol.52, no.3, pp.759-770, March 2004.
    [40]Zhongxin Li; Ya-Qiu Jin;, "Bistatic scattering and transmitting through a fractal rough surface with high permittivity using the physics-based two-grid method in conjunction with the forward-backward method and spectrum acceleration algorithm," IEEE Trans. Antennas Propag., vol.50, no.9, pp.1323-1327, Sep 2002.
    [41]Torrungrueng, D.; Hsi-Tseng Chou; Johnson, J.T.;, "A novel acceleration algorithm for the computation of scattering from two-dimensional large-scale perfectly conducting random rough surfaces with the forward-backward method," IEEE Trans. Geosci. Remote Sens., vol.38, no.4, pp.1656-1668,Jul2000.
    [42]Rodriguez Pino, M.; Landesa, L.; Rodriguez, J.L.; Obelleiro, F.; Burkholder, R.J.;, "The generalized forward-backward method for analyzing the scattering from targets on ocean-like rough surfaces," IEEE Trans. Antennas Propag., vol.47, no.6, pp.961-969, Jun 1999.
    [43]Zhongxin Li; Ya-Qiu Jin;, "Bistatic scattering and transmitting through a fractal rough surface with high permittivity using the physics-based two-grid method in conjunction with the forward-backward method and spectrum acceleration algorithm," IEEE Trans. Antennas Propag., vol.50, no.9, pp.1323-1327, Sep 2002.
    [44]Iodice, A.;, "Forward-backward method for scattering from dielectric rough surfaces," IEEE Trans. Antennas Propag., vol.50, no.7, pp.901-911, Jul 2002.
    [45]Moss, C.D.; Grzegorczyk, T.M.; Han, H.C.; Jin Au Kong;, "Forward-backward method with spectral acceleration for scattering from Layered rough surfaces," IEEE Trans. Antennas Propag., vol.54, no.3, pp.1006-1016, March 2006.
    [46]Chou, H.-T.; Johnson, J.T.;, "Novel multipole acceleration of forward-backward method for scattering from rough surfaces," Antennas and Propagation Society International Symposium,1998. IEEE, vol.1, no., pp.100-103 vol.1,21-26 Jun 1998.
    [47]Dechamps, N.; Bourlier, C., "Electromagnetic Scattering From a Rough Layer: Propagation-Inside-Layer Expansion Method Combined to the Forward-Backward Novel Spectral Acceleration," IEEE Trans. Antennas Propag., vol.55, no.12, pp.3576-3586, Dec.2007.
    [48]Hsi-Tseng Chou; Johnson, J.T.;, "Formulation of forward-backward method using novel spectral acceleration for the modeling of scattering from impedance rough surfaces," IEEE Trans. Geosci. Remote Sens., vol.38, no.1, pp.605-607, Jan 2000.
    [49]Tsang, L.; Peng Xu; Qin Li; Dong Chen;, "Numerical simulations of rough surface scattering with UV multi-level partitioning method," Antennas and Propagation Society International Symposium, 2004. IEEE, vol.1, no., pp.615-618 Vol.1,20-25 June 2004.
    [50]Peng Xu; Leung Tsang;, "Scattering of waves by rough surface based on a hybrid UV/SMCG method," Antennas and Propagation Society International Symposium,2005 IEEE, vol.3A, no., pp. 450-453 vol.3A,3-8 July 2005.
    [51]Peng Xu; Leung Tsang; Li Li; Kun Shan Chen;, "Emissivities of rough surface over layered media in microwave remote sensing of snow," Geoscience and Remote Sensing Symposium,2007. IGARSS 2007. IEEE International, vol., no., pp.1436-1439,23-28 July 2007.
    [52]L.Tsang, D. Chen, P. Xu et al, "Wave scattering with the UV multilevel partitioning method:1. Two-dimensional problem of perfect electric conductor surface scattering," Radio Sci., vol.39, no.5, RS5010,2004.
    [53]L.Tsang, Q. Li, P. Xu et al, "Wave scattering with the UV multilevel partitioning method:2. Three-dimensional problem of nonpenetrable surface scattering," Radio Sci., vol.39,no.5, RS5011, 2004.
    [54]徐鹏,快速数值算法对大尺度散射问题的研究,博士学位论文,武汉大学电信学院,2005.
    [55]Hislop, G.; Hay, S.; Hellicar, A.;, "Efficient Sampling of Electromagnetic Fields via the Adaptive Cross Approximation,"IEEE Trans. Antennas Propag., vol.55, no.12, pp.3721-3725, Dec.2007.
    [56]Maaskant, R.; Mittra, R.; Tijhuis, A.;, "Fast Analysis of Large Antenna Arrays Using the Characteristic Basis Function Method and the Adaptive Cross Approximation Algorithm," IEEE Trans. Antennas Propag., vol.56, no.11, pp.3440-3451, Nov.2008.
    [57]Takahashi, Y.; Matsumoto, C.; Wakao, S.,"Large-Scale and Fast Nonlinear Magnetostatic Field Analysis by the Magnetic Moment Method With the Adaptive Cross Approximation," Magnetics, IEEE Transactions on, vol.43, no.4, pp.1277-1280, April 2007.
    [58]Kezhong Zhao; Vouvakis, M.N.; Jin-Fa Lee;, "The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems," Electromagnetic Compatibility, IEEE Transactions on, vol.47, no.4, pp.763-773, Nov.2005.
    [59]Tamayo, J.M.; Heldring, A.; Rius, J.M.;, "Multilevel adaptive cross approximation (MLACA)," Antennas and Propagation Society International Symposium,2009. APSURSI'09. IEEE, vol., no., pp.1-4,1-5 June 2009.
    [60]Zhijun Liu; Adams, R.J.; Carin, L.;, "Well-conditioned MLFMA formulation for closed PEC targets in the vicinity of a half space," IEEE Trans. Antennas Propag., vol.51, no.10, pp.2822-2829, Oct. 2003.
    [61]Ling Li; Jiangqi He; Zhijun Liu; Dong, X.; Carin, L.;, "MLFMA analysis of scattering from multiple targets in the presence of a half-space," IEEE Trans. Antennas Propag., vol.51, no.4, pp.810-819, April 2003.
    [62]Geng, N.; Sullivan, A.; Carin, L.;, "Multilevel fast-multipole algorithm for scattering from conducting targets above or embedded in a lossy half space," IEEE Trans. Geosci. Remote Sens., vol.38, no.4, pp.1561-1573, Jul 2000.
    [63]Zhijun Liu; Jiangqi He; Yongjun Xie; Sullivan, A.; Carin, L.;, "Multilevel fast multipole algorithm for general targets on a half-space interface," IEEE Trans. Antennas Propag., vol.50, no.12, pp. 1838-1849, Dec 2002.
    [64]Zhong-Xin Li;, "Bistatic scattering from rough dielectric soil surface with a conducting object partially buried by using the GFBM/SAA method," IEEE Trans. Antennas Propag., vol.54, no.7, pp. 2072-2080, July 2006.
    [65]Peng Liu; Ya-Qiu Jin;, "Numerical Simulation of the Doppler spectrum of a flying target above dynamic oceanic surface by using the FEM-DDM method," IEEE Trans. Antennas Propag., vol.53, no.2, pp.825-832, Feb.2005
    [66]Peng Liu; Ya-Qiu Jin;, "The finite-element method with domain decomposition for electromagnetic bistatic scattering from the comprehensive model of a ship on and a target above a large-scale rough sea surface," IEEE Trans. Geosci. Remote Sens. vol.42, no.5, pp.950-956, May 2004.
    [67]刘鹏,金亚秋。动态起伏海面上低飞目标电磁散射Doppler频谱的有限元-区域分解数值模。中国科学(G辑物理学,力学天文学),2004,34(3):265-278.
    [68]康士峰,王显德.粗糙面与目标电磁散射统计特性分析.微波学报,2004,20(3):43-46.
    [69]Lei Kuang; Ya-Qiu Jin;, "Bistatic Scattering From a Three-Dimensional Object Over a Randomly Rough Surface Using the FDTD Algorithm," IEEE Trans. Antennas Propag., vol.55, no.8, pp.2302-2312,Aug.2007.
    [70]El-Shenawee, M.; Rappaport, C.; Miller, E.L.; Silevitch, M.B., "Three-dimensional subsurface analysis of electromagnetic scattering from penetrable/PEC objects buried under rough surfaces:use of the steepest descent fast multipole method," IEEE Trans. Geosci. Remote Sens., vol.39, no.6, pp.1174-1182,Jun 2001.
    [71]Hongxia Ye; Ya-Qiu Jin;, "A Hybrid Analytic-Numerical Algorithm of Scattering From an Object Above a Rough Surface," IEEE Trans. Geosci. Remote Sens., vol.45, no.5, pp.1174-1180, May 2007.
    [72]Bo Guan; Jian Feng Zhang; Xiao Yang Zhou; Tie Jun Cui;, "Electromagnetic Scattering From Objects Above a Rough Surface Using the Method of Moments With Half-Space Green's Function," IEEE Trans. Geosci. Remote Sens., vol.47, no.10, pp.3399-3405, Oct.2009.
    [73]Si-Yuan, H.; Deng, F.-S; Chen, H.-T.; Hu, W.-D.; Yu, W.-X.; Zhu, G.-Q.;," Range Profile Analysis of the 2-D Target Above a Rough Surface Based on the Electromagnetic Numerical Simulation," IEEE Trans. Geosci. Remote Sens., vol.57, no.10, pp.3258-3263, Oct.2009.
    [74]Rao, S.; Wilton, D.; Glisson, A., "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., vol.30, no.3, pp.409-418, May 1982.
    [75]Carr, M.; Bleszynski, M.; Volakis, J.L.,"A near-field preconditioner and its performance in conjunction with the BiCGstab(ell) solver," Antennas and Propagation Magazine, IEEE, vol.46, no.2, pp.23-30, April 2004.
    [76]A. C. Woo, T. G Wang, M. J. Schuh and M. L. Sanders, "Benchmark Radar Targets for the Validation of Computational Electromagnetics Programs," IEEE Antennas and Propagation Magazine, vol.35, no.1, pp.84-89, Feb.1993.
    [77]L. Tsang, J. A. Kong, K. H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves; Numerical Simulations. New York:Wiley,2001.
    [78]Hongxia Ye; Ya-Qiu Jin;, "Parameterization of the tapered incident wave for numerical simulation of electromagnetic scattering from rough surface," IEEE Trans. Antennas Propag., vol.53, no.3, pp. 1234-1237, March 2005.
    [79]Joon Shin; Glisson, A.W.; Kishk, A.A., "Analysis of combined conducting and dielectric structures of arbitrary shapes using an E-PMCHW integral equation formulation," Antennas and Propagation Society International Symposium,2000. IEEE, vol.4, no., pp.2282-2285 vol.4,2000.
    [80]Chao Yu; Jiade Yuan; Changqing Gu;, "Equivalent dipole-moment method for electromagnetic scattering by dielectric bodies," Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications,2009.
    [81]Yang, X.H.; Hu, J.; Yao, H.Y.; Nie, Z.P.;, "Solving scattering from 3D composite conducting and dielectric object by surface integral equation method," Microwave Conference Proceedings,2005. APMC 2005. Asia-Pacific Conference Proceedings, vol.4, no., pp.4 pp.,4-7 Dec.2005.
    [82]Kolundzija, B.M.;, "Electromagnetic modeling of composite metallic and dielectric structures," Microwave Theory and Techniques, IEEE Transactions on, vol.47, no.7, pp.1021-1032, Jul 1999.
    [83]Y.Q. Pasi and T. Matti. "Application of combined field integral equation for electromagnetic scattering by dielectric and composit objects", IEEE Trans on Antennas Propagat., Vol.53, No.3, pp.1168-1173,2003.
    [84]Y.Q. Pasi and T.Matti. "Improving conditioning of electromagnetic surface integral equations using normalized field quantities", IEEE Trans on Antennas Propagat., Vol.55, No.1, pp.178-185,2007.
    [85]H.T. Chen, J.X. Luo and GQ. Zhu, Using UV technique to accelerate the MM-PO method for three-dimsensional radiation and scattering problem, Microwave Opt. Technol. Lett.,48(8),1615-1618,2006.
    [86]H.T. Chen, G-Q. Zhu, "Model the Electromagnetic Scattering from Three-Dimensional PEC Object Buried Under Rough Ground by MOM and Modified PO Hybrid Method, " Progress In Electromagnetics Research, PIER,77,15-27,2007.
    [87]陈海涛,复杂环境电磁辐射与散射问题混合算法研究与工程优化设计,博士学位论文,武汉大学电子信息学院,2008.
    [88]S. Y. He and G Q. Zhu, "A hybrid MM-PO method combining UV technique for scattering from two-dimensional target above a rough surface," Microwave Opt. Technol. Lett., vol.49, no.12, pp. 2957-2960,2007.
    [89]G H. Golub and C. F. Vanloan, Matrix computations, Baltimore, MD:The Johns Hopkins Univ. press, 1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700