半有源超高频射频识别标签芯片的研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
射频识别是一项利用射频信号通过空间耦合实现无接触信息传递的自动识别技术。半有源标签使用电池对标签内部实现信号处理与数据存储的电路有源供电,但采用无源标签的反向散射机制实现与读写器的通信。电池在半有源标签中的使用,解决了困扰无源标签的能量瓶颈,使得半有源标签有望在识读距离和识别率性能上获得较大提升,同时,也为传感器和安全通信在标签中的实现提供了可能。
     本文首先借助对超高频射频识别系统物理通信机制以及信号传输方式的研究,理论地论证了半有源标签对提升识读距离和识别率起到的贡献。对于识读距离,本文将读写器正确信号检测的需求引入反向散射超高频射频识别系统的能量传输链路中,改进了计算系统识读距离的数学方法。通过分析不同设计水平下识读距离的制约因素,给出了半有源标签识读距离的上限。对于识别率,本文以超高频射频识别室内信道模型为基础,对半有源标签的识别率性能进行了定量分析。通过研究标签识读距离的概率特性,提出了安全识读距离的概念。
     根据上述理论分析得到的设计指标,本文接着对半有源标签芯片的设计和优化方法展开讨论。针对延长标签使用寿命和增加新功能等要求,本文研究和解决了半有源标签芯片设计中的三项关键技术。它们是兼顾高灵敏度通信和无线充电功能的整流器、低功耗高性能的唤醒电路,以及片上真随机数发生器。
     最后,结合上述三项芯片设计关键技术,本文在SMIC 0.18/μm EEPROM CMOS工艺下设计和实现了一款具有实时温度传感和温度日志功能的半有源超高频标签芯片。通过引入相关辅助电路,解决了传感器使用中涉及到的定时和实时温度读取的共存以及唤醒冲突等问题,实现了准恒流-恒压无线充电和电池过压保护。经测试验证,芯片的实际灵敏度为-23.7 dBm,休眠电流150 nA。
RFID (Radio Frequency Identification) is a technology that incorporates the use of electromagnetic or electrostatic coupling in the radio frequency portion of the electromagnetic spectrum to uniquely identify an object. Semi-passive tag uses the internal battery to supply its signal processing and data storage circuits, and communicate with readers by employing passive tag's backscatter mechanism. Thanks to the battery, problems caused by power source in passive tag are solved. Therefore, semi-passive tag is hopefully capable of having better performances in read range and read range. Besides, advanced functions like sensor employment and security protocols become realizable. These qualities make semi-passive tag highly expected in applications like post management, dangerous cargo surveillance and cold chain logistics.
     By studying the physical mechanism and signal transmission of a UHF (Ultra High Frequency) RFID system, semi-passive tag's improvement in read range and read rate is theoretically verified. The mathematical method for calculating the read range of a backscattered UHF tag is evolved by employing readers' energy requirement for correct signal detection. According to different reader and tag performances, read range's limitation factors are given. Afterward, this work uses an indoor UHF propagation channel to study the read range's dependence on probability. Semi-passive tag's improvement in read rate is evaluated quantitatively, and the concept of safe read range is proposed consequently.
     Subsequently, design and optimization methods for semi-passive tag chip are discussed. For the purpose of prolonging tag's life cycle and employing new on-chip functions, key techniques in designing a semi-passive tag chip are studied. These techniques are realizing high communication sensitivity and wireless charge function by one rectifier, stable wake-up control with almost zero power consumption, and on-chip truly random number generation.
     With the aforementioned analysis and the proposed key techniques, a semi-passive UHF tag chip with temperature sensor is designed and implemented in SMIC 0.18μm EEPROM CMOS technology. Sensor application problems, such as the coexistence of real time temperature sensing with temperature log, and wake-up conflicts, are solved. Quasi-constant current-constant voltage wireless charge and overcharge protection function is realized in the chip. Measured sensitivity and sleep current is-23.7 dBm and 150 nA respectively.
引文
[1]B. Manish and M. Shahram. RFID Field Guide:Deploying Radio Frequency Identification Systems, Part 1, Chapter 2:The History and Evolution of RFID [M]. Indianapolis, USA:Prentice Hall PTR,2005:24-35.
    [2]K. Rao. An Overview of Backscattered Radio Frequency Identification System (RFID) [C]. IEEE Asia Pacific Microwave Conference,1999:746-749.
    [3]EPC Radio-Frequency Identity Protocols Class-1 Generations-2 UHF RFID Protocol for Communications at 860 MHz-960 MHz Version 1.1.0.
    [4]Universal Post Union Global Monitoring System project report, Universal Post Union,2008, available online:http://www. upu. int/quality/en/gms_project_report_en.doc.
    [5]D. Ronzani. Why Marketing Short Range Devices as Active Radio Frequency Identifiers Might Backfire [C]. International Conference on Internet of Things, 2008:214-229.
    [6]L. Srivastava. RFID and the Internet of Things [EB]. Available online:http:// www.itu.int/osg/spu/presentations/2005/MSU_INT/srivastava-internet-of-things.p df
    [7]Class 3 Battery-Assisted Smart Passive Tags:The Best of Both Worlds [EB]. Intelleflex Corporation Whitepaper. available online:http://www.intelleflex.com
    [8]Tags-A927Z Datasheet [EB]. Available online:http://www.caen.it/rfid/data_sheet.php?fam=tag&mod=A927Z
    [9]PowerG Datasheet [EB]. Available online:http://www.power-id.com/Data/pdf/ PowerG_July09.pdf.
    [10]S. Kim, J. Cho, H. Kim et al. An EPC Gen 2 compatible passive/semi-active UHF RFID transponder with embedded FeRAM and temperature sensor [C]. IEEE Asian Solid-State Circuits Conference,2007:135-138.
    [11]V. Pillai, H. Heinrich, D. Dieska et al. An Ultra-Low-Power Long Range Battery/Passive RFID Tag for UHF and Microwave Bands with a Current Consumption of 700 nA at 1.5 V [J]. IEEE Transactions on Circuits and System-Ⅰ:Regular Papers,2007,54(7):1500-1512.
    [12]A. Vaz, A. Ubarretxena, I. Zalbide, et al. Full Passive UHF Tag With a Temperature Sensor Suitable for Human Body Temperature Monitoring [J]. IEEE Transactions on Circuits and Systems-Ⅱ:Express Briefs,2010,57(2):95-99.
    [13]J. Yin, J. Yi, M. Law, et al. A System-on-Chip EPC Gen-2 Passive UHF RFID Tag with Embedded Temperature Sensor [C]. IEEE International Solid-State Circuits Conference,2010:308-309.
    [14]王晓锐.喷涂法制备柔性超薄锂离子电池电极的研究[D].上海:上海航天技术研究院上海空间电源研究所硕士论文,2010.
    [15]B. Cook, S. Lanzisera and K. Pister. SoC Issues for RF Smart Dust [C]. Proceedings of the IEEE,2006,94(6):1177-1196.
    [16]R. Martinez. RFID in the New Millennium [R]. Keynote Speech of IEEE International Conference on RFID,2009.
    [17]闫娜.低功耗低成本无源射频识别标签的研究与设计[D].上海:复旦大学博士论文,2007.
    [18]P. Li, J. Principe and R. Bashirullah. A Wireless Power Interface for Rechargeable Battery Operated Neural Recording Implants [C]. IEEE EMBS Annual International Conference,2006:6253-6256.
    [19]Chris Diorio. UHF Gen2 RFID:Where do we go from here [R]. Keynote Speech of IEEE International Conference on RFID,2009.
    [1]孔金瓯.麦克斯韦方程.第一章[M].背景:高等教育出版社,2004:1-60.
    [2]J. Kraus and R. Marhefka. Antennas:For All Applications (Third Edition) Chapter 6,北京:电子工业出版社,2008:165-196.
    [3]李强.超高频射频电子标签芯片中低功耗电路研究[D].上海:复旦大学博士论文,2005.
    [4]K. Penttila, M. Keskilammi, L. Sydanheimo et al. Radar-Cross-Section Analysis for Passive RFID Systems [J]. IEE Proceedings of Microwaves, Antennas and Propagation,2006,153(1):103-109.
    [5]P. Nikitin, K. Rao and R. Martinez. Differential RCS of RFID Tag. IET Electronics Letters,2007,43(8):431-432.
    [6]K. Kurokawa. Power waves and the scattering matrix. IEEE Transactions on Microwave Theory and Techniques,1965,13(2):194-202.
    [7]EPC Radio-Frequency Identity Protocols Class-1 Generations-2 UHF RFID Protocol for Communications at 860 MHz-960 MHz Version 1.1.0.
    [8]ISO/IEC Information technology — Radio frequency identification for item management — Part 6:Parameters for air interface communications at 860 MHz to 960 MHz.
    [9]U. Karthaus and M. Fischer. Fully Integrated Passive UHF RFID Transponder IC with 16.7-μW Minimum RF Input Power [J]. IEEE Journal of Solid-State Circuits, 2003,38(10):1602-1608.
    [1]K. Kotani, A. Sasaki, T. Ito. High-Efficiency Differential-Drive CMOS Rectifier for UHF RFIDs [J]. IEEE Journal of Solid-State Circuits,2009,44(11): 3011-3018.
    [2]D. Pardo, A. Vaz, S. Gil, et al. Design Criteria for Full Passive Long Range UHF RFID Sensor for Human Body Temperature Monitoring [C]. IEEE International Conference on RFID,2007:141-148.
    [3]J. Lee, H. Kwon and B. Lee. Design Consideration of UHF RFID Tag for Increased Reading Range [C]. IEEE International Microwave Symposium,2006: 1588-1591.
    [4]K. Kotani, A. Sasaki, T. Ito. High-Efficiency Differential-Drive CMOS Rectifier for UHF RFIDs [J]. IEEE Journal of Solid-State Circuits,2009,44(11): 3011-3018.
    [5]N. Yan, W. Che, Y. Yang and Q. Li. RFID Systems:Research Trends and Challenges, Chapter 4 [M]. Chichester, UK:John Wiley and Sons Limited, to be published.
    [6]R. Barnett, G. Balachandran et al. A Passvie UHF RFID Transponder for EPC Gen 2 with-14 dBm Sensitivity in 0.13μm CMOS [C]. IEEE International Solid-State Circuits Conference,2007:582-583.
    [7]J. Proakis. Digital Communications (Fourth Edition) Chapter 5 [M].北京:电子工业出版社,2006:169-240.
    [8]J. Curty. Analysis and Optimization of Passive UHF RFID Systems [D]. Lausanne, Switzerland:Ecole Polytechnique Federale de Lausanne.
    [9]G. De Vita and G. Iannaccone. Design Criteria for the RF Section of UHF and Microwave Passive RFID Transponders [J]. IEEE Transactions on Microwave Theory and Techniques,2005,53(9):2978-2990.
    [10]U. Karthaus and M. Fischer. Fully Integrated Passive UHF RFID Transponder IC with 16.7-μW Minimum RF Input Power [J]. IEEE Journal of Solid-State Circuits, 2003,38(10):1602-1608.
    [11]闫娜.低功耗低成本无源射频识别标签的研究与设计[D].上海:复旦大学博士论文,2007.
    [12]李强.超高频射频电子标签芯片中低功耗电路研究[D].上海:复旦大学博士论文,2005.
    [13]X. Wang, B. Jiang, W. Che, et al. A High Efficiency AC-DC Charge Pump Using Feedback Compensation Technique [C]. IEEE Asian Solid-State Circuits Conference,2007:252-255.
    [14]W. Che, Y. Yang, C. Xu, et al. Analysis, Design and Implementation of Semi-Passive Gen2 Tag [C]. IEEE International Conference on RFID,2009: 15-19.
    [15]R. Barnett, G Balachandran et al. A Passvie UHF RFID Transponder for EPC Gen 2 with-14 dBm Sensitivity in 0.13μm CMOS [C]. IEEE International Solid-State Circuits Conference,2007:582-583.
    [16]HiggsTM-3 datasheet [EB], available online:http://www.alientechnology.com.
    [17]Monza(?) 4 Tag Chip Datasheet [EB], available online:http://www.impinj.com
    [18]S. Chiu, I. Kipnis et al. A 900 MHz UHF RFID Reader Transceiver IC [J]. IEEE Journal of Solid-State Circuits,2007,42(12):2822-2833.
    [19]I. Kwon, Y. Eo et al. A Single-Chip CMOS Transceiver for UHF Mobile RFID Reader [J]. IEEE Journal of Solid-State Circuits,2007,43(3):729-738.
    [20]P. Khannur, X. Chen et al. A Universal UHF RFID Reader IC in 0.18-μm CMOS Technology [J]. IEEE Journal of Solid-State Circuits,2005,43(5):1146-1155.
    [21]W. Wang, S. Lou et al. A Single-Chip UHF RFID Reader in 0.18 μm CMOS Process [J]. IEEE J. Solid-State Circuits,2008,43(8):1741-1754.
    [22]V. Pillai. Impedance matching in RFID tags:to which impedance to match? [C]. APS Symposium,2006:9-14.
    [23]K. Rao, P. Nikitin and S. Lam. Antenna Design for UHF RFID Tags:A Review and a Practical Application [J]. IEEE Transactions on Microwave Theory and Techniques,2005,53(12):3870-3876.
    [1]V. Pillai. Impedance matching in RFID tags:to which impedance to match? [C]. APS Symposium,2006:9-14.
    [2]奚经天.基于片上天线的无源超高频射频识别标签的射频前端设计[D].上海:复旦大学博士论文,2009.
    [3]闫娜.低功耗低成本无源射频识别标签的研究与设计[D].上海:复旦大学博士论文,2007.
    [4]Andrea Goldsmith. Wireless Communications, Chapter 2 [M].北京:人民邮电出版社,2007:27-60.
    [5]韩益锋.射频识别阅读器的研究与设计[D].上海:复旦大学博士论文,2005.
    [6]R. Barnett, G Balachandran et al. A Passvie UHF RFID Transponder for EPC Gen 2 with-14 dBm Sensitivity in 0.13 μm CMOS [C]. IEEE International Solid-State Circuits Conference,2007:582-583.
    [7]HiggsTM-3 datasheet [EB], available online:http://www.alientechnology.com.
    [8]S. Chiu, I. Kipnis et al. A 900 MHz UHF RFID Reader Transceiver IC [J]. IEEE Journal of Solid-State Circuits,2007,42(12):2822-2833.
    [9]I. Kwon, Y. Eo et al. A Single-Chip CMOS Transceiver for UHF Mobile RFID Reader [J]. IEEE Journal of Solid-State Circuits,2007,43(3):729-738.
    [10]P. Khannur, X. Chen et al. A Universal UHF RFID Reader IC in 0.18-μm CMOS Technology [J]. IEEE Journal of Solid-State Circuits,2005,43(5):1146-1155.
    [11]W. Wang, S. Lou et al. A Single-Chip UHF RFID Reader in 0.18 μm CMOS Process [J]. IEEE J. Solid-State Circuits,2008,43(8):1741-1754.
    [12]Monza/ID Tag Chip Datasheet [EB], available online:http://www.impinj.com
    [13]Monza(?) 4 Tag Chip Datasheet [EB], available online:http://www.impinj.com
    [14]S. Sarma. Towards the 5(?) Tag [G]. Auto-ID Lab Whitepapers. available on line: http://www.autoidcenter.org/pdfs/MIT-AUTOID-WH-006.pdf
    [15]N. Dudney. Solid-state thin-film rechargeable batteries [J]. Materials Science and Engineering B,2005,116(3):245-249.
    [16]F. Xu, T. Wang, W. Li, Z. Jiang. Preparing Ultra-Thin Nano-MnO2 Electrodes Using Computer Jet-Printing Method [J]. Chemical Physics Letters,2003, 375(1-2):247-251.
    [17]Y. Zhao, Q. ZhoU, L. Li, J. Xu, M. Yan, Z Jiang. A Novel and Facile Route of Ink-Jet Printing to Thin Film SnO2 Anode for Rechargeable Lithium Ion Batteries [J]. Electrochemical Acta,2006,51(5):2639-2645.
    [18]M. Baba, N. Kumagai, N. Kobayashi, et al. Fabrication and Electrochemical Characteristics of All-Solid-State Lithium-Ion Batteries Using V2O5 Thin Films for Both Electrodes [J]. Electrochemical and Solid-State Letters,1999,2(7): 320-322
    [19]M. Baba, N. Kumagai, N. Fujita, et al. Fabrication and Electrochemical Characteristics of All-Solid-State Lithium-Ion Rechargeable Batteries Composed of LiMn2O4 Positive and V2O5 Negative Electrodes [J]. Journal of Power Sources, 2001,97-98:798-800.
    [20]B. Neudecker, N. Dudney, J. Bates. "Lithium-Free" Thin-Film Battery with In Situ Plated Li Anode [J]. Journal of the Electrochemical Society,2000,147(2): 517-523.
    [21]H. Ohtsuka, Y. Sakurai. Characteristics of Li/MoO3-x thin film batteries [J]. Solid State Ionics,2001,144(1-2):59-64.
    [22]N. Dudney, J. Bates, R. Zuhr, S Youn, J. Robertson, H. Jun, S. Hackney. Nanocrystalline LixMn2-yO4 Cathodes for Solid-State Thin-Film Rechargeable Lithium Batteries [J]. Journal of the Electrochemical Society,1999,146(7): 2455-2464.
    [23]S. Zhang. The effect of the charging protocol on the cycle life of a Li-ion battery [J]. Journal of Power Sources,2006,161(2):1385-1391.
    [24]王晓锐.喷涂法制备柔性超薄锂离子电池电极的研究[D].上海:上海航天技术研究院上海空间电源研究所硕士论文,2010.
    [25]A. Sasaki and T. Ito. Differential-Drive CMOS Rectifier for UHF RFIDs with 66% PCE at-12 dBm Input [A]. IEEE Asian Solid-State Circuits Conference, 2008:105-108.
    [26]W. Che, N. Yan, Y. Yang and H. Min. A Low Voltage Low Power RF/Analog Front-end Circuit for Passive UHF RFID Tag [J]. Chinese Journal of Semiconductors,2008,29(3):434-437.
    [27]车文毅,闫娜,闵昊.一种支持无线充电的半有源射频识别标签[P],中国专利,专利号:ZL-200610148159.3,2006-12-28.
    [1]李强.超高频射频电子标签芯片中低功耗电路研究[D].上海:复旦大学,2005.
    [2]闫娜.低功耗低成本无源射频识别标签的研究与设计[D].上海:复旦大学,2007.
    [3]W. Che, N. Yan, Y. Yang, and H. Min. A Low Voltage Low Power RF/Analog Front-end Circuit for Passive UHF RFID Tag [J]. Chinese Journal of Semiconductors,2008,29(3):433-437.
    [4]J. Xi, N. Yan, W. Che, et al. Low-Cost Low-Power UHF RFID Tag with On-Chip Antenna [J]. Chinese Journal of Semiconductors,2009,30(7):075012.
    [5]W. Che, S. Guan, X. Wang, et al. Analysis and Design of Power Efficient Semi-Passive RFID Tag [J]. Chinese Journal of Semiconductors, to be published.
    [6]W. Che, W. Chen, D. Meng, et al. Power Management Unit for Battery Assisted Passive RFID Tag [J]. IET Electronics Letters, under review.
    [7]Z. Zhu. RFID Analog Front End Design Tutorial [EB]. Auto-ID Laboratory at University of Adelaide, available online:http://autoidlab. eleceng. adelaide. edu. au/Tutorial.html.
    [8]S. Park, J. Wilson and M. Ismail. Peak Detectors for Multistandard Wireless Receivers [J]. IEEE Circuits and Devices Magazine,2006,22(6):6-9.
    [9]S. Mandal. Far Field RF Power Extraction Circuits and Systems [D]. Boston, USA:Massachusetts Institute of Technology,2004.
    [10]A. Shameli, A. Safarian, A. Rofougaran, et al. Power Harvester Design for Passive UHF RFID Tag Using a Voltage Boosting Technique [J]. IEEE Transactions on Microwave Theory and Techniques,2007,55(6):1089-1097.
    [11]K. Kotani, A. Sasaki, T. Ito. High-Efficiency Differential-Drive CMOS Rectifier for UHF RFIDs [J]. IEEE Journal of Solid-State Circuits,2009,44(11): 3011-3018.
    [12]J. Lee, H. Kwon, B. Lee. Design Consideration of UHF RFID Tag for Increased Reading Range [C]. IEEE Symposium on Microwave Theory and Techniques, 2006:1588-1591
    [13]J. Dickson. On-Chip High-Voltage Generation in NMOS Integrated Circuits Using an Improved Voltage Multiplier Technique, IEEE Journal of Solid-State Circuits,1976,11(3):374-378.
    [14]T. Umeda, H. Yoshida, S. Sekine, et al. A 950-MHz Rectifier Circuit for Sensor Network Tags with 10-m Distance [J]. IEEE Journal of Solid-State Circuits,2006, 41(1):35-41.
    [15]K. Kotani, T. Ito. High Efficiency CMOS Rectifier Circuit with Self-Vth-Cancellation and Power Regulation Functions for UHF RFIDs [C]. IEEE Asian Solid-State Circuits Conference,2007:119-122.
    [16]H. Nakamoto, D. Yamazaki, T. Yakamoto, et al. A Passive UHF RF Identification CMOS Tag IC Using Ferroelectric RAM in 0.35-μm Technology [J]. IEEE Journal ofSolid-State Circuits,2007,42(1):101-110.
    [17]X. Wang, B. Jiang, W. Che, et al. A High Efficiency AC-DC Charge Pump Using Feedback Compensation Technique [C]. IEEE Asian Solid-State Circuits Conference,2007:252-255.
    [18]E. Bergeret, J. Gaubert, and P. Pannier. Standard CMOS Voltage Multipliers Architectures for UHF RFID Applications:Study and Implementation [C]. IEEE International Conference on RFID.2007:115-120.
    [19]N. Yan, W. Che, Y. Yang and Q. Li. RFID Systems:Research Trends and Challenges, Chapter 4 [M]. Chichester, UK:John Wiley and Sons Limited, to be published.
    [20]N. Pletcher, S. Gambini, and J. Rabaey. A 2 GHz 527μW Wake-Up Receiver with-72 dBm Sensitivity Using Uncertain-IF Architecture [C]. IEEE International Solid-State Circuits Conference,2008:524-525.
    [21]N. Pletcher, J. Rabaey. A 65μW,1.9 GHz RF to Digital Baseband Wakeup Receiver for Wireless Sensor Nodes [C]. IEEE Custom Integrated Circuits Conference,2007:539-542.
    [22]L. Zhang, H. Jiang, et al. A Passive RF Receiving and Power Switch ASIC for Remote Power Control with Zero Stand-by Power [C]. IEEE Asian Solid-State Circuits Conference,2008:109-112.
    [23]X. Huang, S. Rampu, X. Wang. A 2.4GHz/915MHz 51μW Wake-Up Receiver with Offset and Noise Suppression [C]. IEEE International Solid-State Circuits Conference,2010:222-223.
    [24]S. Kim, J. Cho, H. Kim, et al. An EPC Gen2 Compatible Passive/Semi-Active UHF RFID Transponder with Embedded FeRAM and Temperature Sensor [C]. IEEE Asian Solid-State Circuits Conference,2007:135-138
    [25]V. Pillai, H. Heinrich, D. Dieska, et al. An Ultra-Low-Power Long Range Battery/Passive RFID Tag for UHF and Microwave Bands with a Current Consumption of 700 nA at 1.5 V [J]. IEEE Transactions on Circuits and Systems-Ⅰ:Regular Papers,2007,54(7):1500-1512.
    [26]W. Che, Y. Yang, C. Xu, et al. Analysis, Design and Implementation of Semi-Passive Gen2 Tag [C]. IEEE International Conference on RFID,2009: 15-19.
    [27]车文毅,陈伟,奚经天,闫娜,闵昊.具有数字自动校正功能的唤醒电路[P],中国专利,申请号:200910048795.2,2009-9-9.
    [28]W. Chen, W. Che, X. Wang, et al. A Two-Stage Wake-Up Circuit for Semi-Passive RFID Tag [C]. IEEE International Conference on ASIC,2009: 553-556.
    [29]EPC Radio-Frequency Identity Protocols Class-1 Generations-2 UHF RFID Protocol for Communications at 860 MHz-960 MHz Version 1.1:0.
    [30]M. Baghaei-Nejad, D. Mendoza, Z. Zou, et al. A Remote-Powered RFID Tag with lOMb/s UWB Uplink and-18.5 dBm Sensitivity UHF Downlink in 0.18μm CMOS [C]. IEEE International Solid-State Circuits Conference,2009:198-199.
    [31]R. Morales-Ramos, J. Montiel-Nelson, H. Milosiu, et al. Adjustable Voltage Sensors for Power Supply Chains in Passive UHF RFID Transponders [C]. IEEE Conference on Emerging Technologies and Factory Automation,2006:286-291.
    [32]王晓锐.喷涂法制备柔性超薄锂离子电池电极的研究[D].上海:上海航天技术研究院上海空间电源研究所,2010.
    [33]Y. Xiao, X. Shen, B. Sun and L. Chai. Security and Privacy in RFID and Applications in Telemedicine [J]. IEEE Communications Magazine,44(4):64-72.
    [34]B. Fung, K. Al-Hussaeni and M. Cao. Preserving RFID Data Privacy [C]. IEEE International Conference on RFID,2009:200-207.
    [35]B. Yoon, M. Sung, S. Yeon, et al. HB-MP++ Protocol:An Ultra Light-weight Authentication Protocol for RFID System [C]. IEEE International Conference on RFID,2009:186-191.
    [36]S. Kim, Y. Kim and S. Park. RFID Security Protocol by Lightweight ECC Algorithm [C]. IEEE International Conference on Advanced Language Processing and Web Information Technology,2007:323-328.
    [37]M. Shemaili, Y. Chan and M. Zemerly. RFID Lightweight Mutual Authentication Using Shringking Generator [C]. IEEE International Conference for Internet Technology and Secured Transactions,2009:1-6.
    [38]W. Che, H. Deng, X. Tan and J. Wang. Networked RFID Systems and Lightweight Cryptography:16. A Random Number Generator for Application in RFID Tags [M]. Berlin Heidelberg, Germany:Springer Publication House.
    [39]G. Balachandran and R. Barnett. A 440-nA True Random Number Generator for Passive RFID Tags [J]. IEEE Transactions on Circuits and Systems Ⅰ:Regular Papers,2008:55(11):3723-3732.
    [40]M. Bucci, L. Germani, R. Luzzi et al. A High-Speed Oscillator-Based Truly Random Number Source for Cryptographic Applications on a Smart Card IC [J]. IEEE Transactions on Computers,2003,52(4):403-409.
    [41]J. Holleman and B. Otis. A 2.92 μW Hardware Random Number Generator [C]. IEEE European Solid-State Circuits Conference,2006:134-137.
    [42]W. Chen, W. Che, Z. Bi, et al. A 1.04μW Truly Random Number Generator for Gen2 RFID Tag [C]. IEEE Asian Solid-State Circuits Conference,2009:117-120.
    [43]S. Zhou, W. Zhang and N. Wu. An Ultra-Low Power CMOS Random Number Generator [J]. Elsevier Solid-State Electronics,2008,52:233-238.
    [44]Y. Su, J. Holleman and B. Otis. A Digital 1.6 pJ/bit Chip Identification Circuit Using Process Variations [J]. IEEE Journal of Solid-State Circuits,2008,43(1): 69-77.
    [45]Monza(?) 4 Tag Chip Datasheet [EB], available online:http://www.impinj.com
    [46]R. Barnett, G. Balachandran et al. A Passvie UHF RFID Transponder for EPC Gen 2 with-14 dBm Sensitivity in 0.13μm CMOS [C]. IEEE International Solid-State Circuits Conference,2007:582-583.
    [47]J. Golic. New Methods for Digital Generation and Post Processing of Random Data [J]. IEEE Transactions on Computers,2006,55(10):1217-1229.
    [48]Q. Luo, L. Guo, Q. Li, et al. A Low-Power Dual-Clock Strategy for Digital Circuits of EPC Gen2 RFID Tag [C]. IEEE International Conference on RFID,2009:7-14.
    [49]National Institute of Standards and Technology USA. FIPS PUB 140-2 Federal Information Processing Standards Publication [EB]. Available online:http://csrc. nist.gov/publications/fips/fips140-2/fips1402.pdf
    [1]ISO/IEC Information technology — Radio frequency identification for item management — Part 6:Parameters for air interface communications at 860 MHz to 960 MHz.
    [2]M. Pertijs, A. Niederkorn, X. Ma, et al. A CMOS Temperature Sensor with a 3a Inaccuracy of ±0.5 ℃ from-50 ℃ to 120 ℃ [C]. IEEE International Solid-State Circuits Conference,2003:200-201.
    [3]P. Chen, C. Chen, Y. Peng, et al. A Time-Domain SAR Smart Temperature Sensor with Curvature Compensation and a 3a Inaccuracy of-0.4 ℃-+0.6 ℃ Over a 0 ℃ to 90 ℃ Range [J]. IEEE Journal of Solid-State Circuits,2010:45(3): 600-609.
    [4]N. Cho, S. Song, S. Kim, et al. A 5.1-μW UHF RFID Tag Chip Integrated with Sensors for Wireless Environmental Monitoring [C]. IEEE European Solid-State Circuits Conference,2005:279-282.
    [5]N. Cho, S. Song, J. Lee, et al. A 8-μW,0.3 mm2 RF-Powered Transponder with Temperature Sensor for Wireless Environmental Monitoring [C]. IEEE International Symposium on Circuits and Systems,2005:4763-4766.
    [6]An Ultra Low Power 1V,220nW Temperature Sensor for Passive Wireless Applications [C]. IEEE Custom Integrated Circuits Conference,2008:507-510.
    [7]J. Yin, J. Yi, M. Law, et al. A System-on-Chip EPC Gen-2 Passive UHF RFID Tag with Embedded Temperature Sensor [C]. IEEE International Solid-State Circuits Conference,2010:308-309.
    [8]A. Vaz, A. Ubarretxena, I. Zalbide, et al. Full Passive UHF Tag With a Temperature Sensor Suitable for Human Body Temperature Monitoring [J]. IEEE Transactions on Circuits and Systems-Ⅱ:Express Briefs,2010,57(2):95-99.
    [9]R. Barnett, G. Balachandran et al. A Passvie UHF RFID Transponder for EPC Gen 2 with-14 dBm Sensitivity in 0.13μm CMOS [C]. IEEE International Solid-State Circuits Conference,2007:582-583.
    [10]S. Kim, J. Cho, H. Kim, et al. An EPC Gen2 Compatible Passive/Semi-Active UHF RFID Transponder with Embedded FeRAM and Temperature Sensor [C]. IEEE Asian Solid-State Circuits Conference,2007:135-138
    [11]V. Pillai, H. Heinrich, D. Dieska, et al. An Ultra-Low-Power Long Range Battery/Passive RFID Tag for UHF and Microwave Bands with a Current Consumption of 700 nA at 1.5 V [J]. IEEE Transactions on Circuits and Systems-Ⅰ:Regular Papers,2007,54(7):1500-1512.
    [12]M. Chen and G Rincon-Mora. Accurate, Compact, and Power-Efficient Li-Ion Battery Charger Circuit [J]. IEEE Transactions on Circuits and Systems-Ⅱ: Express Briefs,2006,53(11):1180-1184.
    [13]P. Li, J. Principle, and R. Bashirullah. A Wireless Power Interface for Rechargeable Battery Operated Neural Recording Implants [C]. IEEE EMBS Annual International Conference,2006:6253-6256.
    [14]G Balachandran and R. Barnett. A 110 nA Voltage Regulator System with Dynamic Bandwidth Boosting for RFID Systems [J]. IEEE Journal of Solid-State Circuits,2005,41(9):2019-2028.
    [15]Z. Zhu. RFID Analog Front End Design Tutorial [EB]. Auto-ID Laboratory at University of Adelaide, available online:http://autoidlab. eleceng. adelaide. edu. au/Tutorial.html.
    [16]W. Che, N. Yan, Y. Yang, and H. Min. A Low Voltage Low Power RF/Analog Front-end Circuit for Passive UHF RFID Tag [J]. Chinese Journal of Semiconductors,2008,29(3):433-437.
    [17]曾树荣,半导体器件物理基础第五章[M].北京:北京大学出版社,1987.
    [18]W. Che, Y. Yang, C. Xu, et al. Analysis, Design and Implementation of Semi-Passive Gen2 Tag [C]. IEEE International Conference on RFID,2009: 15-19.
    [19]J. Curty, N. Joehl, C. Dehollain, et al. Remotely Powered Addressable UHF RFID Integrated System [J]. IEEE Journal of Solid-State Circuits,2005,40(11): 2193-2202.
    [20]Y. Han, Q. Li, H. Min, et al. A low voltage low power oscillator suitable for RFID transponder [J]. Chinese Journal of Semiconductors,2005,26(4):775-780.
    [21]H. Banba, H. Shiga, A. Umezawa, et al. A CMOS Bandgap Reference Circuit with Sub-1-V Operation [J]. IEEE Journal of Solid-State Circuits,2005,34(5): 670-674.
    [22]G. Rincon-Mora. Current Efficient, Low Voltage, Low Drop-Out Regulators [D]. Atlanta, USA:Georgia Institute of Technology, PHD Dissertation,1996.
    [23]闫娜.低功耗低成本无源射频识别标签的研究与设计[D].上海:复旦大学博士论文,2007.
    [24]M. Hsia, Y. Tsai and O. Chen. An UHF Passive RFID Transponder Using A Low-Power Clock Generator without Passive Components [C]. IEEE International Midwest Symposium on Circuits and Systems,2006,11-15.
    [25]B. Razavi. Design of Analog CMOS Integrated Circuits, Chapter 11 [M].北京:清华大学出版社,2005:377-404.
    [26]C. Xu, P. Gao, W. Che, et al. An Ultra-Low-Power CMOS Temperature Sensor for RFID Applications [J]. Chinese Journal of Semiconductors,2009,30(4): 045003.
    [27]A. Bakker and J. Huijsing. A Low-Cost High-Accuracy CMOS Smart Temperature Sensor [C]. IEEE European Solid-State Circuits Conference.1999: 302-305.
    [28]徐琮辉.用于无线传感的模拟信号处理和数据采集[D].上海:复旦大学博士论文,2009.
    [29]A. Hastings. The Art of Analog Layout, Chapter 7 and Chapter 12 [M].北京:清华大学出版社,2004:214-259,426-442.
    [30]C. Zhang, E. Ofner. Low Power Decimation Filter Design for GSM Sigma-Delta A/D Converter Application [C]. IEEE International Conference on Solid-State and Integrated-Circuit Technology,2006:1886-1888.
    [31]P. Nikitin, K. Rao, R. Martinez, et al. Sensitivity and Impedance Measurements of UHF RFID Chips [J]. IEEE Transactions on Microwave Theory and Techniques,2009,57(5):1297-1302.
    [32]奚经天.基于片上天线的无源超高频射频识别标签的射频前端设计[D].上海:复旦大学博士论文,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700