电磁场面散射和体散射研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电磁场的面散射与体散射理论的研究,作为电磁面散射和体散射的典型代表,因其在气象、海洋、环境、军事等诸多领域的重要应用,成为专家学者们关注的热点。本文主要针对粗糙面及体电磁散射的相关解析理论进行了较深入的研究工作,并对涉及了以上两种散射理论的植被散射问题给出了新的思路。
     粗糙面散射的研究方面,本文就前人解析模型中对粗糙面斜率的随机分布特性只做了简单近似这一问题,针对高斯介质粗糙面提出了统计积分方程模型,完整地考虑了粗糙面高度和斜率两组随机特性,建立了较为准确的散射理论模型。该模型引入了表面法向量的联合概率分布函数来表征法向量之间的联合分布规律;为计算散射幅度统计平均中涉及的多重概率积分,模型引入了具有较明确物理意义的协方差矩阵分解机制,并对该分解机制进行了较为完整的理论推导,得到散射功率的分解机制,从而对散射系数表达式中的六重变量积分进行了简化,最终得到散射系数的简单解析表达式。另一方面,针对常规双尺度模型的缺陷,从该统计模型和小斜率近似方法出发,提出了一个改进的双尺度模型来有效地对复合型粗糙面进行建模。改进模型将小斜率近似方法所具有的双尺度特性与统计积分方程模型的特点结合在一起,不但可以根据表面参数自适应地调节,使得模型可以覆盖更广的粗糙度区域,同时也避免了常规的双尺度模型在尺度划分上的不确定性,从而可以更好的应用在诸如海面等复合型粗糙面电磁散射问题。
     体散射的研究方面,针对常规扩展边界条件方法在计算较大长径比的散射体时会存在着收敛性的问题,本文提出的迭代方法通过使用若干虚拟面来对一个较长的圆柱体进行等体分割,并建立线性方程组的过程中严格满足分割面上的边界条件,可以适用于任意长径比的有限长介质圆柱体散射问题;同时将该方法也被应用于多个有限长圆柱体的电磁散射问题中,并给出了相应的计算方法。由于方法中所应用到的分割技术,可以大大的减小了圆柱体的外包络球,从而对于圆柱体的间距可以有更宽松的要求;同时,对于高阶近场效应不可忽视的情况,本方法在考虑相干散射时不仅仅包括二阶效应而是同时包括了所有阶效应,因而更加精确。
     植被电磁散射的方面,本文对作为典型矮植被的大豆的后向散射场的进行了研究,所采用的方法吸取了分支模型和相位幅度修正模型的长处。在建立植株间分布模型时,考虑到大豆植株在栽种时所具有的准周期性的特点,引入了天线阵的方法来描述植株间的分布情况。再次,对于粗糙表面的散射贡献,不同于通常采用的经典基尔霍夫近似模型或小扰动模型,本文采用了的本文提出的统计斜率基尔霍夫模型。而在考虑散射体一地面双径散射机制时,对于涉及粗糙面的反射部分,本文采用了修正的费涅尔反射系数,相比传统的反射系数,能够更好地考虑土壤表面粗糙度的影响。通过仿真结果和实验结果的比较,验证了本文提出模型的正确性。
The electromagnetic scattering from randomly rough surfaces and volume scatterers have been an active research topic of in many areas, such as meteorology, oceanography, environment, military and so on. This dissertation made intensive research on random rough surface and volume electromagnetic wave scattering from analytical theory. Based on these two aspects of researches, we also paid attention to the problem on EM wave scattering from vegetation canopy on the rough surface.
     In terms of scattering from randomly rough surfaces, this dissertation carefully treated statistical distribution of slope or normal vector of surface, which were oversimplified by former analytical models, and proposed a statistical model in conjunction with the integral equation formalism for electromagnetic scattering from Gaussian rough surfaces with small to moderate heights and Gaussian power spectra where the statistical features of the surface slopes and the effect of shadowing were included. The proposed model introduced joint probability density function of surface normals to characterize their random distribution; furthermore, to simplify multiple fold integral involved in calculating ensemble averaging of scattering amplitudes, a decomposition scheme of slope covariance matrix was presented, which contained explicit physical meaning relating to correlation of slopes, and made possible the entire theory deduction and final simple analytical formulae for scattering coefficient computation. Then based on this proposed statistical method and the small slope approach, we also proposed a new two-scale model for wave scattering from a composite surface. For such model, it may capture the actual scattering mechanisms and lead to more accurate predictions, also may have promising applications for electromagnetic scattering from the ocean surface, whose entire roughness spectrum can be usually discomposed into small- and large-scale components.
     For volume scattering, the conventional T-matrix approach based on extended boundary condition method is reported to suffer from convergence problems for particles with extreme geometries represented by very large aspect ratios. This dissertation proposed a new iterative technique based on the T-matrix approach for the electromagnetic scattering by dielectric cylinders with arbitrary length. In this method, hypothetic surfaces were used to divide a cylinder into a cluster of N identical sub-cylinder, for each the T matrix can be directly calculated. Since any two neighboring subcylinder are touching via the division interface, the conventional multiscatterer equation method is not directly applicable. The coupling among sub-cylinder and boundary conditions at the interfaces were taken care of in our approach. Additionally, we extended this method to the problem of electromagnetic scattering from a cluster of parallel dielectric circular cylinders. Due to the division of the elongated cylinders, the intersection volume of the circumscribing spheres is strongly reduced. Therefore, the proposed method can be applied to the cases of when any pair of cylinders is close to each other. It should be noted that since no approximation is introduced in the procedure, this approach is thus more rigorous.
     In the field of electromagnetic scattering from vegetation, this dissertation made research on backscattering from the soybean, a typical species of short vegetation, and presented a model incorporating the benefits of branch model and phase and amplitude correction theory. In modeling inter-plant structure, the model introduced an antenna theory to take into consideration the quasi-periodic characteristics common in agricultural planting practice. Moreover, the proposed statistical integral equation model was adopted for direct scattering contribution of only randomly rough surfaces instead of traditional Kirchhoff approximation or small perturbation method; and in terms of the ground-scatter bounce scattering, conventionally used Fresnel reflection coefficient was modified to make full consideration of the impact of roughness of underlying surfaces. Finally, comparisons of model predictions with measuremental results validated this proposed model.
引文
[1]S.Seker and A.Schneider,"Stochastic model for pulsed radio transmission through stratified forests," Proc.Inst.Elect.Eng.,pt.H,vol.134,no.4,pp.361-368,1987.
    [2]W.J.Vogel,G.W.Torrence,and H.P.Lin,"Simultaneous measurements of L-Band and S-Band tree shadowing for space-earth communications," IEEE Trans.Antennas Propag.,vol.43,pp.713-719,1995.
    [3]J.V.Bladel,Electromagnetic Theory,New York:McGraw-Hill,1964.
    [4]J.Stratton,Electromagnetic Theory,New York:McGraw-Hill,1941.
    [5]M.A.Karam and A.K.Fung,"Electromagnetic wave scattering from some vegetation samples,"IEEE Trans.Geosci.Remote Sensing,vol.26,pp.799-808,1988.
    [6]S.H.Yueh,J.A.Kong,J.K.Jan,R.T.Shin,and T.L.Toan,"Branching model for vegetation,"IEEE Trans.Geosci.Remote Sensing,vol.30,pp.390-402,1992.
    [7]T.Chiu and K.Sarabandi,"Electromagnetic scattering from short branching vegetation," IEEE Trans.Geosci.Remote Sensing,vol.38,no.2,pp.911-925,2000.
    [8]C.Yeh,R.Woo,A.Ishimaru,and J.Armstrong,"Scattering by single ice needles and plates at 30GHz," Radio Sci.,Vol.17,1503-1510,1982.
    [9]D.R.Smith,R.Dalichaouch,N.Kroll,S.Schultz,S.L.McCall,and P.M.Platzman,"Photonic band structure and defects in one and two dimensions," J.Opt.Soc.Am.B,vol.10,no.2,pp.314-321,1993.
    [10]Z.Chen,L.Tsang,and G.Zhang,"Appication of stochastic lindenmayer systems to the study of collective and cluster scattering in microwave remote sensing of vegetation," Progress In Electromagnetics Research,vol.14,pp.233-277,1996.
    [11]T.Le Toan,F.Ribbes,L.F.Wang,N.Floury,K.H.Ding,J.A.Kong,M.Fujita,and T.Kurosu,"Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results,"IEEE Trans.Geosci.Remote Sensing,vol.35,no.1,pp.41-56,1997.
    [12]F.T.Ulaby,K.Sarabandi,K.McDonald,M.Whitt,and M.C.Dobson,"Michigan microwave canopy scattering model," Int.J.Remote Sensing,vol.38,no.7,pp.2097-2128,2000.
    [13]Y.Du,Y.L.Luo,W.Z.Yan,and J.A.Kong,"An electromagnetic scattering model for soybean canopy," Progress In Electromagnetics Research,vol.79,pp.209-223,2008.
    [14]P.Beckmann and A.Spizzichino,The Scattering of Electromagnetic Waves from Rough Surfaces,New York:Pergamon,1963.
    [15]M.I.Sancer,"Shadow-corrected electromagnetic scattering from a randomly rough surface," IEEE Trans.Antennas Propagat.,vol.17,pp.577-585,1969.
    [16]G.R.Valenzuela,"Depolarization of EM waves by slightly rounded surfaces," IEEE Trans.Antennas Propagat.,vol.15,pp.552-557,1967.
    [17]A.Ishimaru and J.S.Chen,"Scattering from very rough metallic and dielectric surfaces:a theory based on the modified Kirchhoff approximation," Waves Random Media,vol.1,no.1,pp.21-34,1991.
    [18]C.Bourlier,J.Saillard,and G.Berginc,"Efect of correlation between shadowing and shadowed points on the Wagner and Smith monostatic one-dimensional shadowing functions," IEEE Trans.Antennas Propagat.,vol.48,pp.437-446,2000.
    [19]C.Bourlier,G.Berginc,and J.Saillard,"One- and two-dimensional shadowing functions for any height and slope stationary uncorrelated surface in the monostatic and bistatic configurations," IEEE Trans.Antennas Propagat.,vol.50,pp.312-324,2002.
    [20]C.Bourlier,G.Berginc,and J.Saillard,"Bistatic scattering coefficient from one- and two-dimensional randomly rough surface using the stationary phase and scalar approximation with shadowing effect:comparisons with experiments and application to the sea surface," Waves Random Media,vol.11,pp.119-147,2001.
    [21]N.C.Bruce,"Calculations of the light scattered from an infinite-sloped surface using the Kirchhoff approximation," in Proc.SPIE,pp.1550-1555,2004.
    [22]A.K.Fung and H.J.Eom,"Multiple scattering and depolarization by a randomly rough Kirchhoff surface," IEEE Trans.Antennas Propagat.,vol.29,pp.463-471,1981.
    [23]R.J.Papa and J.F.Lennon,"Conditions for the validity of physical optics in rough surface scattering," IEEE Trans.Antennas Propagat.,vol.36,pp.647-650,1988.
    [24]E.Thorsos and D.Jackson,"The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum," J.Acoust.Soc.Amer,vol.83,no.1,pp.78-92.1988.
    [25]D.Holliday,L.L.DeRaad,and G.J.St-Cyr,"Forward-backward:A new method for computing low-grazing angle scattering," IEEE Trans.Antennas Propagat.,vol.44,pp.722-729,1996.
    [26]F.T.Ulaby,R.K.Moore,and A.K.Fung,Microwave Remote Sensing,Active and Passive Dedham.MA:Artech,1986.
    [27]L.Rayleigh,The theory of sound,New York:Dover,1986.
    [28]U.Fano,"The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces(Sommerfeld's waves)," J.Opt.Soc.Am.,vol.31,pp.213-222,1941.
    [29]S.O.Rice,"Reflection of electromagnetic waves from slightly rough surfaces," Commun.Pure Appl.Math.,vol.4,pp.351-378,1951.
    [30]W.H.Peake,"Theory of radar return from terrain," IRE Int.Conv.Record,pt.1,vol.7,pp.27-41,1959.
    [31]G.R.Valenzuela,"Depolarization of EM waves by slightly rough surfaces," IEEE Trans.Antennas Propagat.,vol.15,pp.552-557,1967.
    [32]M.Saillard,"A characterization tool for dielectric random rough surfaces:Brewster's phenomenon,"Waves Random Media,vol.2,pp.67-79,1992.
    [33]J.T.Johnson,"Third order small perturbation method for scattering from dielectric rough surfaces,"J.Opt.Soc.Amer A,vol.16,pp.2720-2736,1999.
    [34]M.A.Demir and J.T.Johnson,"Fourth-and higher-order small-perturbation solution for scattering from dielectric rough surfaces," J.Opt.Soc.Amer A,vol.20,pp.2330-2337,2003.
    [35]F.Toigo,A.Marvin,V.Celli,and N.R.Hill,"Optical properties of rough surfaces:general theory and small roughness limit," Phys.Rev.B,vol.15,pp.5618-5626,1977.
    [36]A.Soubret,G.Berginc,and C.Bourrely,"Application of reduced Rayleigh equations to electromagnetic wave scattering by two-dimensional randomly rough surfaces," Phys.Rev.B,vol.63,pp.411-420,2001.
    [37]G.S.Brown,"Backscattering from a Gaussian-distributed,perfectly conducting rough surface,"IEEE Trans.Antennas Propagat.,vol.26,pp.472-482,1978.
    [38]G.S.Agarwal,"Interaction of electromagnetic waves at rough dielectric surfaces," Phys.Rev.B,vol.15,pp.2371-2383,1977.
    [39]L.Tsang,J.A.Kong,and R.T.Shin,Theory of Microwave Remote Sensing,New York:Wiley,1985.
    [40]D.R.Jackson,D.P.Winebrenner,and A.Ishimaru,"Comparison of perturbation theories for rough-surface scattering," J.Acoust.Soc.Am.,vol.83,pp.961-969,1988.
    [41]D.E.Barrick and R.Fitzgerald,"The failure of 'classic' perturbation theory at a rough Neumann boundary near grazing," IEEE Trans.Antennas Propagat.,vol.48,pp.1452-1460,2000.
    [42]E.I.Thorsos,"The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum," J.Acoust.Soc.Am.,vol.83,pp.78-92,1987.
    [43]A.K.Fung,Z.Li,and K.S.Chen,"Backscatterig from a randomly rough dielectric surface," IEEE Trans.Geosci.Remote Sensing,vol.30,pp.356-369,1992.
    [44]B.F.Kur'yanov,"The scattering of sound at a rough surface with two types of irregularity," Sov.Phys.Acoust,vol.8,pp.252-257,1963.
    [45]J.W.Wright,"A new model for sea clutter," IEEE Trans.Antennas Propagat.,vol.16,pp.217-223,1968.
    [46]M.Burrows,"On the composite model for rough-surface scattering," IEEE Trans.Antennas Propagat.,vol.21,pp.241-243,1973.
    [47]J.A.Conway,R.A.Cordey,and J.T.Maclin,'Contrasts on two-scale descriptions of backscattering from the sea surface using scatterometer model function," in Proc.IGARSS,pp.33-34,1988.
    [48]V.U.Zavorotny and A.G.Voronovich,"Two-scale model and ocean radar Doppler spectra at moderate-and low-grazing angles," IEEE Trans.Antennas Propagat.,vol.46,pp.84-92,1998.
    [49]D.R.Lyzenga,"Comparison of WindSat brightness temperatures with two-scale model predictions,"IEEE Trans.Geosci.Remote Sens.,vol.44,pp.549-559,2006.
    [50]A.G.Voronovich and V.U.Zavorotny,"Theoretical model for scattering of radar signals in Ku- and C-bands from a rough sea surface with breaking waves," Waves Random Media,vol.11,pp.247-269, 2001.
    [51]S.L.Durden and J.F.Vesecky,"A numerical study of the separation wavenumber in the two scale scattering approximation," IEEE Trans.Geosci.Remote Sensing,vol.28,pp.271-272,1990.
    [52]E.Bahar,"Scattering cross sections for composite random surfaces:Full wave analysis," Radio Sci.,vol.16,pp.1327-1335,1981.
    [53]A.G.Voronovich and V.U.Zavorotny,"Curvature effects in the composite model for low grazing angle rough-surface scatter," Waves Random Media,vol.8,pp.41-52.1998.
    [54]A.G.Voronovich,"Small-slope approximation in wave scattering by rough surfaces," Sov.Phys.JETP,vol.62,pp.65-70,1985.
    [55]A.G.Voronovich,"Small-slope approximation for electromagnetic wave scattering at a rough interface of two dielectric half-spaces," Waves Random Media,vol.4.pp.337-367,1994.
    [56]A.G.Voronovich,"A two-scale model from the point of view of the small-slope approximation,"Waves Random Media,vol.6,pp.73-83,1996.
    [57]D.H.Berman,"Simulations of rough surface scattering," J.Acoust.Soc.Am.,vol.89,pp.623-636,1991.
    [58]G.Soriano,C.A.Guerin,and M.Saillard,"Scattering by two-dimensional rough surfaces:Comparison between the method of moments,Kirchhoff and small-slope approximations," Waves Random Media,vol.12,pp.63-83,2002.
    [59]C.A.Guerin,G.Soriano,and T.Elfouhaily,"Weighted curvature approximation:Numerical tests for 2D dielectric surfaces," Waves Random Media,vol.14,pp.349,2004.
    [60]S.L.Broschat and E.I.Thorsos,"An investigation of the small-slope approximation for scattering from rough surfaces:part Ⅱ.Numerical studies," J.Acoust.Soc.Am.,vol.101,pp.2615-2625,1997.
    [61]J.T.Johnson,"A numerical study of low-grazing-angle backscatter from ocean-like impedance surfaces with the canonical grid method," IEEE Trans.Antennas Propag.,vol.46,no.1,pp.114-120,Jan.1998.
    [62]H.Kim and J.T.Johnson,"Radar image studies of an ocean-like surface," Microwave Opt.Tech.Lett.,vol.30,no.6,pp.381-384,2001.
    [63]M.S.Gilbert and J.T.Johnson,"A study of the higher-order small-slope approximation for scattering from a Gaussian rough surface," Waves Random Media,vol.13,pp.137-149,2003.
    [64]T.K.Chan,Y.Kuga,A.Ishimaru,and C.T.C.Le,"Experimental studies of bistatic scattering from two-dimensional conducting random rough surfaces," IEEE Trans.Geosci.Remote Sens.,vol.34,pp.674-680,1996.
    [65]M.A.Demir and J.T.Johnson,"Fourth-order small-slope theory of sea-surface brightness temperatures," IEEE Trans.Geosci.Remote Sensing,vol.45,pp.175-186,2007.
    [66]C.A.Guerin and M.Saillard,"On the high-frequency limit of the second-order small-slope approximation," Waves Random Media,vol.13,pp.75-88,2003.
    [67]A.G.Voronovich,"Non-local small-slope approximation for wave scattering from rough surfaces,"Waves Random Media,vol.6,pp.151-67,1996.
    [68]A.K.Fung,Z.Li,and K.S.Chen,"Backscatterig from a randomly rough dielectric surface," IEEE Trans.Geosci.Remote Sensing,vol.30,pp.356-369,1992.
    [69]A.K.Fung and S.Tjuatja,"Backscattering and emission signatures of randomly rough surfacesbased on IEM," in Proc.IGARSS,pp.1006-1008,1993.
    [70]K.S.Chen and A.K.Fung,"A comparison of backscattering models for rough surfaces," IEEE Trans.Geosci.Remote Sens.,vol.33,pp.195-200,1995.
    [71]A.K.Fung,M.S.Dawson,K.S.Chen,A.Y.Hsu,T.Engman,P.O.O'Neill,and J.Wang,"A modified IEM model for scattering from soil surfaces with application to soil moisture sensing," in Proc.IGARSS,pp.1297-1299,1996.
    [72]C.Y.Hsieh,A.K.Fung,G.Nesti,A.Sieber,and P.Coppo,"A further study of the IEM surface scattering model," IEEE Trans.Geosci.Remote Sensing,vol.35,pp.901-909,1997.
    [73]G.Macelloni,G.Nesti,P.Pampaloni,S.Sigismondi,D.Tarchi,and S.Lolli,"Experimental validation of surface scattering and emission models," IEEE Trans.Geosci.Remote Sens.,vol.38,pp.459-469,2000.
    [74]J.L.Alvarez-Perez,"An extension of the IEM/IEMM surface scattering model," Waves in Random Media,vol.11,pp.307-329,2001.
    [75]T.D.Wu,K.S.Chen,J.C.Shi,and A.K.Fung,"A transition model for the reflection coefficient in surface scattering," IEEE Trans.Geosci.Remote Sensing,vol.39,pp.2040-2050,2001.
    [76]K.S.Chen,T.D.Wu,L.Tsang,Q.Li,J.Shi,and A.K.Fung,"The emission of rough surfaces calculated by the integral equation method with a comparison to a three-dimensional moment method simulations," IEEE Trans.Geosci.Remote Sens.,vol.41,pp.90-101,2003.
    [77]A.K.Fung and K.S.Chen,"An update on the IEM surface backscattering model." IEEE Trans.Geosci.Remote Sens.Letters,vol.1,pp.75-77,2004.
    [78]J.J.Bowman,T.B.A.Senior,and P.L.E.Uslenghi,Electromagnetic Scattering by Simple Shapes,revised ed.,New York:Hemisphere,1987.
    [79]F.T.Ulaby and C.Elachi,Radar polarimetryfor geoscience applications,Artech House.Norwood,MA,1990.
    [80]H.C.Van De Hulst,Light Scattering by Small Particles,Dover,New York,1981.
    [81]C.F.Bohren and D.R.Huffman,Absorption and Scattering of light by Small Particles.Wiley,New York,1983.
    [82]M.A.Karam,D.M.LeVine,Y.M.M.Antar,and A.Stogryn,"Improvement of the Rayleigh approximation for scattering from a small scatterer," IEEE Trans.Antennas Propag.vol.43,pp.681-687,1995.
    [83]C.Acquista,"Light scattering by tenuous particles:a generalization of the Rayleigh-Gans-Record approach,"Appl.Opt.,vol.15,pp.2932-2936,1976.
    [84]R.Schiffer and K.O.Thielheim,"Light scattering by dielectric needles and disks," J.Appl.Phys.,vol.50,pp.2476-2483,1979.
    [85]J.M.Stiles and K.Sarabandi,"A scattering model for thin dielectric cylinders of arbitrary cross section and electrical length," IEEE Trans.Antennas Propag.,vol.44,pp.260-266,1996.
    [86]M.A.Karam and A.K.Fung,"Electromagnetic wave scattering from some vegetation samples,"IEEE Trans.Geosci.Remote Sensing,vol.26,pp.799-808,1988.
    [87]P.C.Waterman,"Matrix formulation of electromagnetic scattering," Proc.IEEE,vol.53,pp.805-811,1965.
    [88]M.I.Mishchenko and L.D.Travis,"T-matrix computations of light scattering by large spheroidal particles," Opt.Commun.,vol.109,pp.16-21,1994.
    [89]M.I.Mishchenko,L.D.Travis,and A.Macke,"Scattering of light by polydisperse,randomly oriented,finite circular cylinders," Appl.Opt.,voi.35,pp.4927-4940,1996.
    [90]M.I.Mishchenko,L.D.Travis,and D.W.Mackowski,"Tmatrix computations of light scattering by nonspherical particles:A review," J.Quant.Spectrosc.Radiat.Transfer,Vol.55,pp.535-575,1996.
    [91]D.J.Wielaard,M.I.Mishchenko,A.Macke,and B.E.Carlson,"Improved T-matrix computations for large,nonabsorbing and weakly absorbing nonspherical particles and comparison with geometrical optics approximation," Appl.Opt.,vol.36,pp.4305-4313,1997.
    [92]M.I.Mishchenko,"Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation," Appl.Opt.,vol.39,pp.1026-1031,2000.
    [93]P.W.Barber,"Resonance electromagnetic absorption by nonspherical dielectric objects," IEEE Trans.Microwave Theory Tech.,vol.25,pp.373-371,1954.
    [94]M.Iskander,A.Lakhtakia,and C.Durney,"A new procedure for improving the solution stability and extending the frequency range of the EBCM," IEEE Trans.Antennas Propag.,vol.31,pp.317-324,1983.
    [95]F.M.Kahnert,"Numerical methods in electromagnetic scattering theory," J.Quant.Spectrosc.Radiat.Transfer,vol.79-80,pp.755-824,2003.
    [96]H.M.A1-Rizzo and J.M.Tranquilla,"Electromagnetic wave scattering by highly elongated and geometrically composite objects of large size parameters:The generalized multipole technique,"Appl.Opt.,vol.34,pp.3502-3521,1995.
    [97]A.Doicu and T.Wriedt,"Calculation of the T matrix in the null-field method with discrete sources,"J.Opt.Soc.Am.,vol.16,pp.2539-2544,1999.
    [98]D.Mackowski and M.Mishchenko,"Calculation of the T-matrix and the scattering matrix for ensembles of spheres," J.Opt.Soc.Am.A,vol.13,pp.2266-2278,1996.
    [99]W.C.Chew,Waves and fields in inhomogeneous media,IEEE PRESS Series on Electromagnetic Waves,1990.
    [100]L.Tsang,K.H.Ding,G.F.Zhang,C.C.Hsu,and J.A.Kong,"Backscattering enhancement and clustering effects of randomly distributed dielectric cylinders overlying a dielectric half space based on Monte-Carlo simulation," IEEE Trans.Antennas Propag.,vol.43,pp.488-499,1995.
    [101]K.Sarabandi and P.F.Polatin,"Electromagnetic scattering from two adjacent objects," IEEE Trans.Antennas Propagat.,vol.42,pp.510-516,1994.
    [102]S.Q.Li,J.Fang,and W.B.Wang,"Electromagnetic scattering from two adjacent cylinders," IEEE Trans.Geosci.Remote Sensing,vol.36,pp.1981-1985,1998.
    [103]R.Lang,"Electromagnetic backscattering from sparse distribution of lossy dielectric scatterers,"Radio Sci.,vol.16,pp.15-30,1981.
    [104]F.T.Ulaby,K.Sarabandi,K.McDonald,M.Whitt,and M.C.Dobson,"Michigan microwave canopy scattering model," Int.J.Remote Sensing,vol.38.pp.2097-2128,2000.
    [105]M.A.Karam,A.K.Fung,R.H.Lang,and N.S.Chauhan,"A microwave scattering model for layered vegetation," IEEE Trans.Geosci.Remote Sensing,vol.30,pp.767-784,1992.
    [106]G.Q.Sun,D.Simonett,and A.Strahler,"A radar backscatter model for discontinuous coniferous forests," IEEE Trans.Geosci.Remote Sensing,vol.29,pp.639-650,1991.
    [107]Yueh,S.H.,J.A.Kong,J.K.Jao,R.T.Shin,and T.L.Toan,"Branching model for vegetation,"IEEE Trans.Geosci.Remote Sensing,vol.30,pp.390-402,1992.
    [108]Y.C.Lin and K.Sarabandi,"A Monte Carlo coherent scattering model for forest canopies using fractal generated trees," IEEE Trans.Geosci.Remote Sensing,vol.37,pp.36-40,1997.
    [109]Ao K.Fung,S.Tjuatja,J.W.Bredow,and H.T.Chuah,"Dense Medium Phase and Amplitude Correction Theory for Spatially and Electrically Dense Media," in Proc.IGARSS,vol.2,pp.1336-1338,1995.
    [110]T.Chiu and K.Sarabandi,"Electromagnetic scattering from short branching vegetation," IEEE Trans.Geosci.and Remote Sensing,vol.38,pp.911-925,2000.
    [111]R.Lang and J.S.Sidhu,"Electromagnetic backscattering from a layer of vegetation:A discrete approach," IEEE Trans.Geosci.Remote Sensing,vol.21,pp.62-71,1983.
    [112]K.Sarabandi,P.F.Polatin,and F.T.Ulaby,"Monte Carlo simulation of scattering from a layer of vertical cylinders," IEEE Trans.Antennas Propagat.,vol.41,pp.465-474,1993.
    [113]金亚秋.随机粗糙面上后向散射的增强[J].物理学报.1989,38(10):1611-1620.
    [114]金亚秋.强起伏连续随机介质的辐射传输理论[A].中国科学A辑.1990,33(5):535-544.
    [115]金亚秋.多成分密集随机散射粒子多层介质的辐射传输[A].中国科学A辑.1992,35(12):1311-1317.
    [116]Y.Q.Jin,"Polarimetric scattering from a layer of random clusters of small spheroids," IEEE Trans.Antennas Propag.,vol.42,pp.1138-1144,1994.
    [117]潘广东.棉田微波散射研究[J].遥感学报.1999,3(1):15-20.
    [118]曾琪明,马洪兵,张涛.水稻微波后向散射模型研究和计算[J].北京大学学报(自然科学版).2000,36(1):88-96.
    [119]绍芸,廖静娟,范湘涛,等.水稻时域后项散射特性分析:雷达观测与模拟结果比较[J].遥感学报.2002,6(6):440-450.
    [120]Y.Du,J.A.Kong,T.Xu,and Y.L.Luo,"Electromagnetic scattering from a Gaussian rough surface based on slope statistics and covariance matrix decomposition," Radio Science,in revision.
    [121]C.Bourlier,G.Berginc,and J.Saillard,"Theoretical study of the Kirchhoff integral from a two-dimensional randomly rough surface with shadowing effect:Application to the backscattering coefficient for a perfectly-conducting surface," Waves Random Media,vol.11,pp.91-118,2001.
    [122]A.J.Poggio and E.K.Miller,"Integral equation solution of three dimensional scattering problems,"in Computer Techniques for Electromagnetics,New York:Pergamon,1973.
    [123]A.K.Fung,Microwave Scattering and Emission Models and Their Applications.Norwood,MA:Artech House,1994.
    [124]M.I.Sancer,"Shadow-corrected electromagnetic scattering from a randomly rough surface," IEEE Trans.Antennas Propag.,vol.17,pp.577-589,1969.
    [125]R.G.Smith,"Geometrical shadowing of a random rough surface,"IEEE Trans.Antennas Propag.,vol.15,pp.668-671,1967.
    [126]L.Tsang,J.A.Kong,K.H.Ding,and C.O.Ao,Scattering of Electromagnetic Waves-Numerical Simulations,New York:Wiley,2001.
    [127]J.A.Kong,Theory of electromagnetic waves,New York:Wiley-Interscience,1975.
    [128]H.T.Ewe,J.T.Johnson,and K.S.Chen,"A comparison study of the surface scattering models and numerical model," in Proc.IGARSS,vol.6,pp.2692-2994,2001.
    [129]G.Macelloni,G.Nesti,P.Pampaloni,S.Sigismondi,D.Tarchi,and S.Lolli,"Experimental validation of surface scattering and emission models," IEEE Trans.Geosci.Remote Sensing,vol.21,pp.459-469,2000.
    [130]L.Tsang,J.A.Kong,K.H.Ding,and C.O.Ao,Scattering of Electromagnetic Waves- Theories and Applications,New York:Wiley,2001.
    [131]M.I.Mishchenko,"Light scattering by size-shape distributions of randomly oriented axially symmetric particles of size comparable to a wavelength," Appl.Opt.,vol.32,pp.4652-4666,1993.
    [132]L.E.Allan and G.M.McCormick,"Measurements of the backscatter matrix of dielectric bodies,"IEEE Trans.Antennas Propag.,vol.28,pp.166-169,1980.
    [133]B.Friedman and J.Russek,"Addition theorems for spherical waves." Q.Appl.Math.,vol.12,pp.13-23,1954.
    [134]S.Stein,"Addition theorems for spherical ware functions," Q.Appl.Math..Vol.19,15-24,1961.
    [135]J.A.Gaunt,"On the triplets of helium," Philos.Trans.R.Soc.Lond.A,Vol.228,151-196,1929.
    [136]J.H.Brunning and Y.T.Lo,"Multiple scattering of EM waves by spheres.Part Ⅰ and Ⅱ," IEEE Trans.Antennas Propag.,Vol.19,No.3,378-400,1971.
    [137]Y.L.Xu,"Fast evaluation of the Gaunt coefficients," Math.Comput.,vol.65,pp.1601-1612,1996.
    [138]Mackowski,D.W.,"Analysis of radiative scattering for multiple sphere configurations," Proc.R.Soc.Lond.A,599-614,1991.
    [139]W.C.Chew,"Recurrence relations for three-dimensional scalar addition theorem," J.Electromagnetic Waves Appl.,Vol.6,133-142,1992.
    [140]O.R.Cruzan,"Translational addition theorems for spherical vector ware functions," Q.Appl.Math.,vol.20,pp.33-39,1962.
    [141]S.Koc,J.M.Song,and W.C.Chew,"Error analysis for the numerical evaluation of the diagonal forms of the scalar spherical addition theorem," SIAM J.Numer.Anal.,vol.36,pp.906-921,1999.
    [142]Y.L.Xu,"Electromagnetic scattering by an aggregate ofspheres," Appl.Opt.,vol.34,pp.4573-4588,1995.
    [143]G.Picard,T.Le Toan,and F.Mattia,"Understanding C-band radar backscatter from wheat canopy using a multiple-scattering coherent model",IEEE Trans.Geosci.and Remote Sensing,vol.41,pp.1583-1591,2003
    [144]M.Abramowitz and J.A.Stegun,Handbook of Mathematical Functions,New York:Dover,1965.
    [145]郭华东.雷达对地观测理论和应用[D].北京:科学出版社.2000.
    [146]C.Notarnicola and F.Posa,"Inferring vegetation water content from C- and L-band SAR images,"IEEE Trans.Geosci.and Remote Sensing,vol.45,pp.3165-3171,2007.
    [147]J.A.Osborn,"Demagnetizing factors of the general ellipsoid," Phys.Rev.,vol.67,pp.351-357,1945.
    [148]M.W.J.Davidson,T.L.Toan,F.Mattia,G.Satalino,T.Manninen,and M.Borgeaud,"On the characterization of agricultural soil roughness for radar remote sensing studies," IEEE Trans.Geosci.Remote Sensing,vol.38,pp.630-640,2000.
    [149]R.D.De Roo,Y.Du,F.T.Ulaby,and M.C.A.Dobson,"Semi-empirical backscattering model at L-band and C-band for asoybean canopy with soil moisture inversion," IEEE Trans.Geosci.Remote Sensing,vol.39,pp.864-872,2001.
    [150]E.Rodriguez,"Beyond the Kirchhoff approximation," Radio Sci.,vol.26,pp.121-132,1991.
    [151]H.T.Chuah,S.Tjuatja,A.K.Fung,and J.W.Bredow,"Phase matrix for a dense discrete random medium:evaluation of volume scattering coefficient," IEEE Trans.Geosci.Remote Sensing,vol.34,pp.1137-1143,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700