低维量子体系热输运性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着微/纳制造技术的飞速发展,电子器件的尺寸已经进入纳米尺度。纳米尺度量子器件由于其优良的性能以及重要的应用前景已经受到了人们的广泛的关注。量子体系中物理性质的研究已经成为凝聚态物理一个非常重要的研究方向,在当今世界的高新科技领域起着关键性的作用。本文对低维量子体系中声学声子输运和热导性质进行了系统的研究,取得了一些有意义的研究结果。
     研究了弹性和硬壁两种边界条件下三维T型量子结构中弹性声子输运和热导性质,详细地比较了两维和三维纳米模型的热输运性质。结果表明,对于弹性边界条件,当温度趋近于0k时,能够观察到量子化热导现象,量子化热导与结构的几何细节无关,三维情形与二维情形具有相似的热导性质。然而,对于硬壁边界条件,三维情形与二维情形中的热导性质是不同的。
     利用散射距阵方法,进一步研究了低温下两个耦合的量子点调制的量子线中的弹性声子热输运性质。研究结果表明,在极低的温度下,仅仅最低模被激发,热导随着结构参数的变化而单调变化。随着温度的升高,更多的模被激发,导致热导随着结构参数的变化而非线性变化。声子的输运几率与热导依赖于量子点相对量子线对称轴的相对位置。当量子线对称轴偏离量子点中心时,热导单调增加。研究表明,调节两量子点之间的距离能有效调节热导。此外,我们也观察到非均匀量子化输运台阶。
     前面的研究主要是针对单支振动模热输运性质的研究。实际上,对低温量子热导的贡献来自于最低的四支声学模。本文研究了具有catenoidal结构的量子线中最低的六支弹性声子模(压缩模,扭转模,两支弯曲模,两支光学模)的热导性质。研究结果表明最低的四支声学模的截止频率为0,而两支光学模的截止频率大于0。在理想的量子线中存在量子化的热导平台,当结构为具有catenoidal结构的量子线时,量子热导平台消失,被下降的热导曲线所取代。结果表明,来自不同振动模的热导具有不同的特征。
     研究了低温下被量子点调制的量子线中六支振动模的输运几率和热导的特点。同时,比较了六支振动模热导的性质。结果表明六支模的输运几率表现为周期或准周期的行为。不同振动模的热导具有不同的输运性质。通过改变量子点的结构参数能够有效调节热导的大小。
     此外,我们研究了三维超晶格中非谐相互作用的三声子散射、边界散射、界面散射、杂质散射、电声相互作用这五种散射机制对热导率的影响。研究结果表明在这五种散射机制中,边界散射和界面散射对减少热导率起着主要作用。改变横截面尺寸和超晶格横向周期的长度能够有效调节热导率。同时,研究表明超晶格横截面能有效约束声子的群速,从而导致热导率的变化。
Recently, with the rapid devlepment of micro-/nano-fabrication techniques, the feature sizes of electronic device and thermal pathway are scaling down to nanodimenssion. There has increasing attention to nano-dimenssional electronic device due to their novel physical properties and extensive application prospects. The study of low-dimensional quantum system and correlative work has been a very important development direction of condensed. matter physics and study embranchment of new technology and new devices, which plays a crucial role in new and high-tech domain. In this paper, we investigate the property of quantum thermal conductance in low-dimensional quantum system and the influence for nanostructure dimension to thermal transport widely, and we find some significative results.
     Ballistic thermal conductance in a three-dimensional quantum wire with a stub structure is presentedunder both stress-free and hard wall boundary conditions at low temperatures. A comparative analysis for two-dimensional and three-dimensional models is made. The results show that whenstress-free boundary conditions are applied, the universal quantum thermal conductance can beobserved regardless of the geometry details in the limit T→0, and the behavior of the thermalconductance is qualitatively similar to that calculated by two-dimensional model. However, when hard wall boundary conditions are applied, the thermal conductance displays different behaviors inboth two-dimensional and three-dimensional models.
     Using scattering-matrix method,ballistic thermal transport properties at low temperatures in a quantum wire modulated withtwo coupling quantum dots are studied. The results show that when the temperature is low enoughwhere only the lowest mode can be excited, the reduced thermal conductance displays monotonicbehavior with the change of structural parameters. At higher temperature, more modes can beexcited and the reduced thermal conductance displays a nonlinear behavior with the change of thestructural parameters. It is also found that the phonon transmission and thermal conductance sensitively depend on the relative position of quantum dots and symmetric axis of the quantumwire. When the symmetry axis of quantum wire is away from the center of the quantum dots, thethermal conductance increases monotonously, and is different when the symmetric axis of quantumwire is away from from the center of quantum dot along different routes. It is also found that the thermal conductance can be modulated by the magnitude of the quantum dots and the length between the two quantum-dots. Moreover, inhomogeneous quantum transport steps and quantizedthermal conductance plateau can be observed in such structure.
     In the previous work, our studies foucs on the thermal transport of only single vibrational mode. Actually, the quantum thermal conductance relies on four low-lying acoustic vibrational modes. The thermal conductance associated with the lowest six types of ballistic phonon modes in quantum wire with catenoidal contacts is investigated. The results show that the cutoff frequency for the four types of acoustic modes is zero, while two types of optical modes are of nonzero cutoff frequency. For a perfect quantum wire, a quantized thermal conductance plateau can be observed. While for the structure with catenoidal contacts, the thermal conductance plateau is broken and a decrease in thermal conductance appears. The results also show that the reduced thermal conductance contributed from different vibrational modes has different characteristics.
     The ballistical phonon transport and thermal conductance of the six low-lying vibration modes at low temperatures in quantum wire modulated with quantum dot is investigated. A comparative analysis for the thermal conductance for the six vibrational modes is made. The results show that the transmission possibility of the six vibrational modes displays periodic or quasi-periodic oscillatory behavior. The thermal conductance contributed by different vibrational modes is of different characteristics, and can be adjusted by changing the structural parameters of the quantum dot.
     Moreover, we investigate the influence for five kides of scattering mechanisms to thermal conductivity, which are three-phonon Umklapp scattering, boundary scattering, interfacial scattering, mass difference(impurities) scattering, and phonon-electron scattering. Among the five kides of scattering mechanisms, the boundary scattering and the interfacial scattering are dominant resistive process for the decrease of the thermal conductivity. It is effective to adjust thermal conductivity by changing the dimension of the cross-section and the thickness of the constituent layers of the unit cell of the superlattice. The study also shows that the group velocity of phonons is dependent on the dimension of the cross-section, which can change the thermal conductivity effectively.
引文
[1]Peng K Q, Yan Y J, Gao S P, et al. Synthesis of large-area silicon nanowire arrays via self-assembling nanochemistry. Adv Mater,2002,14(16):1164-1167
    [2]Peng K Q, Yan Y J, Gao S P, et al. Dendrite-assisted growth of silicon nano wires in electroless metal deposition. Adv Funct Mater,2003,13(2):127-132
    [3]Peng K. Uniform, axial-orientation alignment of one-dimensional singlecrystal silicon nanostructure arrays. Angew Chem Intl Edn,2005,44 (18):2737-2742
    [4]Li D Y, Wu Y, Kim P, et al. Thermal conductivity of individual silicon nanowires. Appl Phys Lett,2003,83(14):2934-2936
    [5]Hochbaum A I, Fan R, He R, et al. Controlled growth of Si nanowire arrays for device integration. Nano Lett,2005,5(3):457-460
    [6]Pradhan A K, Sahu D R, Roul B K, et al. La1-xBaxMnO3 epitaxial thin films by pulsed-laser deposition:A consequence of strain stabilization. Applied Physics Letters,2002,81(19):3597-3599
    [7]Chen Fen, Li Bao Zhen, Jammy Rajarao, et al. Photo-enhanced negative differential resistance and photo-accelerated time-dependent dielectric breakdown in thin nitride-oxide dielectric film. Applied Physics Letters,2001,78(21): 3241-3243
    [8]Hastas N A, Dimitriadis C A, Tassis D H, et al. Electrical properties of magnetron sputtered amorphous carbon films with sequential sp3-rich/sp2-rich layered structure. Applied Physics Letters,2001,79(20):3269-3271
    [9]Soderstron T, Huang F J, Niquille X, et al. Asymmetric intermediate reflector for tandem micromorph thin film silicon solar cells. Applied Physics Letters, 2009,94(6):063501-063503
    [10]Gomes Carlos J, Madrid Marcela, Goicochea Javier V, et al. In-Plane and Out-Of-Plane Thermal Conductivity of Silicon Thin Films Predicted by Molecular Dynamics. Journal of Heat Transfer,2006,124(21):1114-1121
    [11]Chen Renkun, Hochbaum Allon I, Murphy Padraig, et al. Thermal Conductance of Thin Silicon Nanowires. Physical Review Letters,2008,101(10):10551-10554
    [12]Donadio Davide, Galli Giulia. Atomistic Simulations of Transport in Silicon Nanowires. Physical Review Letters,2009,102(19):195901-195904
    [13]Kapadia Rehan, Ko Hyunhyub, Chueh Yu-Lun, et al. Hybrid core-multishell nanowire forests for electrical connector applicatons. Applied Physics Letters, 2009,94(26):263110-263112
    [14]Lee Sejoon, Hiramota Toshiro. Strong dependence of tunneling transport properties on overdriving votage for room-temperature-operating single electron/hole transistors formed with ultranarrow[100] silicon nanowire channel. Applied Physics Letters,2008,93(4):043508-043511
    [15]Wan Qing, Huang Jin, Xie Zhong, et al. Branched SnO2 nanowires on metallic nanowire backbones for ethanol sensor application. Applied Physics Letters, 2008,92(10):102101-102103
    [16]Huang Wei Qing, Chen Ke Qiu, Wang Ling Ling, et al. Lattice thermal conductivity in a hollow silicon nanowire. International Journal of Modern Physics B,2005,19(6):1017-1027
    [17]Lu X, Shen W Z, Chu J H, et al. Size effect on the thermal conductivity of nanowires. Journal of Applied Physics,2002,91(3):1542-1552
    [18]Lu Xiang. Lattice thermal conductivity of Si nanowires:Effect of modified phonon density of states. Journal of Applied Physics,2008,104(5):054314-054318
    [19]Wang Shuai Chuang, Liang Xin Gang, Xu Xiang Hua, Thermal conductivity of silicon nanowire by nonequilibrium molecular dynamics simulations. Journal of Applied Physics,2009,105(1):014316-014320
    [20]Chalopin Yann, Gillet Jean Numa, Volz Sebastian. Predominance of thermal contact resistance in a silicon nanowire on a planar substrate. Physical Review B,2008,77(23):233309-233333
    [21]Savin Alexander V, Hu Bambi, Kivshar Yuri S. Thermal conductivity of single-walled carbon nanotubes. Physical Review B,2009,80(19):195423-195444
    [22]Kim P, Shi L, Majumdar A. Thermal Transport Measurements of Individual Multiwalled Nanotubes. Physicsl Review Letters,2001,87(21):215502-215522
    [23]Yazdanpanah Mehdi M, Chakraborty S, Harfenist S A. Formation of highly transmissive liquid metal contacts to carbon nanotubes. Applied Physics Letters, 2004,85(16):3564-3566
    [24]Ohno Yasuhide, Asai Yoshihiro, Maehashi Kenzo, et al. Room-temperature-operating carbon nanotube single-hole transistors with significantly small gate and tunnel capacitances. Applied Physics Letters,2009,94(5):053112-053114
    [25]Giulianini Michele, Waclawik Eric R, Bell John M, et al. Poly(3-hexyl-thiophene) coil-wrapped single wall carbon nanotube investigate by scanning tunneling spectroscopy. Applied Physics Letters,2009,95(14):143116-143118
    [26]Chang C W, Okawa D, Garcia H, et al. Nanotube Phonon Waveguide. Physical Review Letters,2007,99(4):045901-045903
    [27]Nguyen Binh-Minh, Hoffman Darin, Delaunay Pierre-Yves, et al. Dark current suppression in type Ⅱ InAs/GaSb,superlattice long wavelength infrared photodiodes with M-structure barrier. Applied Physics Letters,2007,91(16): 163511-163513
    [28]Nguyen Binh Minh, Hoffman Darin, Delaunay Pierre Yues, et al. Band edge tenability of M-structure for heterojunction design in Sb based type Ⅱ superlattice photodiodes. Applied Physics Letters,2008,93(16):163502-163505
    [29]Tian W, Jiang J C, Pan X Q. Structural evidence for enhanced polarization in a commensurate short-period BaTiO3/SrTiO3 superlattice. Applied Physics Letters,2006,89(9):092905-092907
    [30]Nguyen Binh Minh, Hoffman Darin, Bogdanov Simeon, et al. Demonstration of midinfrared type-Ⅱ InAs/GaSb superlattice photodiodes grown on GaAs substrate. Applied Physics Letters,2009,94(22):223506-223509
    [31]Zhou Ling Ping, Wang Ming Pu, Zhu Jia Jun, et al. Effects of dimensionality on the ballistic phonon transport and thermal conduction in nanoscale structures. Journal of Applied Physics,2009,105(11):114318-114323
    [32]Zhang A Ping, He Sailing, Kim Kyoung Tae, et al. Fabrication of submicron structures in nanoparticle/polymer composite by holographic lithography and reactive ion etching. Applied Physics Letters,2008,93(20):203509-203512
    [33]Ghoshal Amitabh, Divliansky Ivan, Kik Pieter G. Experimental observation of mode-selective anticrossing in surface-plasmon-coupled metal nanoparticle arrays. Applied Physics Letters,2009,94(17):171108-171112
    [34]马哲树,姚寿广,明晓.微细尺度传热学及其研究生进展.科技进展,2002,25(2):76-79
    [35]马宏伟,吾斌.弹性动力学.北京:中国建材工业出版社,2000,37-64
    [36]Xie Hong Jing, Chen Chuan Yu, Ma Ben Kun. The bound polaron in a cylindrical quantum well wire with a finite confining potential. J Phys:Condens Matter,2000,12(2000):8623-8640
    [37]Zhang Li, Xie Hong. Jing. Frohlich electron-interface and-surface optical phonon interaction Hamiltonian in multilayer coaxial cylindrical AlxG1-x/GaAs quantum cables. Journal of Physics:Condensed Matter,2003,15:5881-5893
    [38]Lew Yan Voon L C, Willatzen M. Electron states in modulated nanowires. Journal of Applied Physics,2003,93(12):9997-10001
    [39]Nishiguchi Norihiko. Confined and interface acoustic phonons in a quantum wires. Physical Review B,1994,50(15):10970-10980
    [40]Chang Chun-Min,Geller Michael R. Mesoscopic phonon transmission through a nanowire-bulk contact. Physical Review B,2005,71(12):125304-125311
    [41]Mizuno Seiji. Acousitc phonons in nanowire superlattices:Azimuthally symmetric torional modes. Physical Review B,2005,71(8):085303-085310
    [42]Leivo M M, Pekola J P. Thermal characteristics of silicon nitride membranes at sub-Kelvin temperatures. Applied Physics Letters,1998,72(11):1305-1307
    [43]Holmes W, Gildemeister J M, Richards P L, et al. Measurements of thermal transports in low stress silicon nitride films. Applied Physics Letters,1998, 72(18):2250-2252
    [44]Schwab K, Henriksen E A, Wrolock J M, et al. Measurement of the quantum of thermal conductance, nature,2000,404(27):974-976
    [45]Tanaka Y, Yoshida F, Tamura S. Lattice thermal conductance in nanowires at low temperatures:Breakdown and recovery of quantization. Physical Review B, 2005,71(20):205308-205319
    [46]Yamamoto Takahiro, Watanabe Kazuyuki. Nonequilibrium Green's Function Approach to Phonon Transport in Defective Carbon Nanotubes. Physical Review Letters,2006,96(25):255503-255505
    [47]Zimmermann Janina, Pavone Pasquale, Cuniberti Gianaurelio. Vibrational modes and low-temperature thermal properties of graphene and carbon nanotubes Minimal force-constant model. Physical Review B,2008,78(4): 045410-045422
    [48]Rego Luis G C, George Kircznow. Quantized Thermal Conductance of Dielectric Quantum Wires. Physical Review Letters,1998,81(1):232-235
    [49]Xu Yong, Wang Jian Sheng, Duan Wen Hui, et al. Nonequilibrium Green's function method for phonon-phonon interactions and ballistic-diffusive thermal transport. Physical Review B,2008,78(22):224303-224312
    [50]Xu Yong, Chen Xiao bin, Gu Bing-Lin, et al. Intrisic anisotropy of thermal conductance in grapheme nanoribbons. Applied Physics Letters,2009,95(23): 233116-233118
    [51]Yamamoto Takahiro, Nakazawa Yoshiki, Watanabe Kazuyuki. Control of electron-and phonon-derived thermal conductances in carbon nanotubes. New Journal of Physics,2007,245(9):1367-2630
    [52]Wang J S, Wang J, Lu J T. Quantum thermal transport in nanostructures. Eru Phys J B,2008,62(21):381-404
    [53]Wang J S, Wang J, Zeng Nan. Nonequilibrium Green's function approach to mesoscopic thermal transport. Physical Review B,2006,74(3):033408-033411
    [54]Morooka Masahiro, Yamamoto Takahiro, Watanabe Kazuyuki. Defect-induced circulating thermal current in grapheme with nano sized width. Physical Review B,2008,77(3):033412-033415
    [55]Wang J S, Zeng Nan, Wang Jian, et al. Nonequilibrium Green's function method thermal transport in junctions. Physical Review E,2007,75(6):061128-061142
    [56]Yamamoto T, Watanabe S, Watanabe K. Universal Features of Quantized Thermal Conductance of Carbon Nanotubes. Physical Review Letters,2004,. 92(7):075502-1-075502-4
    [57]Mingo N, Broido D A. Carbon Nanotube Ballistic Thermal Conductance and Its Limit. Physics Review Letters,2005,.95(9):096105-096108
    [58]Saito Koichi, Nakamura Jun, Natori Akiko. Ballistic thermal conductance of a graphene sheet.2007,76(11):115409-115412
    [59]Lepri Stefano, Livi Roberto, Politi Antonio. Thermal conduction in classical, low-dimensional lattices. Physics Reports,2003,377(1):1-80
    [60]Zhang G, Li B. Thermal conductivity of nanotubes revisited:Effects of chirality, isotope impurity, tube length, and temperature. J Chem Phys,2005,123(): 2036967-2036971
    [61]Liang L H, Li Bao Wen. Size-dependent thermal conductivity of nanoscale semiconducting systems. Physics Review B,2006,73(15):153303-153307
    [62]Fagas G, Kozorezov A G, Lambert C J, et al. Lattice dynamics of a disordered solid-solid interface. Phys Rev B,1999,60(9):6459-6464
    [63]Kambili A, Fagas G, Faiko Vladimir I, Lambert C L. Phonon-mediate thermal conductance of mesoscopic wires with rough edges. Phys Rev B,1999,60(9): 15596-15596
    [64]Wang Jian Sheng. Quantum Thermal Transport from Classical Molecular Dynamics. Phys Rev Lett,2007,99(16):160601-160604
    [65]Mingo N, Yang Liu. Phonon transport in nanowires coated with an amorphous material:An atomistic Green's function approach. Phys Rev B,2003,68(24): 245406(12)
    [66]Dhar Abhishek, Sen Diptiman. Nonequilibrium Green's function formalism and the problem of bound states. Phys Rev B,2006,73(8):085119(14)
    [67]Ming N. Anharmonic phonon flow through molecular-sized junctions. Phys. Rev. B,2006,74(12):125402(13)
    [68]Chen Gang. Ballistic-Diffusive Heat-Conduction Equations. Physical Review Letters,2001,86(11):2297-2300
    [69]Schelling Patrick K, Phillpot Siomon R, Keblinski Pawel. Comparison of atomic-level simulation methods for computing thermal conductivitity. Physical Review B,2002,65(14):144306-144317
    [70]Donadio Davide, Galli Giulia. Erratum:Thermal Conductivity of Isolated and Interacting Carbon Nanotubes:Comparing Results from Molecular Dynamics and the Boltzmann Trasport Equation. Physical Review Letters,2009,103(14): 149901-149904
    [71]Wang Jian Sheng, Ni Xiao xi, Jiang Jin-Wu. Molecular dynamics with quantum heat baths:Application to nanoribbons and nanotbubes. Physical Review B, 2009,80(22):224302-224310
    [72]Volz Sebastian G, Chen Gang. Molecular dynamics simulation of thermal conductivity of silicon nanowires. Applied Physics Letters,1999,75(14):2056-2058
    [73]Wang Shuai-chuai, Liang Xin-gang, Xu Xiang-hua, et al. Thermal conductivity of silicon nanowire by none quilibrium molecular dynamics simulation. Journal of Applied Physics,2009,105(1):014306-014320
    [74]Ladd Anthony J C, Moran Bill. Lattice thermal conductivity:A comparison of molecular dynamics and anharmonic lattice dynamics. Physical Review B,1986, 34(8):5058-5014
    [75]史波,梁新刚.超晶格材料内部热流传递的分子动力学分析.2001,22(6):737-739
    [76]Yao Zhen hua, Wang Jian Sheng, Li Bao Wen, et al. Thermal conduction of carbon nanotubes using molecular dynamics. Phys. Rev. B,2005,71(8):085417-085425
    [77]吕曜,宋青林,夏善红.固体微、纳米尺度传热理论研究进展.物理学进展,2004,24(4):424-435
    [78]Escobar Rodrigo A, Amon Cristina H. Influence of Phonon Dispersion on Transient Thermal Response of Silicon-on-Insulator Transistors Under Self-Heating Conditions. Transactions of the ASME,2007,129(7):790-797
    [79]Chen Yun fei, Li Deyu, Lukes Jennifer R. Monte Carlo Simulation of Silicon Nanowire Thermal Conductivity. Journal of Heat Transfer,2005,127:1129-1137
    [80]Tighe T S,Worlock J M, Roukes M L. Direct thermal conductance measurements on suspended monocrystalline nanostructures. Appl. Phys. Lett. 1997,70(20):2687
    [81]Cross M C, Lifshitz Ron. Elastic wave transmission at an abrupt junction in a plate with application to heat transport and vibrations in mesoscopic systems. Physical Review B,2001,64(8):085324-085345
    [82]Santamore D H, Cross M C. Effect of surface roughness on the universal thermal conductance. Physical Review B,2001,63(18):184306-184311
    [83]Santamore D H, Cross M C. Surface scattering analysis of phonon transport in the quantum limit using an elastic model. Physical Review B,2002,66(14): 144302-144320
    [84]Chen Ke Qiu, Li Wen Xia, Duan Weihui, et al. Effect of defects on the thermal conductivity in a nanowire. Physical Review B,2005,72(4):045422-1-045422-5
    [85]Peng Xiao Fang, Chen Ke Qiu, Zou B S. Ballistic thermal conductance in a three-dimensional quantum wire modulated with stub structure. Applied Physics Letters,2007,90(19):193502-193504
    [86]Huang Wei Qing, Chen Ke Qiu. Acoustic phonon transmission and thermal conductance in a double-bend quantum waveguide. Journal of Applied Physics, 2005,98(9):093524-093530
    [87]Xie Fang, Chen Ke Qiu, Wang Y G, et al. Acousitc phonon transport and ballistic thermal conductance through a three-dimensional double-bend quantum structure. Journal of Applied Physics,2008,104(5):054312-054316
    [88]Li Wen Xia, Chen Ke Qiu, Duan Wenhui, et al. Acoustic phonon transport through a T-shaped quantum waveguide. Journal of Physical:Condensed Mater, 2004,16(04):5049-5059
    [89]Li Wen Xia, Chen Ke Qiu, Duan Wenhui, et al. Phonon transport and thermal conductivity in dielectric quantum wire. Journal of Physical D:Applied Physics, 2003,36(03):3027-3033
    [90]Tang Li Ming, Wang Ling ling, Huang Wei Qing, et al. Acoustic phonon transport and thermal conductance in a periodically modulated quantum wire. Journal of Physical D:Applied Physics,2007,40(07):1497-1500
    [91]Huang Wei Qing, Chen Ke Qiu, Shuai Z, et al. Discontinuity effect on the phonon transmission and thermal conductance in a dielectric quantum waveguide. Physics Letters A,2005,336(2005):245-252
    [92]Li Wen Xia, Chen Ke Qiu. Phonon heat transport through periodically stubbed waveguides. Physics Letters A,2006,357(4):378-383
    [93]Xie Fang, Cheng Ke Qiu, Wang Y G, et al. Effect of the evanescent modes on ballistic thermal transport in quantum structures. Journal of Applied Physics, 2008,103(8):084501-084505
    [94]Tang Li Ming, Wang Ling ling, Chen Ke Qiu, et al. Coupling effect on phonon thermal.transport in a doubled-stub quantum wire. Applied Physics Letters, 2006,88(16):163505-163507
    [95]Li Wen Xia, Chen Ke Qiu, Duan Wei hui, et al. Acoustic phonon mode splitting behavior of an asymmetric y-branch three terminal junction. Applied Physics Letters,2004,85(5):822-824
    [96]Jiang Jin Wu, Wang Jian Sheng, Li Baowen. Thermal conductance of graphene and dimerite. Physical Review B,2009,79(20):205418-205423
    [97]Cao L S, Peng R W, Wang Mu. Mulimode quantized thermal conductance tuned by external field in a quantum wire. Applied Physics Letters,2008,93(1): 001908-001911
    [98]Chiatti O, Nicholls J T, Proskruyakov Y Y, et al. Quantum Thermal Conductance of Electrons in a One-Dimensional Wire. Physical Review Letters, 2006,97(5):056601-056604
    [99]Meschke Mattias, Guichard Wiebke, Pekola Jukka P. Single-mode heat conduction by photons. Nature Letters,2006,444(9):187-190
    [100]Ojanen T, Heikkila T T. Photon heat transport in low-dimensional nanostructures. Phys Rev B,2007,76(7):073414-073417
    [101]Mingo Natalio, Yang Liu. Predicting the Thermal Conductivity of Si and Ge nanowires. Nano Letters,2003,3(12):1713-1716
    [102]Hochbaum Allon I, Chen Renkun, Delgado Raul Diaz, et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature Letters,2008, 451(10):163-168
    [103]Martin Pierre, Aksamija Zlatan, Pop Eric, et al. Impact of phonon-Surface Roughness Scattering on Thermal Conductivity of Thin Si Nanowires. Physical Review Letters,2009,102(12):125503-125506
    [104]Chen G, Neagu M. Thermal conductivity and heat transfer in superlattices. Applied Physics Letters,1997,71(19):2761-2763
    [105]Chen G. Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures. Journal of Heat Transfer,1997,119:220-229
    [106]Chen G. Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Physical Review B,1998,57(23):14958-14973
    [107]Dames C, Chen G. Theoretical phonon thermal condu.ctivity of Si/Ge superlattice nanowires. J Appl Phys,2004,95(2):682-693
    [108]Liu Chun Kai, Yu Chih Kuang, Chien Heng Chieh, et al. Thermal conductivity of Si/SiGe superlattice films. Journal of Applied Physics,2008,104(11):114301-114308
    [109]Murad Sohail, Puri Ishwar K. Thermal transport across nanoscale solid-fluid-interfaces. Applied Physics Letters,1998,92(13):133105-133107
    [110]Murad Sohail, Puri Ishwar K. Thermal transport through superlattice solid-solid interfaces. Applied Physics Letters,2009,95(5):051907-051909
    [111]Duquesne J Y. Thermal conductivity of semiconductor superlattices:Experimental study of interface scattering. Physical Review B,2009,79(15):153304-153307
    [112]Chen Jie, Zhang Gang, Li Bao wen. Tunable thermal conductivity of Si1-xGex. nanowires. Applied Physics Letters,2009,95(7):073117-073119
    [113]Lee S M, Cahill D G, Venkatasubramanian R. Thermal conductivity of Si-Ge' superlattices, Appl Phys Lett,1997,70(22):2957-2959
    [114]Simkin M V, Mahan G D. Minimum thermal conductivity of Superlattices. Phys Rev Lett.,2000,84(5):927-930
    [115]Glavin B A. Low-Temperature heat transfer in nanowires. Phys Rev Lett.,2001, 86(19):4318-4321
    [116]Zou J, Balandin A. phonon heat conduction in a semiconductor nanowire. J Appl Phys,2001,89(5):2932-2938
    [117]Fon W, Schwab K C, Worlock J M, et al. Phonon scattering mechanisms in suspended nanostructures from 4 to 40 K. Phys Rev B.,2002,66(4):045302-045306
    [118]Yang R G, Chen G, Dresselhaus M S. Thermal conductivity of simple and tubular nanowire composites in the longitudinal direction. Phys Rev B,2005, 72(12):125418-125424
    [119]Blencowe M P. Quantum energy flow in mesoscopic dielectric structures. Phys Rev B,1999,59(7):4992-4998
    [120]Lu X, Chu J H, Shen W Z. Modification of the lattice thermal conductivity in semiconductor rectangular nanowires. J Appl Phys,2003,93(2):1219
    [121]Angelesu D E, Cross M C, Roukes M L. heat transport in mesoscopic systems. Superlattices and Microstruct,1998,23(7):673-689
    [122]Li W X, Liu T, liu C. Phonon transport through a three-dimensional abrupt junction. Appl Phys Lett,2006,89(8):163104-163106
    [123]Sirtori C, Capasso F, Faist J, et al. Quantum wells with localized states at energies above the barrier height:A Fabry-Perot electron filter. Appl Phys Lett 1992,61(5):888-890
    [124]Li B W, Wang L, Hu B. Finite Thermal Conductivity in 1D Models Having Zero Lyapunov Exponents. Phys Rev Lett,2002,88(22):223901-223904
    [125]Li B W, Casati G, Wang J, et al. Fourier Law in the Alternate-Mass Hard-Core Potential Chain. Phys Rev Lett 2004,92(25):254301-1-4
    [126]Chiu H Y, Deshpande V V, Postma H W Ch, Cet al. Ballistic Phonon Thermal Transport in Multiwalled Carbon Nanotubes. Phys Rev Lett,2005,95(22): 226101-1-4
    [127]Wu G, Li B W. Thermal rectification in carbon nanotube intramolecular junctions:Molecular, dynamice calculations. Phys Rev B,2007,76(6):085424-085432
    [128]Zhang W, Mingo N, Fisher T S. Simulation of phonon transport across a non-polar nanowires junction using an atomistic Green's function method. Phys Rev B,2007,76(19):195429-195437
    [129]Mingo N, Stewart D A, Broido D A, et al. Phonon transmission through defects in carbon nanotubes from first principles. Phys Rev B,2008,77(3):033418-1-4
    [130]Wang J, Wang J S. Dimensional crossover of thermal conductance in nanowires. Appl Phys Lett,2007,90(24):241908-241910
    [131]Guthy C, Nam C Y, Fischer J E. Unusually low thermal conductivity of gallium nitride nanowires. J Appl Phys,2008,103(6):064319-064326
    [132]Sun Q F, Yang P, Guo H. Four-Terminal thermal conductance of mesoscopic dielectric systems. Phys Rev Lett.,2002,89(17):175901-1-175901-4
    [133]Yang P, Sun Q F, Guo H, et al. Thermal transport in a dielectric T-shaped quantum wire. Phys Rev B,2007,75(23):235319-235324
    [134]Madelung O. Semiconductors:Group Ⅳ Elements and Ⅲ CV Compounds. Springer, Berlin,1982
    [135]Li B W, Wang L, Casati G. Thermal Diode:Rectification of Heat Flux. Phys Rev Lett,2004,93(18):184301-1-184301-4
    [136]Chang C W, Okawa D, Majumdar A, et al. Solid-State Thermal Rectifer. Science 2006,314(5802):1121-1124
    [137]Yang N, Zhang G, Li B W. Thermal rectification in asymmetric graphene ribbons. Appl Phys Lett:,2009,95(3):033107-033109
    [138]Li B W, Wang L, Casati G. Negative differential thermal resistance and thermal transistor. Appl Phys Lett,88(14):143501-1-143501-3
    [139]Zhong W R, Yang P, Ai B Q, et al. Negative differential thermal resistance induced by ballistic transport. Phys Rev E,2009,79(9):050103(R)-1-4
    [140]Santamore D H, Cross M C. Effect of Phonon Scattering by Surface Roughhess on the Universal Thermal Conductance. Phy Rev Lett,2001,87(11):115502-115205
    [141]K. F. Graff, Wave Motion in Elastic Solids.Dover, New York,1991
    [142]Timoshenko S P, Goodier J N. Theory of elasticity. New York:McGraw-Hill, 1987,293-298
    [143]Landau L D, Lifshitz E M. Theory of elasticity. New York:Pergamon Press, 1986,36-54
    [144]Chaves A, Freire J A K, Farias G A. Grading effects in semiconductor nanowires with longitudinal heterostrictures. Phys Rev B,2008,78(15): 155306-155312
    [145]Murphy P G, Moore J E. Coherent phonon scattering effects on thermal transport in thin semiconductor nanowires. Phys Rev B,2007,76(15): 155313-155323
    [146]Ward A, Broido D A. Intrinsic lattice thermal conductivity of Si/Ge and GaAs/AlAs superlattices. Phys Rev B,2008,77(24):245328-245334
    [147]Lee H F, Samuel B A. In-plane thermal conductance mensurement of one-dimensional nanostructures. J Therm Anal Calorim,2010,99(15):495-500
    [148]Neophytou N, Wanger M, Kosina H, et al. Analysis of Thermoelectric Properties of Scaled Silicon Nanowires Using an Atomistic Tight-Binding Model. Springer Boston:Journal of ELECTRONIC MATERIALS,2010,65-79
    [149]Alvarez F X, Jou D. Boundary Conditions and Evolution of Ballistic Heat Transport. Journal of Heat Transfer,2010,132(15):12404-12409
    [150]Alvarez F X, Jou D. Size and frequency dependence of effective thermal conductivity in nanosystems. J Appl Phys,2008,103(9):094321-094328
    [151]Hopkins P E. Multiple phonon processes contributing to inelastic scattering during thermal boundary conductance at solid interfaces. J Appl Phys,2009 106(1):013528-013536
    [152]Lu X. Longitudinal thermal conductivity of radial nanowire heterstructures. J Appl Phys,2009,106(6):064305-064311
    [153]Kulkarni A J, Zhou M. Size-dependent thermal conductivity of zinc oxide nanobelts. Appl Phys lett,2006,88(14):141921-141923
    [154]Wu Y, Fan R, Yang P. Block-by-Block Growth of single-Crystallic Si/SiGe Superlattice Nanowires. Nano lett,2002,2(2):83-86
    [155]Gudiksen M S, Lauhon L J, Wang J F, et al. Growth of nanowires superlattice structures for nanoscale photonics and electronics. Nature,2002,415(7):617-620
    [156]Bjork M T, Ohlsson B J, Sass T, et al. One-dimensional Steeplechase for Electrons Realized. Nano lett,2002,2(2):87-89
    [157]Capinski W S, Maris H J, Ruf T, et al. Thermal-conductivity measurements of GaAs/AlAs super lattices using a picosecond optical pump-and-probe technique. Phys Rev B,1999,59(12):8105-8113
    [158]Chen G, Tien C L, Wu X, et al. Thermal Diffusivity Measurement of GaAs/AlGaAs Thin-Film Structures. J Heat Transfer,1994,116(2):325-331
    [159]Yu X Y, Chen G, Verma A, et al. Temperature dependence of thermophysical properties of GaAs/AlAs periodic structure. Appl Phys Lett,1995,67(24): 3554-3556
    [160]Broca T T, Liu W, Liu J, et al. Thermal conductivity of symmetrically strained Si/Ge superlattices. Superlattices and Microstructures,2000,28(3):199-206
    [161]Chen G, Zhou S Q, Yao D Y, et al. Proceedings of the 17th International Conference on Thermo-electrics,1998, pp.202-205
    [162]Huxtable S T, Abramson A R, Tien C L, et al. Thermal conductivity of Si/SiGe and SiGe/SiGe superlattices. Appl Phys Lett,2002,80(10):1737-1739
    [163]Venkatasubramanian R. Lattice thermal conductivity reduction and phonon 'localizationlike behavior in superlattice structures. Phys Rev B,2000,61(4): 3091-3097
    [164]Touzelbaev M N, Zhou P, Venkatasubramanian R, et al. Thermal characterization of Bi2Te3/Sb2Te3 superlattices. J Appl Phys,2001,90(2): 763-767
    [165]Klemens P G. Theory of thermal conductivity of solids at low temperatures. solid State Physics, edited by Seitz F and Turnbull D. New York:Academic, 1958,7:1-3
    [166]Han Y J, Klemens P G. Anharmonic thermal resistivity of dielectric crystals at low temperatures. Phys Rev B,1993,48(9):6033-6042
    [167]Callaway J. Model for Lattice Thermal conductivity at Loe Temperatures. Phys Rev,1959,113(4):1046-1051
    [168]Slack G A, Galginaitis S. Thermal Conductivity and Phonon Scattering by Magnetic Impurities in CdTe. Phys Rev,1964,133:A253-A268
    [169]Srivastava G P. The Physics of Phonons. New York:Adam Hilger Press,1990, 175-222
    [170]Swartz E T, Pohl R O. Thermal boundary resistance. Rev Mod Phys,1989,61(3): 605-668
    [171]Snyder N S. Heat transport through helium Ⅱ:Kaptiza conductance. Cryogenics, 1970,10(2):89-95
    [172]Parrott J. E. Hautes Tem Refract. Rev Int,1979,16:393-397

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700