磁流变液屈服应力测试影响因素与磁流变液软启动装置的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁流变液是一种对磁场敏感的智能材料,是由磁性颗粒、基液和表面活性剂组成的混合液。磁场显著影响磁流变液的流变性,在无外磁场作用时,磁流变液呈现出液体性质,具有良好的流动性;有外磁场作用下,磁流变液的表观粘度增大,甚至失去流动性,呈现出固体的性质;而磁场消失后迅速恢复原来的流动性,这种变化是可逆的、连续的,而且磁流变液的性能受温度变化影响较小。
     磁流变液的一个主要性能指标是屈服应力,当外加应力小于屈服应力时磁流变液呈现固体的性质,大于屈服应力时磁流变液开始流动,呈现出流体的性质。
     由于磁流变液的许多理论问题还在探讨之中,关于磁流变液的流变性能变化机理研究,磁场中磁流变液结构的运动变化规律,磁流变液的制造与生产,性能测试和设计标准、磁流变液元器件的控制理论与技术等方面有很多待解决的问题,目前磁流变液技术还远未达到大规模应用的阶段。
     该论文介绍了磁流变技术及其器件开发的现状和发展趋势,论述了磁流变效应的流变机理和模型描述,分析了软启动技术的现状,讨论了将磁流变技术引入传动工程领域的重要性,提出了研究目的及研究内容。
     该论文通过对磁性颗粒、基液和表面活性剂的选择,用颗粒平均直径为2.5um的羰基铁粉制备了体积浓度为57.9%、36.2%、26.7%和19.6%四种性能良好的磁流变液,用颗粒平均直径为3.5um的羰基铁粉制备了体积浓度为57.9%的磁流变液。将磁颗粒看成是外磁场中的磁偶极子,以磁偶极子理论从理论上分析了磁吸引力、重力、Van der Waals力、分散剂的排斥力对磁流变液稳定性的影响,分析结果说明重力场是导致磁颗粒沉降的最关键因素,分散剂的排斥力是抵抗磁吸引力和Van der Waals力保证磁颗粒不团聚成块的关键因素,想制备出不沉降的低浓度MRF是不可能的。
     该论文中制作提拉式磁流变液屈服应力测试装置,用铜、铝和钢等不同材料制作了分别具有1mm/2mm槽深的矩齿形/三角形表面形貌的提拉块,测量了不同材料不同表面形貌的提拉块屈服应力与磁场的关系,观测到壁面滑移与磁场强度、表面形貌和耦合材料有关,其中耦合材料的磁化率是最重要的,低磁化率材料制作的耦合面在强磁场中都会产生壁面滑移,高磁化度材料制作的壁面无论如何光滑都不会发生壁面滑移。实验证明耦合面间距对屈服应力的测量结果有重大影响。
     该论文提出了用阻抗法测量磁流变效应的方法,并用阻抗法测量了磁流变液的响应过程,观测到磁流变效应的发生是一个渐变的过程,当磁场强度大于某临界点后,磁流变效应在数毫秒内迅速响应,然后逐渐增强,但即使超过数百毫秒响应过程也没有结束,不同体积浓度的磁流变液响应过程类似。实验证明MRF是一种粘弹性体。
     该论文根据Bingham模型设计制作了一种大功率的剪切工作模式下的磁流变液软启动装置,并进行了静态性能和模拟软启动过程及小滑差工况下的温升的测试,实验证明这种装置传递力矩大,可以作为大功率传动装置的离合器,在滑差转速为10rpm工况下温升不超过密封材料的允许值,可以作为多电机驱动的功率分配装置,但作为软启动装置的启动过程不能超过30秒。
Magnetorheological fluid (MRF) is one kind of smart material that is sensitive to magnetic field. MRF is a mixture liquid consisting of magnetic granules, base fluid and surfactant. Magnetic field remarkablely effects on rheological behavior of MRF. Without external magnetic field, magnetorheological fluid flows well that shows liquid properties. The apparent viscosity of MRF augments and some solid properties present, becomeing dense even losing its fluidity, if an external magnetic field is applied. It resumes its fluidity rapidly and this change is reversible and continuous when external magnetic field is removed. Furthermore, its performance is independent to temperature.
     One key performance of magnetorheological fluid is yield stress. When the external stress is less than yield stress, magnetorheological fluid shows the solid properties; While the stress is bigger than yield stress, it begins to flow and shows liquid properties.
     Because many theoretic issues are still in discussion, there are many questions to be solved about its rheological behavior changing mechanism, its frame variation laws in magnetic field, its manufacture and yield, performance testing, design standard and its element control theory and technology, etc. This technology has not yet been widely used at the present time.
     This paper introduces the present state and trend of development of MRF, MRF devices and MRF technology at first. Then rheological behavior changing mechanism and its models are discussed. The present state of soft-start and the significance of MRF introducing into transmission engineering field are analysed thirdly. Finally, the goals and contents of this dissertation have been put forward briefly.
     Through selecting magnetic granules, based liquid and surfactant, good performance magnetorheological fluid is prepared. Four MRF are prepared with carbonyl iron, which volume percent are 57.9%, 36.2%, 26.7% and19.6%, using average diameter 2.5um granules. And 57.9 volume percent MRF with 3.5 um carbonyl iron powder is prepared, either. The magnetic particles can be regarded as dipoles. The influnce factors on stability of MRF is analysed using magnetic dipole theory, which are magnetic force, gravity, Van. Der Waals, exclusive force from dispersant. It illuminates that the key factor causing magnetic granules deposit is gravity field. The exclusive force from dispersant is the key factor that prevents magnetic granules reunites together by magnetic force and Van. Der Waals. It’s impossible to preparat never subsideing MRF.
     A pulling testing instrument measureing yield stress of MRF is manufactured. Different materials, copper, aluminium, steel, and different pulling sheets grooved with 1mm/2mm, rectangular/triangular roughness are maked. The relationship between yield stress and magnetic field strength with these diffent sheets are tested.
     It observed that wall effect is related to magnetic field strength, surface roughness and coupling material. The coupling material is the most important. Wall effect occurs if the couplings are made in non-magnetoconductivity material and the magnetic field is strong enough. While wall effect doesn’t occur if the couplings are made in magnetoconductivity material, whether how smooth the surface is.
     The response process is tested by measureing the resistance of MRF in magnetic field. It shows that the magnetorheological effect is gradual changing. When it reaches the critical point, magnetorheological effect response within milliseconds, then buildups gradually. It doesn’t stop even 1000 milliseconds passed. Different volume percent MRF have similar response process. The experiments prove that MRF is a viscoelastic body.
     A sheer mode high-power MRF soft-start device was manufactured based on Bingham model and its static performances are measured. The temperature rises when rotate speed difference being 10 rpm and emulated soft-start process are tested. The experiments prove that the device can transfer huge moment, equilibrate the power among motors. But the soft-start process can’t exceed 30seconds.
引文
[1] Shulman, Z. P. et al., Devices for the Diagnosis of Transfer Processes in Magnetorheological Suspensions[J], Heat Transfer, Vol. 19 (5), 1987.
    [2] Kordonsky, W. I. , Magnetorheological Effect As a Base of New devices and Technologies[J], J. of Magnetism and Magnetic Materials, Vol. 122,1993:395~398.
    [3] Kordonsky, W. I. , Magnetotheological Fluids and Their Applications[J], Materials Technology,Vol. 8 (11), 1993: 240~242.
    [4] http://www. lord. com
    [5] Ronald E. Rosensweig, On magnetorheology and electrorheology as states of unsymmetric stress, [J]. Rheol 39(1),1995:179--192
    [6] Winslow, W. M. ,美国[P], 2417850, 1974.
    [7] J. Claracq. , Viscoelastic properties of magnetorheological fluids[M], Rheol Acta (2004) 43: 38–49
    [8] Eige,J. J. , et al. , Feasibility of Vibration and Shock Exciter Using Electric Field Modulation of Hydraulic Power[J], WADD Technical Report, No:61~185(Ohilo:Wright-patterson Air Force Base),1961.
    [9] Standrud,H. T. , Electric-field Valves Inside Cylinder Vibrator[J], Hydraulics Pneumatics, Vol. 9, 1966:139~143.
    [10] G. Bossisa,*, P. Khuzira, S. Lacisb, O. Volkovab , Yield behavior of magnetorheological suspensions[J], Journal of Magnetism and Magnetic Materials 258–259 (2003): 456–458.
    [11] Shulman, Z. P. et al. , Structure Physical Prosical Properties and Dynamics of Magnetorheological Suspensions[J], Int. J. Mutiphase Flow, Vol. 12(6) , 1986: 935-955.
    [12] Kordonsky, W. I. , Magnetorheological Valve and Devices Incorporating Magnetotheological Elements,美国[P], 5353839, 1994.
    [13] Carlson, J. D. , et al. , Magnetorheological Materials Based on Alloy Particles,美国[P], 5382373,1995.
    [14] Carlson, J. D. , et al. , Magnetorheological Fluid Damper,美国[P], 5277281,1994.
    [15] Weiss, K. D. et al. , High Strength Magneto- and Electrorheogical Fluids, Society of Automotive Engineers[J], SAE paper, No:932541, 1993.
    [16] Mark, R. Jolly, et al. , Properties and Applications of Commercial Magnetorheological[J], SPIE,Vol. 3327, , 1998:262~275.
    [17] Carlson, J. D. , Catanzarite, D. M. et al. , Commercial Magnetorheological Fluid Devices[C], Proc. 5Int. Conf. On ER Fluid, MR Fluid and Assoc. Tech. , 1995. 7
    [18] T. Shinmura, K. Takazawa and E. Hatano. Study on Magnetic-Abrasive Process-effects of Machining Fluid on Finishing Characteristics[J], Bull. Japan Soc. of Prec. Eng. , Vol. 20, No. 1, 1986. 3
    [19] T. Shinmura. K. Takazawa and E. Hatano. Study on Magnetic-Abrasive Process-Application to Plane Finishing[C], Bull. Japan Soc. of Prec. Eng. , Vol. 19, No. 4, 1985.12
    [20] Ashour, D. et al. , Manufacturing and Characterization of Magnetorheological Fluids[J], SPIE, Vol. 3040, 1997:174~184
    [21] Kordonsky, W. I. , et al. , Additional Magnetic Dispersed Phase Improve the Properties[C], Proc. Of the 6 International Conference on Adaptive Structures, Edited by Rogers, C. A. 1995: 23~24.
    [22] Shulman, Z. P. , et al, Structure Physical Properties and Dynamics of Magnetorheological Suspensions, Int. [J]. Mutiphase Flow, Vol. 12 (6) , 1986:935~955.
    [23] R. E. Rosesweig. et al. , On Magnetorheological and Electorheological as states of unsymmetric stresss[J], J. Rheol, 39(1), 1995:179
    [24] J. M. Ginder, L. C. Davis, Shear Stress in Magnetorheological Fluids: Role of Magnetic Saturation[J], Appl. Phys. Lett, 65(26), 1994:3410~3412.
    [25] G. Bossis, et al. , Yield Stress in Magnetorheological and Electroheological Fluids: A Comparison between Microscopic and Macroscopic Structural Models[J]. J. Rheol, 41(3),1997: 687.
    [26] X. Tang, Y, Chen. , et al. , Structure and Interaction Force in a Model Magnetorheological System[J], Journal of Intelligent Magerial Systems and Structures, Vol. 7, 1996:517~521.
    [27] P. P. Phulé, J. M. Ginder,Synthesis and Processing of Novel Magnetorheological Fluids Having Improved Stability and Redispersibility[C]. Proceedings of the 6th International Conf. on Electrorheological Fluids, Magnetorheological Suspensions and Their Applications, 1997:445~453.
    [28] M. R. Jolly, J. W. Bender, J. D. Carlson, Properties and Applications of Commercial Magnetotheological Fluids[J], SPIE Vol. 3327,1998 262~275.
    [29] Filisco, F. E. , Overview of ER Technology, Progress in Electrorheology, Ed. K. O. Havelka and F. E. Filisco, Plenum Press, New York, 1995:3-18
    [30] E. Lemaire, A. Meunier, G. Bossis, Influence of the Particle Size on the Rheology of Magnetorheological Fluids[J], J. Rheol. 39(5), 1995:1011~1016.
    [31] F. Q. Jiang, Z. W. Wang, et al. , Magnetotheological Materials and Their Application in Shock Absobers[C], Proceeding of the 6th International Conf. on Electrorheological Fluids, Magnetorheological Suspensions and Their Applications, 1997:494~501.
    [32]潘胜等,磁流变液的屈服应力与温度效应[J],功能材料, Vol. 28(2), 1997:264~266,
    [33] Weiss, K. D. , and Duclos, T. G. , Controllable fluids: the temperature dependence of post-yield properties[C]. Proc. of the 4th International Conf. on ER Fluids,World Scientific, Singapore, 1994:43–59.
    [34] J. Promislow, A. Gast, Magnetorheological Fluid Structure in a Pulsed Magnetic Field[J], Langmiur, Vol. 12. ,1996 : 4095~4102.
    [35] M. R. Jolly, J. W. Bender and R. T. Mathers, Indirect Measurements of Microstructure Development in Magnetorheological Fluids[C], Proceeding of the 6th International Conf. on Electrorheological Fluids, Magnetorheological Suspensions and Their Applications, ,1997: 470~477.
    [36] Y. Zhu. M. Meneary, N. Breslin, and J. Liu, Effect of Structures on Rheology in a Model Magnetorheological Fluid[C], Proceeding of the 6th International Conf. on Electrorheological Fluids, Magnetorheological Suspensions and Their Applications, P. ,1997.
    [37] M. Gross, S. Kiskamp, H. Eisele, Y. Zhu, and J. Liu, On the Interaction of Dipolar Chains[C], Proceeding of the 6th International Conf. on Electrorheological Fluids, Magnetorheological Suspensions and Their Applications, 1997.
    [38] M. Mohebi, N. Jamasbi ,G. A. Flores, and J. Liu, Numerical Study of the Role of Magnetic Field Ramping Rate on the Structure Formation in Magnetorheological Fluids[C], Proceeding of the 6th International Conf. on Electrorheological Fluids, Magnetorheological Suspensions and Their Applications, P. 543~550,1997.
    [39] X. Tang, X. Zhang, and R. Tao, Structure-enhanced Yield Stress of Magnetorheological Fluids[J], Journal of Applied Physics, Vol. 87, No. 5, P. 2634~2638, 2000.
    [40] Darrell G. Breese, Faramarz Gordaninejad, Semi-Active Field Controllable Magnetorheological Fluid Damper for Mountain Bicycles[J], SPIE, Vol. 3991, P. 283~293. 2000.
    [41] D. Carlson, D. M. Catanzarite, et al. , Commercial Magnetorheological Fluid Devices[J]. Int. J. Mod. Physics B, (10) P. 2857-2865, 1996.
    [42] Dyke, S. , et al. , Experimental Verification of Semi-Active Structural Control Strategies Using Acceleration Feedback[M], Proc. the 3 Int. Conf. on Motion and Vibr. Control, Chiba, Japan, Vol. 3,P. 291~296, 1996.
    [43] Dyke, S. , et al. , Modeling and Control of Magnetorheological Dampers for Seismic Response Reduction[J], Smart Material Structure. , Vol. 5, P. 565~575,1996.
    [44] Carlson J. D. , Catanzarite D. M. , Magnetorheological Fluid Devices and Process of Controlling Force in Exercise Equipment Utilzing Same,美国[P], 5816372,1998.
    [45] Copalsramy S, Linzell S. M. , Jones G.. L. , et al. , Magnetorheological Transmission Clutch.美国[P], 5823309,1998.
    [46] Swaminathan Gopalswamy S, Linzell S. M. , Jones G. L. , Magnetorheological Fluid Clutch with Minimized Reluctance,美国[P], 5845752,1998.
    [47] York T. M. , Gilmare C. D. , Libertiny T. G. , Magnetorheological Fluid Coupling Device and TorqueLoad Simulator System,美国[P], 5598908,1997.
    [48] Bansbach E. A. , Torque Transfer Apparatus Using Magnetorheological Fluids,美国[P], 5779013,1998.
    [49] Bansbach E. A. , Torque Transfer Apparatus Using Magnetorheological Fluids,美国[P], 5845753,1998
    [50] Wendt E. , Pohl A. , Rosenfeldt H. , Clutch with Electroheological or Magnetorheological Liquid Pushed through an Electrode or Magnet Gap by Means of a Surface Acting as a piston,美国[P], 5988336,1999.
    [51] Johnston G. L. , Kruckerneyer W. C. , Longhouse R. E. , Passive Magnetorheological Clutch,美国[P], 5848678,1999.
    [52] W. M. I Kordonski, Adaptive Structures Base on Magnetorheological Fluids, Proc. 3 Int. Conf. Adaptive Struct. , ed. Wada, Natori and Breitbach. ,1992:13~17, San Diego, CA.
    [53] I. V. Prokhorov, W. I. Kordonsky, L. K. Gleb, G. R. Gorodkin and M. L. Levin, New High-Precision Magnetorheological Instrument-Based Method of Polishing Optics, OSA OF&T Workshop Digest 24, ,1992:134~136.
    [54]方生,张培强.旋转磁场作用下磁流变液颗粒运动及结构演化的模拟[J].化学物理学报,2001,14(5):562-566
    [55] S. D. Jacobs, D. Golini, et al. , Magnetorheological Finishing[J]: A Deterministic Process for Optics Manufacturing, SPIE Vol. 2576:372~382.
    [56] Shih-I Pai(柏实义)著,施光宁、严家祥等译,两相流动[M],国防工业出版社,1985
    [57] Kordonsky W. I. , Elements and Devices Base Magnetorheological Effect[J]. Intelll. Marter. Systems and Struct. , 1993,4(1): 65~69.
    [58] Kordonaky W. I. , Garodkin S. R. , Kolomentsev A. V. , et al. , Magnetorheological Valve and Devices Incorperation Magnetorheological Elements.美国[P], 5353839, 1994.
    [59] Kordonaky W. I. , Garodkin S. R. , Kolomentsev A. V. , et al. , Magnetorheological Valve and Devices Incorperating Magnetorheological Elements,美国[P], 5452745, 1995.
    [60] Kordonaky W. I. , Garodkin S. R. , Magnetorheological Fluid Based Seal. In: Bullogh W. A. , Proc of the 5th Int. Conf. on ER Fluids, MR Suspensions and Associated Technology[C], Singapore:World Scientific,1996: 704~709.
    [61] Tang X, Zhang X, Tao T. Flexible Fixture with Magnetorheological Fluids, In: Tao R, Proc. Of the 7th Int. Conf. on ER Fluids and MR Suspensions[C]. Singapore: World Scientific, 2000: 712~720.
    [62] Weiss K D,Duclos T G. Controllable fluids:The temperature dependence of post-yield properties [C]. Singapore: World Scientifi, 1994:43-59
    [63]高培德,智能材料和结构[J],功能材料和器件学报,2002,8(2):93-98
    [64]周刚毅,金昀,张培强,磁流变液管道流模式流动行为的实验研究[J],中国科技大学学报,2001,30(1):46-50
    [65]程彬,朱玉瑞,陈祖耀,周刚毅,江万权,王翠英,张培强.超细金属颗粒的高分子修饰及其悬浮液的磁流变性能[J].化学物理学报,2000,13(2):215-219
    [66]司鹄,彭向和,磁流变材料的粘塑性模型[J].重庆大学学报(自然科学版),2001,24(3):45-47
    [67]胡林,张朝平,郑璐瑶,蔡绍洪,磁悬浮液体中颗粒对分散体系流变性的影响[J]贵州大学学报(自然科学版), 2000,17(3):194-198
    [68] Kavlicoglu,B. ,etc.“A High-Torque Magnetorheological Fluid Clutch,”Proceedings of SPIE Conference of Smart Materials and Structures, San Diego, March, 2002.
    [69] Patrick Benedict Usoro. , et al. , Magnetorheological Fluid Clutch,美国[P], 6318531,2001.
    [70]杨仕清,彭斌,蒋洪川,张文旭,王豪才,复合智能磁流变液的制备及流变性质研究[J].材料工程,2000(9):21-24
    [71] Chi-Kuan Kao. , et al. , Liquid Cooled Magnetorheological Fluid Clutch for Automotive Transmission,美国[P], 6371267, 2002.
    [72] Swaminathan Gopalswamy, et al. , Magnetorheological Fluid Fan Clutch.美国[P], 5896965, 1999.
    [73]徐国梁,陈锵等,径向自加压磁流变离合器,中国[P], CN1331389,2002.
    [74]王琪民,向勇等,利用强度增强技术的磁流变液离合器的设计、工程估算和试验研究,机械科学与技术. Vol. 21(1):131~133. 2002.
    [75]王立忠,李云瑞,王锋.磁流变体研究状况及进展[J],航空制造工程,1997(7):9-11
    [76] Y. Hu, Y.L. Wang, X.L. Gong et al, New Magnetorheological Elastomers Based on Polyurethane/Si-Rubber Hybrid, Polymer Testing, 2005, 24(3): 324-329
    [77] P. Phule, J. Ginder, A. Jatkar, et al. , Synthesis and Properties of Magnetorheological (MR) Fluids Mat. Res. Soc. Symp. Proc, 1997: 459~499.
    [78] D. Felt, M. Hagenbuchle, J. Liu, MR Suspensions and Associated Technology, Proc. of the 5 Int. conf. on ER/MR. editor W. Bullough, world scientific, Singapore, 1996,738.
    [79]汪建晓,孟光.磁流变液研究进展[J].航空学报,2002,23(1):6-12
    [80]金昀,张培强,汪小华,吴卅建.磁流变液剪切屈服应力的数值计算[J].中国科学技术大学学报,2001,31(2):168-173
    [81]江万权,朱春玲,陈祖耀,张培强.α-Fe粉体浓悬浮体系的制备及磁流变效应[J].化学物理学报,2002,15(2):146-148
    [82]龚荣洲,官建国,袁润章.酞菁钴/铁纳米填充母粒组成的磁流变液性能[J].化学物理学报,2000,13(4):508-512
    [83]余心宏,王立忠. [J],航空制造工程, 1998(6):7~8,43.
    [84] Kordonski W. I. , Gorokin S. R, Novikova Z. A, In Nakano M, Koyama K eds, Proc of the 6th Int.Conf. on ER Fluids, MR Suspensions and Their Applications[C], Singapore: World Scientific, 1998,535~542.
    [85] Ginder J M. , [A]. In: Trigg GL ed. Encyclopedia of Applied Physics, Vol. 16[M]. New York: VCH Publishers, 1996, 487~503.
    [86] Bossis G, Mathis C, Mimouni Z, et al. , Europhys Lett, 1990, 11(2):133~137.
    [87] Chen Z. Y, Tang X, Zhang G. C. , et al. , In Nakanom, Koyama K eds, Proc of the 6th Int. Conf. on ER Fluids, MR Suspensions and Their Applications[C], Singapore: World Scientific, 1998,486~493.
    [88] Ginder J. M, Davis L. C, Elie L. D. , In: Bullough W A ed, Proc of the 5th Int. Conf. on ER Fluids, MR Suspensions and Associated Technology[C],Singapore: World Scientific, 1996,504~514.
    [89] N. D. Sims, D. J. Peel, R. Stanway, A. R. Johnson, W. A. Bullough. The Electrorheological Long-Stroke Damper: A New Modeling Technique with Experimental Validation [J]. Journal of Sound and Vibration, 2000,229(2):207-227
    [90]吕蔚然,张博明,王殿富.一种平板式磁流变体静态屈服应力测试方法[J].实验力学,2001,16(2):232-238
    [91]金昀,周刚毅,李培强,李为华.两种磁流变液测试系统的比较研究[J].实验力学,1999,14(3):288-293
    [92] E Lemaire,G Bossis. Yield stress and wall effects in magnetic colloidal suspensions[J]. Journal of Physics D: Applied Physics, 1991,24:1473-1477
    [93] Anh Dang, Liling Oci, Jaine, Pieter Stroeve. Yield Stress Measurements of magnetorheological fluids in Tubes[J]. Ind. Eng. Chem. Res,2000,39:2269-2274
    [94]金昀,唐新鲁,王晓杰等,磁流变液屈服应力的管道流测试方法研究[J].实验力学,1998,13(2):168-173
    [95] Petra V. Liddell, David V. Boger*, Yield stress measurements with the vane [J]. J. Non-Newtonian Fluid Mech., 63 (1996) 235-261
    [96]朱应顺,龚兴龙,李辉,张培强,磁流变液剪切屈服应力的数值分析[C],第三届磁性液体学术研讨会,2005. 6
    [97] Dolan; James P. Torque transfer coupling with magnetorheological clutch actuator.美国[P], 6,988,602,2006
    [98] Moser; George; Sommer; Gordon; Usoro; Patrick B. Viscous clutch assembly.美国[P], 6,173,823,2001
    [99] Klovstad; John W. ; Fortune; James A. Mechanical transmission continuously variable from forward to reverse.美国[P], 5,603,240 1997
    [100] Ginder , et al. Soft start compressor clutch美国[P], 6,290,043,2001.
    [101] Usoro , et al. Magnetorheological fluid clutch,美国[P], 6,318,531, 2001
    [102] Kao , et al. Liquid cooled magnetorheological fluid clutch for automotive transmissions ,美国[P], 6,371,267 , 2002
    [103] Bowen, Torque transfer clutch with magnetorheological actuator and ball screw operator,美国[P], 6,725,990 ,2004
    [104] Hunt, Locking differential with clutch activated by magnetorheological fluid,美国[P], 6,527,664 , 2003.
    [105] Szalony,Multiple disc clutch pack having rheological film layer,美国[P], 6,581,740 , 2003
    [106] Bowen ,Torque transfer clutch with magnetorheological actuator and ball screw operator,美国[P], 6,725,990 , 2004
    [107] Dolan ,Hydromechanical coupling with clutch assembly and magnetorheological clutch actuator,美国[P], 6,745,879 , 2004
    [108] Dolan ,Power transmission device for a four-wheel drive vehicle,美国[P], 6,755,290, 2004
    [109] Dolan , Hydromechanical coupling with clutch assembly and magnetorheological clutch actuator, [P]美国[P], 6,811,007 , 2004
    [110] Eldridge , Apparatus using multi-directional resistance in exercise equipment ,美国[P], 6,837,830, 2005
    [111] B. J de Gans, N. J. Duin,D. ven Ende, J Mellema. The influence of particle size on the magnetorheological propertiesof an inverse ferrofluids[J]. Journal of Chemical Physics,2000,113(5):2032-2042
    [112]翁建生胡海岩,磁流变液体的流变力学特性试验和建模[J].应用力学学报, 2000. 9: 1-5
    [113] W. H. Li *, H. Du, G. Chen, N. Q. Guo,Experimental and modeling approaches of MR behaviors under large step strains[J]. Materials Science and Engineering, A340 (2003) :251-257
    [114]杨仕清,彭斌,王豪才.超细Co-Ni复合磁流变液的制备及流变性质研究[J].功能材料,2001,32(2):142-146
    [115]吴旻,张秋禹,罗正平等.轻质磁性材料的制备及在磁流变液中的应用[J].化学物理学报,2001,14(5):597-600
    [116] Sheng R,Flores G A,Liu J. In vitro investigation of novel cancer therapeutic method using emboling properties of Magnetorheological fluids [J]. Journal of Magnetism and Magnetic Materials, 1999, 194:167-175
    [117]胡林,张朝平,罗玉萍等.铁/蛋白质复合微粒的结构及其磁流变性能[J].复合材料学报,2001,18(3):14-17
    [118] Neil R. Harland, B. R. Mace, and R. W. Jones Adaptive-Passive Control of Vibration Transmission in Beams Using Electro/Magnetorheological Fluid Filled Inserts[J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 9, NO. 2, 2001.3 :209-221
    [119] K.C. Chen. C.S. Yeh. Description of magnetorheological behavior with internal variables[J]. international Journal of Engineering Science 40 (2002): 461-482
    [120] Shinoda K, Nakagawa T. Tamamushi B I, Isemura T, ed. Colloidal surfactants[M]. NewYork: Acad Press, 1963. Ch3
    [121] Ottwill R H. Nonionic Surfactants[M]. Schick M J. ed. New York: Marcel Dekker, 1967. Ch19
    [122] Jonson B. Lindman B, Holmberg K, Kronberg B, Surfactants and Polymers in Aqueous Solution[M]. New York: John Wiley & Sons, 1998, Ch13
    [123] H. V. Ly, F. Reitich, M. R. Jolly, H. T. Banks, and K. Ito. Simulations of Particle Dynamics in Magnetorheological Fluids[J]. Journal of Computational Physics 155,1999: 160–177
    [124] Kui-juan Jin, Weijia Wen. The evolution of bending chains in magnetorheological fluid at external field[J]. Physics Letters A 286,2001: 347–352
    [125] G. Bossis, S. Lacis, A. Meunier, O. Volkova. Magnetorheological fluids [J]. Journal of Magnetism and Magnetic Materials 252 ,2002: 224–228
    [126] T.M. Simon, F. Reitich, M.R. Jolly. The Effective Magnetic Properies of Magnetorheological Flids [J]. Mathematical and Computer Modeling 33 (2001): 273-284
    [127] Mitsumasa Kimata, Daiki Nakagawa, Masahiro Hasegawa. Preparation of monodisperse magnetic particles by hydrolysis of iron alkoxide[J]. Powder Technology 132 (2003) :112– 118
    [128]胡林,付伟,张朝平等,磁流变液沉降稳定性改进及对流变性能的影响[J],贵州大学学报(自然科学版)Vol.18 No.3: 176-181
    [129]池长青,王之珊,赵丕智,铁磁流变体力学[M],北京航空航天出版社,1993 .12
    [130] J. David Carlson, Mark R. Jolly. MR fuid, foam and elastomer devices[J]. Mechatronics 10 (2000): 555-569
    [131] J. de Vicente,*, G. Bossis, S. Lacis, M. Guyot. Permeability measurements in cobalt ferrite and carbonyl iron powders and suspensions[J]. Journal of Magnetism and Magnetic Materials 251 (2002): 100–108
    [132] Byeonghwa Kim and Paul N. Roschke. Linearization of Magnetorheological Behavior Using a Neural Network[C]. Proceedings of the American Control Conference. San Diego, Califomia, 1999.6
    [133] Fan J, Peng X. A phsically besed constitutive description for non-proportional cyclic plasticity[ J], Engng Mat Tech. 1991, 113: 254-262
    [134] Dolan Power transmission device for a four-wheel drive vehicle,美国[P], 6,932,204
    [135] York , Magnetorheological fluid coupling device and torque load simulator system, [P]美国[P], 5,598,908
    [136] Krzesicki , et al. Controllable torque transfer differential mechanism using magnetorheological fluid
    [137]蒋建东,磁流变传动技术及器件的研究[D],重庆大学,2004.5
    [138] Henri P. Gavin, The effect of particle concentration inhomogeneities on the steady flow of electro- and magneto-rheological materials, J. Non-Newtonian Fluid Mechnics, 71(1997): 165-182
    [139] H.B. Cheng, P. Hou, Q. J. Zhang, et, Experimental Research on the Response of Magnetorheological Fluid to Magnetic Field
    [140] Ulicny J. C. and Golden M.A., Transient response of magnetorheological fluids: Shear flow between concentric cylinders, J. Rheol. 2005, 49(1): 87-104
    [141] Hans Martin Laun, Claus Gabriel , Measurement modes of the response time of a magnetorheological fluid (MRF) for changing magnetic flux density[J],Rheol Acta (2007) 46, DOI 10.1007/s00397-006-0155-6:665–676
    [142]司鹄,磁流变体的力学机理研究[D],重庆大学,2003.5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700