带散热片大型铝电解槽热力耦合变形研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近二十年来,随着计算机硬件技术的迅猛发展和大型商业有限元分析软件的广泛应用,计算机模拟技术也开始应用于铝电解槽的设计、生产和维修等全生命周期过程。随着铝电解技术的发展和进步,大型化、节能化是铝电解槽发展的方向。随着槽壳结构的大型化,其安全可靠性问题日益突出。
     大型铝电解槽在服役期间,除了承受力载荷外,电解槽壳还承受900度左右的高温,电解槽在长期的热-力载荷作用下,蠕变是影响其安全寿命的主要因素。采用散热通风有效地降低槽壳温度,特别是改善槽壳温度应力的合理分布,是提高热-力耦合作用下电解槽安全寿命的有效途径。本文针对典型大型铝电解槽,重点探讨了含有散热片的某大型铝电解槽的槽壳温度和热应力分布,所得结果对大型铝电解槽散热问题的研究提供借鉴和参考。
     本文的主要工作有:
     1.基于大型有限元ANSYS?软件对某大型铝电解槽进行了三维有限元建模。利用ANSYS附带的APDL语言,完整地建立了包括内衬材料的三维(3D)铝电解槽焙烧模型,充分考虑了材料非线性、可能存在的所有接触边界条件,以及散热边界条件。
     2.利用ANSYS,对某电解槽在正常工作和热槽维修吊运工况下的热力耦合场进行分析,并对槽壳上是否安装散热片情形进行了对比分析。通过对是否安装散热片的铝电解槽在正常工作及热槽吊装工况下的热-力耦合计算对比分析,重点探讨了散热片材料、散热片厚度、散热面积、散热片数目以及散热片分布等对电解槽内变形和应力大小及分布的影响。结果表明:(1)在槽壳上安装散热片可以有效地帮助侧部散热,可以缓解内部变形导致的热应力;(2)对散热片安装数量和分布进行优化,可以改善槽壳温度分布,也可降低成本。
With the rapid development of computer science and widely use of commercial finite element software in the past two decades, computational simulation has already been employed in Electrolyte Alumina Container design, production, repair and other related whole-life period. With the development of aluminum electrolytic technology, implementation of the scientific outlook on development to save energy, and lower energy consumption becomes the main direction. With the enlargement of the container size, the safety problem becomes more and more intensive.
     During the life-cycle of a large Electrolyte Alumina Container, aside from the mechanical load on it, the container is on 900 centigrade thermal pressure. The container is under thermal-mechanical coupling and creep is the key factor affecting its life period. Adopting design of ventilation and heat conduct to reduce the temperature of the inner shell, especially to ameliorate the reasonable distribution of thermal stress in the shell, is a very good manner to increase the safe life of the container. In this paper, computational analysis of a large Electrolyte Alumina Container is performed. Special attention is paid to preliminary study of the temperature and thermal stress distribution of the shell of the container. Conclusion of the data from this analysis may be useful for the future research on the heat dissipation of Electrolyte Alumina Container.
     Content of this paper:
     Firstly, 3D finite element model of an Electrolyte Alumina Container based on ANSYS is constructed. Adopting the attached language APDL by ANSYS, calculation model of the whole container with inner-attached material is constructed. All possible contacts, material non-linear properties and heat-venting boundaries are taken into account.
     Secondly, by ANSYS, analysis of the Electrolyte Alumina Container under normal and loading conditions are performed and comparison of the container on and off cooling plate is done. The comparison of the analysis of the container on and off cooling plate is performed, with special attention to those parameters related to cooling plate, the material, thickness, surface area, number of the cooling plate and the distribution of those cooling plates, which have great impact to the stress and its distribution in the container. Results show that (1) addition of certain quantity of cooling plates can effectively low down the temperature in the container and at the same time reduce the thermal stress induced by inner displacement in a way; (2) optimization design of cooling plates distribution and its number can help improve temperature distribution in the container and reduce the cost as well.
引文
[1]邱竹贤.预焙槽炼铝.北京:冶金工业出版社, 1980
    [2]周乃君.铝电解槽电热场1/4槽模型有限元解析方法及应用.轻金属, 2006, 11(1): 37-40.
    [3]冯乃祥.铝电解槽热场、磁场和流场及其数值计算.沈阳:东北大学出版社,2001.
    [4]王志奇,夏小霞.铝电解槽燃气预热过程中阴极热应力场的数值模拟.轻金属, 2008, 1(1): 22-26.
    [5]任必军.我国大型预焙槽焙烧启动方法的选择.铝镁通讯, 2001, 2 (1): 40-44.
    [6]李劼,伍玉云. 300kA铝电解槽中焦粒焙烧过程温度场的仿真优化.中国有色金属学报, 2007, 17(8): 1367-1372.
    [7]蒲海年.铝电解槽焙烧启动对槽寿命的影响.青海科技, 2005, 12(5): 49-50.
    [8] M. Dupuis. Thermo-electric Design of A 400 kA Cell Using Mathematical Models: A Tutorial. Light Metals, 2000: 297-302
    [9] M. Dupuis. Computation of aluminum reduction cell energy balance using ANSYS finite element models. Light Metals. 1998: 409.
    [10]张钦菘.铝电解槽焦粒焙烧过程的电-热-应力模型研究.矿产保护与利用, 2005, 2(1): 39-42.
    [11]李相鹏.聚铝沟排布对导流型铝电解槽热应力分布的影响.中国有色金属学报, 2007, 17(6): 979-983.
    [12]王俊青,柴登鹏.大型铝电解槽侧部散热片散热效果分析.铝镁通讯. 2007, 8(4): 26-29.
    [13]王勖成.有限单元法.清华大学出版社, 2003.
    [14]赵镇男.传热学.北京:高等教育出版社, 2002.
    [15]陈基镛,潘伟东.散热器空气侧三维数值模拟.机电工程技术, 2007, 36(11): 41-44
    [16]王宏伟.葛增杰CPU散热片温度场模拟分析及其材料和尺寸选择的研究.计算力学学报. 2003, 12(6): 725-729.
    [17]张远波,熊蔡华. CPU散热片结构优化设计.微计算机信息, 2006, 22(12): 262-267.
    [18]崔大光,王富强.铝电解槽侧部槽壳散热三维仿真模型研究.轻金属, 2008, 7(3): 31-34.
    [19]蒋汉文,邱信立.热力学原理及应用.上海:同济大学出版社,1990.
    [20]陶沙,陆继东.铝电解槽阳极覆盖料散热特性模拟研究轻金属,2005 (2): 24-27.
    [21]龚曙光. ANSYS操作命令与参数化编程.北京:机械工业出版社,2003.
    [22] Ahmedetal. H.A. Development of a thermal model for prebaked aluminum reduction cells at the aluminium company of Egypt. Light Metals,1993: 375-378
    [23] Sherbinin. S.A, Pingin. V.V, Barantsev A.G. 3D Thermo-Electric Field Modeling Tool And Its Application For Energy Regime Simulations in Aluminum Reduction Cells. Light Metals, 2000:323-329
    [24]邓星球. 160 kA预焙阳极铝电解槽阴极内衬电-热-应力计算机仿真研究.长沙,中南大学, 2007
    [25]周乃君,姜昌伟.大型预焙铝电解槽物理场的耦合仿真技术及应用.有色金属2003 (4): 72-75.
    [26]狄跃忠,姜艳丽.铝电解槽新型内衬材料导热系数的测量.材料与冶金学报, 2008, 2(6): 115-118.
    [27]刘世英.耐火保温材料导热系数的测定.东北大学学报, 2006, 2(2): 196-199.
    [28] Halvor Kvande. Energy Consumption in Alumina Reduction Cells.Light Metals, 1991, 421-426.
    [29]徐治仪. 20KA电解槽高铝水平生产模式探讨.冶江冶金, 2007, 5 (2): 29-33.
    [30]袁丁.铝电解槽智能控制的研究.轻金属, 2003, 8 (4): 38-41.
    [31] Solhiem A. Heat Transfer Coefficients Between Bath and Side Ledge in Aluminum Cells. Light Metals, 1983,425-435.
    [32] Marc Dupuis. Thermo-Electric Analysis of The Grande-Baie Alluminum Reduction Cell. Light Metals, 1994, 339-342.
    [33] Pierre Homsi, Jean-Michel Peyneau, Michel Reverdy. Overview of Process Control inReduction Cells and Potlines. Light Metals, 2000: 223-229
    [34] Taylor.M. P. Bath/Freeze Heat Transfer Coefficients: Experimental Detrmination and Industrial Application. Light Metals, 1985:781-789.
    [35]周虹.铝电解槽焙烧启动期间影响槽寿命的原因及其对策.青海科技, 2008, 6(2): 66-68.
    [36]王俊青,张延利.浅谈我国大中型铝电解槽热损失分布特点.轻金属, 2007, 12(1): 22-24.
    [37]李茂,周孑民,王长宏. 300kA铝电解槽电、磁、流多物理场耦合仿真.过程工程学报, 2007, 7(2): 354-359.
    [38]刘世英,石忠宁.铝电解槽用干防渗料的导热性与抗渗性.中国有色金属学报, 2006, 16(9): 1641-1646.
    [39]戴小平,吴智明. 200kA预焙槽小修、二次启动的生产与实践.轻金属, 2006, 3(1): 31-34.
    [40]孙敏,肖亚明.铝电解槽用新型节能轻质散状保温材料的研究.世界有色金属, 2005, 12 (1): 34-37, 66.
    [41]陈远望.铝电解槽革新近况.世界有色金属. 2003, 7(1): 43-48.
    [42] Vanvoren. C, Homsi. P, Basquin. J. L, Behregaray. T. AP 50: The Pechiney 500 kA Cell. Light Metals, 2001: 221-226
    [43] Bruggeman. J.N, Danka. D. J. Two-Dimensional Thermal Modeling of the Hall-Heroult Cell . Light Metals. 1990: 203-211
    [44]李洪,梅炽.铝电解槽散热模型.中国有色金属学报, 1996, 6(4): 56-61.
    [45]许孙曲,陈芳华.大型铝电解槽磁力计算及分析.集美大学学报,自然科学版: 1999, 4(2): 22-26.
    [46]李德祥.铝电解槽内熔体与槽帮间换热系数计算.有色金属, 1993, 1(1): 42-47.
    [47]黄英科. 60kA铝电解槽阴极侧部结构的改进.矿冶工程, 1993, 13(1): 55-56.
    [48] Arkhipov. G, Pingin V. Investigating cathode strained-stressed state in the aluminum reduction cell. Light Metals TMS Annual Meeting, Warrendale, Pennsylvania, 2001:763-769
    [49] Mohammed. S. A, Abdulwahab M. M, Arif. A.A. Mathematical Modeling for coke bed preheating of aluminum reduction cell.Light Metals TMS Annual Meeting, Warrendale,Pennsylvania,Light Metals,1997:457-461
    [50] Asadi. G. V, Tomlinson. S. Impact of steel aging an the deformation of cahode shells, Light Metals TMS Annual Meeting,Warrendale, Pennsylvania, 1995,p381-385.
    [51] Dupuis. M, Asadi. G. V, Read. C. M. Cathode shell stress modeling. Light Metals TMS Annual Meeting, New Orleans, 1991: 427-430.
    [52] Marc Dupuis. Towards the Development of a 3D Full cell and external busbars thermo-electric model. CIM, 2002:592-599

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700