CPU热柱散热器的实验研究及流场和温度场的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,随着电子技术的快速发展,计算机的运用越来越普及,大家的日常生活和工作与计算机联系得越来越紧密,同时大家也对计算机的稳定性、实用性、集成性等方面提出了更高的要求。这使得CPU芯片的集成度不断地提高,单个芯片的功率也在不断增加,发热量惊人上升。CPU的工作温度直接关系到计算机的稳定性和使用寿命。温度升高会使计算机运行速度下降,有时会使计算机出现死机甚至芯片烧毁等,解决CPU散热问题非常迫切。而采用高效散热性能的CPU散热器是降低CPU温度的有效途径之一。
     本文对目前市场上的一款特殊的放射状翅片CPU热柱散热器作为研究对象,对该散热器进行实验研究和流场及温度场的数值模拟,分析其综合散热性能。同时,为以后CPU散热器的热设计提供参考。
     本文首先对热柱的工作原理及特点进行了分析,讨论了热柱散热器相对于传统实体铜柱散热器散热方式所存在的优势。并推导出热柱散热器的总传热模型,找出了影响散热的关键因素。同时,搭建了实验测试装置,对热柱散热器进行了测试实验,研究其在不同工况下散热器的散热性能。得到了热柱的整体温度分布图以及散热器在不同风速、不同加热功率下的散热性能曲线,总结出功率和风速的改变对发热芯片表面温度的影响。
     运用FLUENT软件,对不同工况下的散热器进行了流场及温度场的模拟分析,得到散热器流场及温度场的具体分布情况。并将模拟所得结果与实验所得结果进行比较分析,以此验证了实验测试装置的可行性和FLUENT软件在CPU散热器热设计中的可靠性。结果表明,与同等尺寸下的铜柱散热器相比较,在相同工况条件下,热柱散热器能带走更多的热量,使CPU的表面温度降的更低,并且对CPU热源具有良好的均热效果。热柱散热器不仅能将热量更快地传到整个散热器,而且将热量更均匀地分布在较大散热面积上,充分发挥每个翅片的散热作用,使散热器在冷却气流较小的情况下,也可以较好地满足CPU芯片的散热需求,可以有效解决风扇高转速带来的噪音问题。
With the rapid development of electronic technology, the use of computer is becoming more popular now, everyone's daily life and work increasingly closely linked with the computer, while set higher requirements on the computer's stability, usability, integration and other aspects, This makes the integration of CPU chip improve constantly,a single chip power is also increasing, heat is in alarming rise . CPU's operating temperature is directly related to the computer's stability and service life. High temperature will speed the computer down and sometimes the computer will crash or chip burning, etc. It is very urgent to solve the CPU heat problem. It is one effective way to use of the high performance CPU cooling radiator to reduce the CPU temperature.
     This article studied a unique radial thermal column radiator, which has already used in the market. In order to analysis of the heat dissipation, we make experimental studies on the radiator and simulation on the flow field and temperature field. Meanwhile, this proposes valuable advice for CPU radiator thermal design.
     Firstly, the working principle and characteristics of the thermal column were analyzed,compared to conventional solid copper pillar radiator,thermal column radiator has the existence of advantages. And we derive the total thermal column radiator heat transfer model; find the key factors affecting the heat transfer. At the same time, the experimental device is manufactured which is used to test thermal column radiator and study its performance under different operating conditions. According to the results of tests, the whole plume temperature distribution and the cooling performance curve of radiator at different wind speeds and different power were obtained, the change of power and speed influence the surface temperature of hot chips were summarized.
     FLUENT software is used to simulate the flow field and temperature field of the radiator on different conditions. The radiator flow and temperature distribution and the details of flow and heat transfer were obtained. And simulation results are compared with experimental results to verify the feasibility of the experimental apparatus and the reliability of FLUENT software in the CPU heat sink thermal design. The results show that compared with the same size copper pillar radiator, the thermal column radiator can drop the temperature of CPU lower, and has a good soaking effect on the CPU heat source. The thermal column radiator not only can spread the heat throughout the radiator more quickly, and the heat is distributed in a larger area more evenly, which play the role of each of the cooling fins fully. So this radiator can satisfy the cooling needs of CPU chips at low wind speed, and also solve the noise problems effectively which high speed fan bring.
引文
[1]刘一兵.计算机CPU芯片散热技术[J].低温与超导,2008,36(6):78-82.
    [2] The International Technology Roadmap for Semiconductors: Overall Roadmap Technology Characteristics-2000 Updated. Semiconductor Industry Association. 2000.
    [3]邱海平.电子元器件及仪器的热控制技术[M].北京:电子工业出版社,1991.
    [4] A Bar-Cohen, A D Kraus, S F Davidson. Thermal frontiers in the design and packaging microelectronic equipment. Mechanical Engineering, 1983, 105(6):53-59.
    [5] JANICKIM, NAPIERALSKIA, MODELLING. Electronic circuit radiation cooling using analytical thermal model [J].Microelectronics Journal, 2000, 31(9-10):781-785.
    [6] CHEIN, REI Yu, HUANG Guang-ming. Thermoelectric cooler application in electronic cooling [J].Applied Thermal Engineering, 2004, 24(14-15):2207-2217.
    [7]黄洁,杜平安.CPU散热器热学性能的有限元分析[J].计算机应用技术,2006,33(10):29-31.
    [8]张俊霞.热管技术解决CPU散热的新方案[J].安阳师范学院学报,2002,5:82-83.
    [9]王耀庭.电子元件热分析应用研究[D].西安:西北工业大学,2004.
    [10]姚荣辉,李存志.新类型CPU散热器的物理原理[J].现代电子技术, 2002(8):21-23.
    [11]汉达T,爱伊达S,乌兹诺米亚J.高速高密度芯片模块的热设计[J].计算机工程与科学,1994 , (2) :82-86.
    [12]姚广寿,马哲树,罗林等.电子电器设备中高效热管散热技术的研究现状及发展[C].第八届全国热管会议:中国工程热物理学会热管专业组,成都,2002.
    [13] Grover G M, Cotter T P And Erikson G F. Structure of very high thermal conductance.J.Appl.Phys.1994, 35(6).
    [14] Gaugler, R.S. US Patent Application. Dec. 21, 1942. Published US Patent No. 2350348. June 6, 1944.
    [15] Cotter T P.Theory of heat pipes. Los Alamos Scientific Lab. Report No.LA-3246-MS.1965.
    [16] Levy, E.k., Theoretical investigation of heat pipes operating at low vapor pressures, J.Eng.lnd.Vol.90, No.4, 1968.
    [17] Deverall, J.E., Kemme, J.E.and Flarschuetz, L.W., Some limitations and start-up problems of heat pipes, LA-4518, 1970.
    [18] Busse, C.A., Theory of the ultimate heat transfer limit of cylindrical heat pipes, Int.I. Heat Mass Transfer, Vol.16, No.1, 1973.
    [19] Dunn P, Reay D A. Heat Pipes. Pergamon Press, 1978.
    [20] Gray V H. The rotating heat pipe, a wickless hollow shaft for transfer-ring high heat fluxes. ASME Paper No.69-HT-19.1969.
    [21] Cotter T P. Pricipies and Prospects of Micro heat pipes. Proc. 5th Int. Heat Pipe Conf..Tsukuba, Japan: 1984.
    [22] Hopkins R, Faghri A. Flat miniature heat pipes with micro capillary grooves [J]. ASM J. Heat Transfer, 1999, 121: 102-109.
    [23] Salem A Said, BilalAAkssh. Experimental performance of a heat pipe [J]. International Journal of Heat and Mass Transfer, 1999, 26 (5): 679 - 684.
    [24]丁新民.热管技术应用于计算机的发展.电脑应用,2003.
    [25] Meiling Li. Thermal control of electronic equipment by heat pipe [J]. Rev.Serv, 1998, 37:323-353.
    [26] Kwang-Soo Kim, Myang Hee Won, Jong Wook Kim. Heat pipe cooling technology for desk PC CPU [J]. Applied Thermal Engineering, 2003, 23:1137-l144.
    [27] Manfred, Marcus Schneider. Heat pipe exchanger system for cooling computing device. Applied Thermal Engineering, 16:1468~1475, 2002.
    [28]何晓峰,李淑兰,赵宝珠.热管的传热极限与热管尺寸的优化设计[J].河南科学,1997,15(4):423-428.
    [29]张亚平,余小玲,冯全科.热管热性能的实验研究[J].西安科技大学学报,2007,21(2):187-189.
    [30]袁斌,魏琪,等.基于电热模拟法的热管散热器传热研究与仿真[J].山东建筑大学学报,2006,21(6):533-536.
    [31]李冬庆,张红,唐夕山.热管式CPU散热器试验及数值研究[J].石油化工设备,2006,35(3):11-13.
    [32]孙志坚,王立新,王岩,等.重力型热管散热器传热特性的实验研究[J].浙江大学学报,2007,41(8):1403-1405.
    [33]范春利,曲伟,杨立,等.电子器件冷却用微型热管的蒸发传热分析[J].电子器件, 2003, 3: 260-263.
    [34]田金颖,诸凯,刘建林,等.冷却电子芯片的平板热管散热器传热性能研究[J].制冷学报,2007,28(6):18-22.
    [35]张显明,徐进良,等.倾斜角度及加热方式对脉冲热管传热性能的影响[J].中国电机工程学报, 2004, 24(11):222-226.
    [36]丁汀,张红星,等.环路热管启动实验与分析[J].航天器工程,2006,15(1):25-29.
    [37]白敏丽,喜娜,等.用于CPU冷却的集成热管散热器[J].高技术通讯, 2006, 16(5):713-717.
    [38]高翔,凌惠琴,李明,等.CPU散热技术的最新研究进展[J].上海交通大学学报,2007 (41):48-52.
    [39]李腾,刘静.芯片冷却技术的最新研究进展及其评价[J].制冷学报,2004(3):22-32.
    [40]刘静,周一欣.芯片强化散热研究新领域——低熔点液体金属散热技术的提出与发展[J].电子机械工程,2006,22.
    [41]徐超,何雅玲,杨卫卫,等.现代电子器件冷却方法研究动态[J].制冷与空调,2003,3(4):10-14.
    [42] Wei J, Cha A. Copeland D. Measurement of Vapor Chamber Performance[C]. IEEE SEM I - THERM Symposium, 2003, 191 - 194.
    [43]谢建全.常用CPU散热方式及散热性能分析[J].电脑知识与技术,2005(5):69-71.
    [44]庄骏,张红.热管技术及其工程应用[M].北京:化学工业出版社,2000.
    [45]杨世铭,陶文铨.传热学[M].第3版.北京:高等教育出版社,2005.
    [46]谢建全.常用CPU散热方式及散热性能分析[J].电脑知识与技术,2005(5):69-71.
    [47]章熙民.传热学[M].北京:中国建筑出版社,2001.
    [48]胡桅林,周宜辉,熊明.实体型大功率风冷散热器的性能和前景[J].工程热物理学报,1996, 17:179-182.
    [49]高翔,凌惠琴,李明,等.CPU散热技术的最新研究进展[J].上海交通大学学报,2007(41):48-52.
    [50]付桂翠,高泽溪.影响功率器件散热器散热性能的几何因素分析[J].电子器件,2003,26(4):354-356.
    [51]李小跃.两种CPU散热器换热特性的数值研究[J].制冷与空调,2006(1):8-12.
    [52]余鹏.垂直均匀射流下CPU散热器换热性能的数值分析[J].工程热物理学报,2003,24(3):415-418.
    [53]殷际英.一种热管式CPU芯片散热器的原理结构设计[J].新设备·新材料·新方法轻工机械,2004(1): 105-107.
    [54]王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004,9.
    [55]陶汉中,张红,庄俊.高速芯片模块热管散热器的数值传热分析[J].南京工业大学学报,2004,26(1):68-71.
    [56]王宏伟.CPU散热片温度场模拟分析及其材料和尺寸选择的研究[J].计算力学学报,2003(6):725-729.
    [57]陶文铨.数值传热学[M].第2版.西安:西安交通大学出版社,2001.
    [58]陈占秀,孙春华,周泽平.CPU散热器数值模拟分析及其材料选择的研究[J].河北工业大学学报,2008,37(1):86-89.
    [59]张景柳.CPU风扇散热器散热效果分析[D].南京:南京理工大学硕士学位论文,2006.
    [60]于勇.FLUENT入门与进阶教程[M].北京:北京理工大学出版社,2008,9.
    [61]唐金莎.CPU风冷散热器的实验研究及流场和温度场的数值模拟[D].湘潭:湘潭大学硕士学位论文,2009.
    [62]李燚,张永恒.CPU散热器换热特性的数值研究[J].制冷与空调,2007,21(4)98-100.
    [63]孙玮.热管型电子器件散热器的数值模拟和实验研究[D].杭州:浙江大学硕士学位论文,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700