轿车发动机冷却风扇CFD仿真分析及降噪研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在广泛阅读国内外文献的基础上,结合项目组承担的国家“863”项目“轿车动力总成悬置系统、进排气及车内外高频噪声分析与控制术”子项“进排气噪声分析与控制”,以发动机冷却风扇的降噪准则—以确保发动机冷却性能(扇风量)为前提条件,对长安V805基础车发动机冷却风扇进行了低噪声优化设计研究。
     本文首先介绍了发动机噪声及其危害,讨论了冷却风扇噪声的产生机理及降噪的常规措施,归纳总结了冷却风扇国内外研究现状及风扇噪声性能的各种影响因素;总结分析了汽车冷却风扇气动性能CFD仿真和气动噪声CAA仿真的基本思想、控制方程和控制方程的求解方法;运用商用软件FLUENT对发动机冷却风扇进行了流场和声场的仿真计算分析。
     本文主要对风扇性能随风扇叶片参数的变化关系进行深入探讨并总结出风扇性能变化的规律,为风扇的优化设计提供参考,同时也对叶片不等节距布置的风扇进行了详细的仿真分析。对每种因素的仿真结果都以图表的形式绘出,主要总结出风扇的叶片结构尺寸对其性能影响的规律。在此基础上,对发动机散热风扇和冷凝风扇进行了优化设计,在保证冷却性能的前提下,均达到了降低风扇气动噪声的效果。
Based on extensive reading about literature home and abroad, connecting with the item "the analysis and control of intake and exhaust noise" which is a branch of "863" project, this paper optimized a low-noise cooling fan for ChangAn group V805 basic vehicle. The study on engine cooling fan was using experimental method in the past, this way has many shortcomings, long design cycle, high cost and product quality was not good a1so. In this paper, the method of CFD simulation analysis is used to study low-noise cooling fan.
     First, this paper learned about noise hazards and the basic theory of cooling fan, summarized mechanism of cooling fan’s noise; summarized the research actuality of engine cooling fan noise performance; imparted the factors which influence cooling fan noise performance; next the basic idea, governing equations and the solve of governing equations of CFD(Computational Fluid Dynamics) simulation for aerodynamic performance and CAA(Computational Aero-Acoustics) simulation for aerodynamic noise on the cooling fan are discussed. Given the reduction noise criteria of engine cooling fan--ensure the engine cooling performance.
     This paper simulates radiator fan and condensator fan minutely. First, using CATIA to fabricate their three-dimensional model; Later, after appropriate simplified, import them into GAMBIT,which is a preprocessor software of FLUENT and according to cooling fan experimental device to build CFD simulation model. The simulation model contains four segments, rotating fluid section, pipeline section, inlet section and outlet section. Because the simulation model is complex, mesh every segment with different size. The cell of rotating fluid section is the smallest, the cell of pipeline section is larger and the cell of inlet section and outlet section is the largest. The final model is structured/unstructured hybrid grid, and all of those segments are meshed about 300 thousand cells.
     Then aerodynamic performance simulation was carried out on the vehicle cooling fan using CFD software FLUENT. The cooling fan region is defined as rotate region in rotating coordinate system. Windsail is defined as static region. Multiple Reference Frame model is apply to couple between the rotate region and static region. The CFD technology based on the Navier-Stokes equations and RNG k ?εturbulence model are selected in calculation, SIMPLE algorithm and segregated implicit solver are applied to simulation. The second-order upwind schemes are used to turbulent kinetic energy equations, turbulent dissipation rate equations and momentum equations. Pressure-inlet boundary condition in the inlet and pressure-outlet boundary condition in the outlet. Numerical simulation is carried out on vehicle cooling fan’s internal flow. Static pressure, dynamic pressure, and velocity distribution on the blade surface and in airflow between the fan blades are acquired; when aerodynamic performance was emulated, noise analysis uses LES model, According to FAW Technology Center《Cooling System–fan noise test methods》, the inspecting point of noise is installed at the rotating axes and the distance to the center of fan is lm.
     The result indicates that the error of mass flow rate and noise,both of them are smaller than 5%,so it shows that the result is reliable.
     Combine original cooling fan's actual situation, this article mainly carried on the fan performance along with the fan blade parameter's change relations discusses and summarizes the fan performance change regularity, simultaneously, also carry on to the fan performance along with the unequal angel layout of blade simulation analysis. The result indicated:
     (1) Take the condensator fan as a example, along with fan blade angle of setting's enlargement, the mass flow increases, when angle of setting is 40°, A acoustic level achieves the minimum value, so when the fan designs, some blade angle of setting may enable fan's aerodynamic noise to meet minimum.
     (2) Under only changing fan blade's width premise, along with fan blade width increase, this fan's mass flow increases, A acoustic level also increases along with it. Therefore in the future design of the fans, under the guarantee fan cooling performance's premise, may choose small fan's blade width as far as possible.
     (3) Under only changing fan blade's curvature premise, along with fan blade curvature increase, this fan's mass flow increases, A acoustic level also increases along with it. Therefore in the future design of the fans, under the guarantee fan cooling performance's premise, may choose small fan's blade curvature as far as possible.
     (4) Appropriate unequal angle layout of fan blades can improve the performance of fan. As six blades fan, the blades by 64.96°-50.08°-64.96°-64.96°-50.08°-64.96°layout is a good one; as eight blades fan, the blades by 50.73°-39.27°-39.27°-50.73°-50.73°-39.27°-39.27°-50.73°is a good one. According to the rules that various factors affect the performance of fan,the original fans are optimized. The result indicated that the optimized fans’performance had the remarkable enhancement compared with the original fans: under the guarantee fan cooling performance's premise, to the radiator fan, when the rotational speed is 1900r/min, A acoustic level reduces the maximum of 4.9dB (A), when the rotational speed is 2500r/min, A acoustic level reduces the maximum of 0.6dB (A). The condensator fan when the rotational speed is 2500r/min, A acoustic level reduces the maximum of 5.6dB (A).
引文
【1】 高延令,汽车运用工程(第二版),人民交通出版社,1999年;
    【2】 吴炎庭,袁卫平,内燃机噪声振动与控制,机械工业出版社,2005 年5 月;
    【3】 刘秋洪等,风机降噪研究的现状与分析,西南交通大学,FLUID MACHINERY,2001;
    【4】 吴玉林,陈庆光,刘树红,通风机和压缩机,清华大学出版社,2005年 2月;
    【5】 Robert C.Chanaud, Dyna-Systems.Inc.,Denver.Colorsdo,Noise and Fluid Engineering,p.45-50ASME,1977;
    【6】 T. Fukano, Noise Generated By Low Pressure Axial Flow fans II: Effects of Number of Blades, Chord Length and Camber of Blades, Journal of Sound and Vibration 1977,50 (1) :75–88;
    【7】 陈南主编,汽车振动与噪声控制,人民交通出版社,2005年 8月;
    【8】 刘能文,刘伯林,阳吉初,降低轴流风机噪声的研究,制冷与空调,2003年第4期;
    【9】 王斌,吴锦武,陈志军,风扇系统噪声对发动机整机噪声的影响,内燃机工程第25卷第6期,2004年12月;
    【10】 居鸿宾,沈孟商,计算气动声学的问题、方法与进展,力学与实践,1995 年第 5 期;
    【11】 Messenger, H. E, et al, Two stage Fan I. Aerodynamic and Mechanical Design, NASA CR 120859. 1972;
    【12】 钟芳源主编译,叶片机械风机和压气机气动声学译文集,机械工业出版社,1987.11;
    【13】 沈国民,谢军龙,轴流通风机的叶片形状和安装角对噪声影响的试验研究,风机技术第4期,2000年3月;
    【14】 辛海升,付新挺,岳海军,袁海清,汽车发动机空气动力噪声及控制技术的研究,内蒙古农业大学学报第26卷第1期,2005年3月;
    【15】 一汽技术中心标准《冷却系-风扇噪声试验办法》;
    【16】 季伟峰,微型轴流风扇噪声机理及特性预测的研究,上海交通大学硕士学位论文,2003年;
    【17】 王福军,计算流体动力学分析-CFD 软件原理与应用,清华大学出版社,2004.9;
    【18】 刘宝杰,邹正平等,叶轮机计算流体动力学技术现状与发展趋势,航空学报,2002,23(5):394-404;
    【19】 焦予秦,周瑞兴等,风扇翼型气动性能的实验研究,流体力学实验与c测量,第18卷,第3期,2004年9月;
    【20】 陈燎原,旋转环对风机噪声特性及气动性能影响的试验研究,FLUENT MACHINERY,VoL.29,No.5,2001;
    【21】 Neal A.Brown,The Fluids Engineering Divison,ASME,1977;
    【22】 Longhouse R E.,Control of Tip--Vortex Noise of Axial Flow Fans by Rotating Shrouds. Journal of Sound and Vibration,1978 ,58(2);
    【23】 Meda G.Lakshmikantha,Computer Aided Aerodynamic Design of Radiator Fans,SAE 1999-01-0644;
    【24】 M.Henner,S.Kessaci and S.Moreau, Latest Improvenments of CFD Model of Engine Cooling Axial Fan Systems, SAE2002-01-1205;
    【25】 Ngy Srun Ap, Pascal Guerrero and Philippe Jouanny, Influence of Front End Vehicle, Fan and shroud on the Heat Performance of A/C Condenser and Cooling Radiator,SAE2002-01-1206;
    【26】 Atsushi Nashimoto, Tsuneo Akuto and Yuichi Nagase, Aerodynamic Noise Reduction by Use of a Cooling Fan with Winglets, SAE2003-01-0531;
    【27】 M.Henner, A.levasseur and S.Moreau, Detail CFD Modeling of Engine Cooling Fan Systems Airflow, SAE2003-01-0615;
    【28】 Max A.Sardou, Emile E.Damotte and Chritian Zunino, Hign Performance and Low Noise Fans are a Reality, SAE2005-01-1771;
    【29】 Allan Wang and Ahihui Xiao, Evaluation of the Multiple Roference Frame(MRF)Model in a Truck Fan Simulation, SAE2005-01-2067;
    【30】 Atsushi Suzuki, Study on the Fan Noise Reduction for Automotive Radiator Cooling Fans, SAE2005-01-0601;
    【31】 Toshihiko Nishiyama, Kengo Koshimizu and Keiichi Inaba, Development of Large Size High Efficiency and Low Noise Fan Series, SAE2005-01-1768;
    【32】 赵要珍,轿车发动机冷却风扇的CFD分析与低噪声优化设计,吉林大学硕士学位论文,2007年;
    【33】 王军,金培耕,伍光辉,吴克启,空调用轴流风扇系统内流特性分析与应用,工程热物理报,2002 年 5 月第 23 卷第 5 期;
    【34】 唐永伟,汽车发动机冷却风扇气动性能和声学性能研究,吉林大学硕士学位论文,2007 年;
    【35】 李晟,基于 FLUENT 软件的轴流风机设计初步研究,西北工业大学硕士学位论文,2004年 1月;
    【36】 韩占忠,王敬,兰小平,FLUENT 流体工程仿真计算实例与应用,北京理工大学出版社,2005.3;
    【37】 Mohammed K P, Raj R D, Investigation on axial flow fan impeller with forward swept blades [J],Journal of Fluids Engineering, 1977, 99 (3):543 – 547;
    【38】 Vahdati, M.Sayma, A. I. and Imregun.M, An integrated nonlinear approach for turbomachinery forced response prediction, Part II: Case studies [J], Journal of Fluid and Structures, 2000,14:103-125;
    【39】 Subrata Roy, Phillip Cho, Designing Axial Flow Fan for Flow and Noise, 99F-34, 1998 Society of Automotive Engineers;
    【40】 Kota Shimada, Toshimitsu Kuriwada, Taiji Sakai and Koichi Ohyama, Design of Aerodynamic Diagnal Flow Fan for Engine Cooling, SAE Paper 980059, 266-275;
    【41】 Beiler M G, Carolus T H, Computation and measurement of the flow in axial flow fans with skewed blades [J] . Journal of Turbomachinery, 1999, 121 (1):59 -66;
    【42】 J.G. Wissink, DNS of separating low Reynolds number flow in a turbine cascade with incoming wakes. International Journal of Heat and Fluid Flow,2003,24(4):626-635;
    【43】 刘柏林,轴流风机噪声预测与降噪研究,西南交通大学硕士学位论文,2003年;
    【44】 任玉新,陈海听编著,计算流体力学基础,清华大学出版社,2006.6;
    【45】 李勇,刘志友,安亦然,介绍计算流体力学通用软件——Fluent,水动力学研究与进展,A辑第 16卷第 2期;
    【46】 陈汇龙,施卫东,魏东,发动机冷却风扇降低噪声的研究,佳木斯工学院学报,1998年 9月;
    【47】 伍先俊,李志明,风机叶片噪声机理及降噪,武汉理工大学,风机技术,2001年第 4期;
    【48】 张红辉,发动机轴流冷却风扇低噪声气动噪声分析和控制研究,重庆大学硕士学位论文;
    【49】 李嵩,黄东涛等,高效、低噪风机现代设计方法和风机噪声预估,通用机械,2005年第 3期;
    【50】 孙晓峰,不等距叶片风机气动声学特性的研究,北京航空学院学报,1986(4),137-145;
    【51】 吴秉礼,轴流通风机气动噪声预测与治理,流体机械,第 26 卷,第 4期;
    【52】 汽车发动机噪声控制技术研究,中国汽车工业信息网,2007.5.30;
    【53】 刘极峰,杨小兰,宗学文,风机的噪声与降噪研究,河南机电高等专科学校学报,第 7 卷第 4 期,1999 年 10 月;
    【54】 李林凌,黄其柏,风机叶片噪声模型研究,机械工程学报:2004,40 (7) :114~118; iv
    【55】 黄其柏,掠形叶片轴流风机涡流噪声的研究,华中理工大学学报,1998年2月,第26卷第2期;
    【56】 黄其柏,卢文祥,轴流风机扰流体对气动噪声辐射特性影响的研究,振动、测试与诊断,1998年 1月,第 18卷第 3期;
    【57】 蔡娜,李地,钟芳源,弯掠动叶气动-声学优化设计及实验研究,上海交通大学学报,第 31卷第 2 期,2006年 3月;
    【58】 欧阳华,钟芳源,叶轮机械气动噪声及周向前弯动叶降噪技术的研究,上海交通大学动力与能源工程学院,风机技术,2002年第 5期;
    【59】 汪庆桓,王宁,喻达之,汤育红,轴流通风机启动噪声的实验与预测,工程热物理学报,第 20卷第 1期,1999年 1月;
    【60】 郭大伟,方一红,刘正先,陈卓,空调轴流风扇运行特性的实验与数值研究,流体机械,第36卷第6期,2006年。
    【61】 忻孝康,刘儒勋,蒋伯诚编著,计算流体动力学,国防科技大学出版社,1989.8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700