2.6~2.7GHz高效率Doherty高效率放大器的研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
射频功率放大器作为无线通信系统中基站子系统的重要组成部分,其性能直接影响整个基站子系统的线性度和功耗特性,因此提高射频功率放大器的工作带宽、线性度以及效率等指标对于提高整个基站子系统的性能具有重要的意义。Doherty功放由于其在效率提升上的优异性,使其成为了当前的研究热点。
     本文主要针对Doherty功放效率提升技术进行了研究,分别基于LDMOS(Laterally Diffused Metal Oxide Semiconductor)管和GaN(Gallium Nitride)管进行了Doherty功放设计,主要工作和创新点如下:
     1)利用导通角和有源负载牵引理论对Doherty功放的基本理论进行了研究与分析,在此基础上对Doherty功放进行了分类,最后对Doherty功放设计需要注意的技术要点进行了详细说明与分析,特别是对阻抗匹配和Offset-Line进行了详细分析说明。
     2)在理论分析的基础上,根据设计指标要求完成了基于LDMOS管的Doherty功率放大器的设计与调试。实现了2.65GHz中心频率、100MHz带宽、在42dBm(回退6dB)输出时漏极效率达到40%以及40dBm(回退8dB)输出时漏极效率达到33.6%等指标,测试结果表明达到了Doherty功放效率提升的效果。
     3)基于LDMOS管设计的Doherty功放无法满足在40dBm功率输出时效率大于40%的指标要求,于是采用GaN管(具有高击穿电压、高电子迁移率、高输出功率、更宽的工作频率等优势)完成相应的Doherty功率放大器的设计与调试。最终调试结果在40dBm(回退7.4dB)输出时漏极效率达到45.8%,38.4 dBm(回退9 dB)输出时漏极效率大于40%,很好的满足了设计指标要求。
     4)根据之前的设计,综合考虑性能、设计难度等指标对基于LDMOS管和GaN管实现的Doherty功放进行了比较。
     本文通过基于LDMOS管和GaN管在2.5GHz以上频段实现了高效率Doherty功放的设计,通过设计调试可以得到GaN这种新材料比LDMOS更具有优势。GaN管能够应用于更高频率、更大带宽的Doherty功放设计中,特别是在效率提升上,在相同的功率水平上能够较之LDMOS管提升10%以上
The radio-frequency (RF) power amplifier(PA) as an important part of mobile communication base-station system, its performance directly affects the entire mobile communication base-station system linearity and power consumption, thereby increasing the frequency band, linearity and efficiency of RF power amplifier have an great significance for improving the entire performance of mobile communication base-station system. Due to the superiority of linear and efficiency improvement of Doherty PA, making it become the current research focus.
     This paper mainly studies the Doherty amplifier theory, and on this basis using LDMOS and GaN tubes to complete the Doherty amplifier design. The principal contributions and innovation of this paper include:
     1)The conduction angle and active load-pull theories are used to study and analyze the Doherty power amplifier theory, on this basis a classification of the Doherty power amplifier has been done, and in the last the actual Doherty power amplifier design features have been analyzed, in particular, the impedance matching and offset-line theories have been detailed analysis.
     2) On the basis of the theoretical analysis, and according to design specifications requirement:center frequency of 2.65 GHz,100 MHz bandwidth, the drain efficiency is above 40% when the output power is 40 dBm, and the peak to average ratio(PAR) of the output signal is above 7 dB, to complete the LDMOS-based Doherty power amplifier system design and tuning. The finally tuning result is the drain efficiency is 40% at the 42 dBm (6dB back-off) output and 33.6% at the 40 dBm (8dB back-off) output.
     3) Due to the LDMOS-based Doherty power amplifier can not meet the design specifications requirement, then the GaN tube is used to design the Doherty power amplifier system. Base on the corresponding design, the tuning result is the drain efficiency is above 45.8% at 40 dBm (7.4dB back-off) output.
     4) According to the previous design, a comparison has been done about the LDMOS-based Doherty power amplifier and GaN-based Doherty power amplifier considering the performance, design difficulty and so on.
引文
[1].索海雷,3-way Doherty高效功率放大器研究[学位论文],电子科技大学,2009.
    [2].郭胜祥,沈宣江,方志坚,射频功率放大器的非线性研究,电子质量,2007年07期,2007年9月.
    [3]. Kahn L.R., Signle Sideband Transmisson by Envelop Elimination and Restortion, Proc. IRE, Vol.40,1952 July, pp.802-806.
    [4].牛吉凌,高效率Doherty功率放大器的研制[学位论文],电子科技大学,2009.
    [5]. Chireix H, High Power Outphasing Modulation, Proc. IRE, Vol.23,1935 November, pp.1370-1392.
    [6]. Doherty W. H., A New High Efficiency Power Amplifier for Modulated Waves, Proc. IRE, Vol.24,1936 September, pp.1162-1182.
    [7]. Raab F. H., Efficiency of Doherty RF Power Amplifier System, IEEE Trans. Broadcast, Vol. BC-33,1987 September, pp.77-83.
    [8].潘国强,高效率Doherty功率放大器的研究[学位论文],电子科技大学,2010.
    [9].周海涛,S段Doherty高效率功率放大器的研究[学位论文],电子科技大学,2010.
    [10]. Kim Bumman, Kim Ildu, Moon Junghwan, Advanced Doherty Architecture, IEEE Microwave Magazine, Vol.11,2010 August, pp.1527-3342.
    [11]. Moon Junghwan, Kim Ildu, Kim Jangheon, Highly Efficient 3-way Saturated Doherty Amplifier with Digital Feedback Predistortion, IEEE Microw. Wireless Compon. Lett., Vol.18,2008 August, pp.539-541.
    [12]. Kim Ildu, Moon Junghwan, Seunghoon Jee, Optimized Design of a Highly Efficient 3-stage Doherty PA Using Gate Adaptation, IEEE Trans. Microw. Theory Tech., Vol.58,2010 October, pp.2562-2574.
    [13]. Moon Junghwan, Kim Jangheon, Kim Ildu, A Wideband Envelope Tracking Doherty Amplifier for WiMAX Systems, IEEE Microw. Wireless Compon. Lett., Vol.18,2008 January, pp.49-51.
    [14]. Seunghoon Jee, Moon Junghwan, Kim Jangheon, Switching Behavior of Class-E Power Amplifier and its Operation above Maximum Frequency, IEEE Trans. Microw. Theory Tech, PP,2011 December,1.
    [15]. Kim Jangheon, A highly efficient class-F power amplifier for wideband linear power amplifier applications, Microw. Optical Technoly Lett., Vol.51, 2009 October, pp.2322-2326.
    [16]. Cho Hanjin, Kim Min-su, Jeong Jong-hyuk, A High Power Cartesian Feedback Transmitter Including a Compact Inverted Doherty Amplifier, Microwave and Optical Technology Letters, Vol.50,2008 April, pp.943-946.
    [17]. Darraji R., Ghannouchi F.M., Hammi O., A Dual-Input Digitally Driven Doherty Amplifier Architecture for Performance Enhancement of Doherty Transmitters, IEEE Transactions on Microwave Theory and Techniques, Vol.59, 2011 May, pp.1283-1293.
    [18]. 敬小东,移动通信中的Doherty功放的研究[学位论文],电子科技大学,2009.
    [19]. Takaya Kitahara, Takashi Yamamoto, Shigeru Hiura, Doherty Power Amplifier with Asymmetrical Drain voltages for Enhanced Efficiency at 8dB Backed-off Output Power,2011 IEEE MTT-S International,2011, pp.1-4.
    [20]. Jangheon Kim, Bilel Fehri, Slim Boumaiza, Power Efficiency and Linearity Enhancement Using Optimized Asymmetrical Doherty Power Amplifiers, IEEE Transactions on Microwave Theory and Techniques, vol.59,2011 February, pp. 425-434.
    [21]. Norihiko Ui, Hiroaki Sano, Seigo Sano, A 80W 2-Stage GaN HEMT Doherty Amplifier with-50 dBc ACLR,42% Efficiency 32dB Gain with DPD for W-CDMA Base Station, IEEE/MTT-S International, Issue 3-8,2007 June, pp. 1259-1260.
    [22]. Hiroaki Sano, Norihiko Ui, Seigo Sano, A 40W GaN HEMT Doherty Power Amplifier with 48% Efficiency for WiMAX Applications, IEEE on Compound Semiconductor Integrated Circuit Symposium 2007, Issue 14-17,2007 October, pp.1-4.
    [23]. Steve C. Cripps, RF Power Amplifier for Wireless Communications, Second Edition, Artech House,2006, pp.40-42.
    [24]. Steve C. Cripps, RF Power Amplifier for Wireless Communications, Second Edition, Artech House,2006, pp.286-288.
    [25]. Raab F. H., Efficiency of Doherty RF power amplifier system, IEEE Trans. Broadcast, Vol.BC-33,1987 September, pp.77-83.
    [26]. Kim Jangheon, Cha Jeonghyeon, Kim Ildu, Optimum Operation of Asymmetrical-Cells-Based Linear Doherty Power Amplifiers-Uneven Power Drive and Power Matching, IEEE Transactions on Micro. Theory and Tech., Vol.53,2005 May, pp.1802-1809.
    [27]. 贾建华,江一奇,Doherty功率放大器研究与设计,现代电子技术,2007年08期,2007.
    [28]. 张肇仪,周乐柱,吴德明,微波工程,第三版,电子工业出版社,2006,pp.466-470.
    [29]. Steve C. Cripps, RF Power Amplifier for Wireless Communications, Second Edition, Artech House,2006, pp.19-20.
    [30]. Steve C. Cripps, RF Power Amplifier for Wireless Communications, Second Edition, Artech House,2006, pp.20-21.
    [31]. 袁杰,实用无线电设计,电子工业出版社,2006,pp.63-71.
    [32]. NXP Semiconductor Technical Datasheet, BLF6G27-45, Rev.3,2008 December.
    [33]. 张肇仪,周乐柱,吴德明,微波工程,第三版,电子工业出版社,2006,pp.274-279.
    [34]. LINEAR Technology Datasheet, LT1617.
    [35]. CREE Technical Datasheet, CGH27030F, Rev.3.5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700