月表空间信息离散网格研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2007年10月我国第一颗月球探测器“嫦娥一号”发射,2009年3月成功撞击月球表面,整个历时一年多的时间。其所搭载的科学仪器获得了大量的关于月球数据。
     月球研究是一个综合性的课题。本文以构建月球空间离散网格作为研究目标,系统地研究了“嫦娥一号”卫星数据产品的特点,在此基础上利用“嫦娥一号”卫星CCD相机二级产品进行月表图像镶嵌,利用“嫦娥一号”所搭载的激光高度计生成的DEM系列模型获得月球表面的地形数据。同时研究了月球重力场球协函数模型以及球协分析原理,并利用SGM90D模型生成了虹湾地区局部自由空气重力异常数据,结合地形数据进行了虹湾地区重力异常解释,对该地区的地质构造进行了初步划分。
     空间离散格网模型建立在统一的空间框架基础之上,面向全球,具有多分辨表达能力,空间位置分布均匀,支持多尺度变换,融合了空间索引制,支持位置不确定性表示,是一种无缝的、开放的空间层次性表达方法。在对空间离散网格模型研究分析的基础上,以红湾地区的月表空间信息为研究对象(重力、DEM、CCD影像),实现了月球空间信息的多尺度表达,对于空间离散网格模型在月球探测研究中的应用进行了初步的探索。
     NASA World Wind是一个开放源(Open Source)的地理科普软件,其重要特性之一就是作为开源工程,其整合了许多公开的以及私有的地理数据集,不单单只是连接到NASA的数据,同时也包括其他政府机构、行业等的数据。极大地丰富了科学研究中数据匮乏的问题。而且其可以通过附加、插件以及SDK等方式进行功能的扩展,是用户可以针对自己所需功能进行开发,将之与自己的系统融合集成,应用于不同的领域和目的。通过对World Wind整体架构的分析,利用AVA SDK方式,实现了月球空间信息离散网格以及月表空间信息的三维可视化表达。
With the development of globalization, the in-depth research of remote sensing applications and theories, especially the conception of "Digital Earth" proposed by the U.S. President A1 Gore in 1983, people have begun to solve problem from a global perspective. Generally, there are many limitations in existing panel data models:
     Data conversion between sphere and plane through projection leads to data deformation, at the same time, because no projection method can be applied to all types of data, so far there are hundreds of projection method, which lead to a diversity of data. There are a variety of projection methods in one map system, resulting the difficulty expression between the different scale of map. Sphere discrete grid model is built in a unified sphere digital space framework, which avoid the projection errors in the angle, length, area of data, and the discontinuity of spatial entity.
     With the development of lunar exploration, a variety of sensors will obtain more multi-temporal, multi-channel, multi-resolution mass data, for solving large-scale lunar problems and even more. However, for the anisotropic moon, the sphere is an anisotropic manifold space and there is no way to make a continuous overlap by uniform square grid like the Cartesian space. Thus, when the panel data model is directly applied to deal with large-scale (even global) space problems, inevitably lead to discontinuous (overlapping and fracture) spatial data and larger space deformation.
     Firstly, Expound the characteristics of data products, data storage standards of Chang'E1 project are expatiated through data products and data processing of Chang'E1 satellite in the paper, further, the application of DEM model (CLTM-s01) of lunar laser altimeter carried by Chang'E1 is discussed, achieving imagery mosaic of lunar surface by use of secondary products of CCD camera. Apart from the existing imagery mosaic, the unique feature of this method consists in creating an empty frame, then making gray filling and inlay by coordinate matching with single-track, then finishing imagery mosaic by restoring the image.
     Secondly, the effect of the lunar gravity field in the lunar exploration is studied systematically in the paper, also, the theory of spherical harmonics model and its action in lunar exploration are described. High precise lunar gravity model is essential to study the inner layer-loop structure of the moon, its formation progress and inner physical distribution, which is solved by spacecraft tracking data. The accuracy gravitational field of the back surface of the moon is not very precise until the SGM90D model releaseed by Japan just because of no tracking on the earth when aircraft flying into the back of the moon. The discovery of mascon becomes the most typical application in lunar gravity field research, by now,29 sets of mascon have been discovered, which stands significant meaning to lunar geological evolution law. Correlation research about mascon distribution, inner basic structure and lunar crust thickness by use of spherical harmonics model of lunar gravity field have been made by Liang Qing, WangWen, Li Fei. The gravity anomaly in Rainbow Bay is compared to topographic data based on SGM90D model in the paper, the otherness of rock density distribution stands the main factor of the gravity anomaly in Rainbow Bay except the relativity in the northwest to some extent. The result shows that there are three main NNE structure line, the research area can be divided into four first order tectonic units including Northwest depression, central apophysis, central depression, southeast apophysis according to the distribution of main tectonic line.
     Thirdly, the theory and application situation of space discrete grid are discussed systematically the discrete grid system of lunar geo-information is constructed, in which some key techniques need to be taken into account about polyhedral choosing, subdivision method, location, encoding, and the relationship between sphere and plane. In order to minimize the deformation, icosahedron is choosen as the subdivision base, on which the two mid-points of the two sides are located in lunar South and North Pole separately, is symmetric to the lunar equator. As the basic unit, hexagon is applied to the lunar sapce discrete grid just because of the unique superiority of hexagon in space simulation. Considering the multi-resolution need, the lunar geo-information discrete grid including 12 grades is constructed on the basis of the minimum porosity(4). The research shows that the space resolution is improving gradually with increasing subdivision hierarchies of discrete grid continually. When the subdivision reachs to the 12th grade, the ground resolution can reach to 150 meter around. In the paper, the space discrete grid is generated by use of gravity data, topographic data, and CCD imagery based on Chang'E1 satellite. Analyzing to space information discrete grid achievements shows that the highest resolution of space discrete grid is decided by raw data sampling, which composes the key factor to the space discrete grid.
     World Wind is an open source of 3D geographical software (developed by the NASA carried out follow-up development by the NASA Learning Technologies), a visualized sphere, which displays the imagery provided by NASA, USGS and other WMS (Web Map Service, WEB Map Service) through a three-dimensional sphere model. Three extension modes are offered by the development team, is convenient to meet users' specific application needs, including Add-ons, Plug-ins and the World Wind JAVA SDK. The lunar spatial information visualization system is developed by using JAVA SDK development kit in the paper, achieving the overall three-dimensional visualization on lunar DEM data (contours), lunar geological data (Geologyl), lunar gravity anomaly data (SGM90D model), and discrete grid data (multi-resolution) in Rainbow Bay.
     The lunar research is a large comprehensive subject, a mass of first-hand information about the moon is being obtained with the launch of Chang'E1, China's first lunar satellite, the author has carried out exploratory work to how to manage and use these valuable data by use of discrete space grid and the World Wind.
引文
[1].赵学胜.球面GIS的动态数据模型浅析[J].矿山测量,2003(3):50-52.
    [2].宋树华,程承旗,关丽,万元嵬,杨莉全球空间数据剖分模型分析[J].地理与地理信息学.2008,24(4):11-15.
    [3].贲进.地球空间信息离散网格数据模理论与算法研究[D].郑州:解放军信息工程大学,2005.
    [4].李德仁;朱欣焰;龚健雅;从数字地图到空间信息网格——空间信息多级网格理论思考[J].武汉大学学报(信息科学版),2003,28(6):642-652.
    [5].张胜茂.基于正八面体球面离散格网模型的全球遥感影像浏览系统研究[D].上海,华东师范大学,2009.
    [6], Ncgia.IntemationalConferenceonDisereteGlobalGrids[EB/OL].2000.http://www.ncgia.uesb.edu/globalgh ds/index.htlnl.
    [7]. Negia.SeeondlntemationalConferenceonDisereteGlobalGrids[EB/OL].2004.http://www..disereteglobalgri ds.org/.
    [8].李德仁.从数字影像到数字地球[C].武汉:测绘科技大学出版社,2001.
    [9].周成虎.对地理格网系统的几点认识[C].中国福州:2004.
    [10].孙文彬,赵学胜.平面影像到QTM像元的转换算法及精度分析[J].地理与地理信息科学.2007,23(01):20-23.
    [11].郑岩,邹自明,佟继周,马文臻.星学数据系统(PDS)标准规范的研究[J]. e-Science,2009(1):1-8.
    [12]. JPL California Institute of Technology Pasadena. Planetary Data System Standards Reference,2006,3.
    [13]. Michael F, A Hearn. NASA's Planetary Data System (PDS),2007,9.
    [14].叶培建.遥感卫星CCD图像预处理[J].1994-2009 China Academic Journal Electronic Pblishing House.
    [15]. Smith D E, Zuber M T, Neumann G A, et al. Topography of the Moon from the Clementine Lidar[J] Geophys Res,1997,102:1591-1611
    [16]. Zuber M T, Smith D E, Lemoine F G, et al. The shape and internal structure of the Moon from the ClementineMission[J].Science,1994,266:1839-1843
    [17]. Wieczorek M A. The gravity and topography of the terrestrial planets[J]. Treatise Geophys,2007,10: 165-206
    [18]. Wieczorek M A, Jolliff B L, Khan A, et al. The constitution and structure of the lunar interior[J].Rev Mineral Geochem,2006,60:221-364
    [19].李军.小波理论及其在摄影测量与遥感中的应用[J].测绘通报,1995.4:8-13.
    [20].平劲松,黄倩,嫣建国.曹剑峰,唐歌实,舒容.基于嫦娥一号卫星激光测高观测的月球地形模型CLTM-s01[J].中国科学,2008,38:1601-1602.
    [21].平劲松,黄倩,鄢建国等.娥一号卫星激光测高观测的月球地形模型CLTM-s01[J].中国科学,2008,38(11):1601-1612.
    [22].刘坡,匡纲要.遥感图像的图像镶嵌方法[J].电脑知识与技术,2007.3:197-198.
    [23].李斐,鄢建国,平劲松.月球探测及月球重力场的确定[J].地球物理学进,2006,21(1):31-36.
    [24].鄢建国,平劲松,李斐等.应用LP165P模型分析月球重力场特征及其对绕月卫星轨道的影响.地球物理学报,2006,49(2):408-414.
    [25].陈俊勇.月球大地测量学的进展[J].大地测量与地球动力学,2004,24(3):1-6.
    [26].平劲松.球重力场异常对”嫦娥”一期绕月卫星在轨寿命和轨道变化影响的数值仿真分析[A].中国宇航学会深空探测技术专业委员会第二届学术会议论文集[C],北京:2005.
    [27]. Lunar gravity-A mass point model[J]. Journal of Geophysical Research,1977,82(10):3049-3064.
    [28]. Shelton, W. Soviet space exploration-the first decade[M]. Arthur Barker Ltd, London, England,1969.
    [29]. Rowan, L. C., Orbiter observations of the lunar surface[J], Physics of the Moon,1967,13(3):66-180
    [30]. Levin, E., et al., Lunar Orbiter missions to the moon[J], Sci. Amer.,218,58-66, May 1968.
    [31]. Lunar Orbiter I preliminary results[M], NASA, SP-197, Washington, DC,1969.
    [32]. Byers, B. K., Destination Moon:A history of the Lunar Orbiter program[M], NASA Headquarters, TM X-3487, Wash, DC,1977.
    [33]. Muller P,M, Sjogren W,L.Mascons:Lunar Mass Concentrations[J]. Science.1968,161(3842):680-684.
    [34]. Liu,P. Laing. Lunar gravity analysis from long-term effects[J], Science,1971,173(4001):1017-1020 (1971).
    [35]. W Michael, T Blackshear. Recent results on the mass, gravitational field and moments of inertia of the moon [J], Earth, Moon, and Planets,1972,3(4):388-402.
    [36]. D G. Tuckness, B Jost. A critical analysis of the numerical and analytical methods used in the construction of the lunar gravity potential model[J]. Applied Mathematics and Computation,1995,71(1):69-90.
    [37]. Ferrari. Lunar gravity:The firs farside map[J]. Science,1975,188(4195):1297-1300.
    [38]. Ferrari, Lunar gravity:A harmonic analysis[J], Journal of Geophysical Research-Solid Earth,1977,82(20):3065-3084.
    [39]. Ferrari,M. Ananda. Lunar gravity:Long-term Keplerian rate method. Journal of Geophysical Research.1977,82(20):3085-3097.
    [40]. Ferrari, B. Bills. A harmonic analysis of lunar gravity, Journal of Geophysical Research.1980,85(B2):1013-1025.
    [41]. Lemoine F G, et al. A 70th degree lunar gravity model (GLGM-2) from Clementine and other tracking data, Journal of Geophysical Research,1997,102(E7):16339-16359.
    [42], Konopliv,A.S et al.A high resolution lunar gravity field and predicted orbit behavior(C).1993,In AAS/AIAAAstrodynamicsSpecialistConference,Victoria B.C.,Canada,August,AASPaper93-622.
    [43]. S. Konopliv, A. B. Binder, L. L. Hood, A. B. Kucinskas, W. L. Sjogren, J. G. Williams. Improved Gravity Field of the Moon from Lunar Prospector[J]. Science,1998,281(5382):1476-1480.
    [44]. Konopliv, A. S. Yuan, D. N. Lunar Prospector 100th Degree Gravity Model Development(C).30th Annual Lunar and Planetary Science Conference,1999, Houston, TX, abstract no.1067
    [45].李春来,邹永廖,刘建忠,等.绕月探测工程的数据处理和应用研究[EB/OL].http://www.clep.org.cn/index.asp?modelname=cegc_tygc_nr&recno=19.2007-7-6.
    [46].李中科,吴乐南.基于霍夫变换和相位相关的图像配准方法[J].信号处理,2004.20(2):4-7.
    [47].许雷等.一种基于相位相关法及数学形态学方法的眼底血管图像自动拼接方法[J].生物医学工程学杂志,1998,15(3):286-290.
    [48].王诚,李琳.基于模板匹配的全景图像拼接[J].福建电脑,2008,4:1-2.
    [49].李忠新.图像镶嵌理论及若干算法研究[D].南京:南京理工大学:33-34.
    [50]. J.Lorell,W. L. Sjogren.Lunar Gravity:Preliminary Estimates from Lunar Orbiter[J]. Science,1967159(3815):625-627.
    [51]. Namiki N,et al.Farside Gravity Field of the Moon from Four-Way Doppler Measurements of SELENE (Kaguya).[J] Science,2009,323(5916):900-905.
    [52].鄢建国,李斐,平劲松GOOSSENS S.利用LP多普勒数据解算月球重力场模型的分析[J].测绘学报,2009,38(1):6-11.
    [53].鄢建国,平劲松,李斐,等.应用LP165P模型分析月球重力场特征及其对绕月卫星轨道的影响[J].地球物理学报,2006,49(2):408-414.
    [54].梁青等.基于嫦娥一号地形数据的月球布格重力异常与撞击盆地演化[J].中国科学,2009,39(10):1379-1386
    [55].李瑞浩.重力学引论[M].北京:地震出版社,1988:21-22.
    [56].王谦身等.重力学[M].北京:地震出版社,2003:11-150.
    [57].王文睿等.月球重力异常的小波多尺度分析[J].地球物理学报,2009,52(7):1693-1700.
    [58].李斐等.利用重力地形导纳估计月壳厚度[J].地球物理学报,2009,52(8):2002-2007.
    [59]. Konopliv,A.S et al. Improved Gravity Field of the Moon from Lunar Prospector[J]. Science,1998,281(5382):1476-1480.
    [60].欧阳自远等.月球科学概论[M].北京:中国宇航出版社,2005:208-210.
    [61].朱述龙,钱曾波.遥感影像镶嵌时拼接缝的消除方法[J].遥感学报,2002,6(3):183-188.
    [62].王志强,程红.数字图像镶嵌技术综述[J].影像技术,2008(2):14.
    [63]. Richard Szeliski, Heung-Yeung Shum. Creating full view panoramic image mosaics and texture-mapped models[J]. Computer Graphics (SIGGRAPH'97 Proceedings), 1997:251-258, August 1997
    [64]. S.Gumustekin, R.W.Hall. Mosaic image generation on a flattened Gaussian sphere[J].In Proc.of IEEE Workshop on Applications of Computer Vision,1996:50-55
    [65].余立功,王强,陈纯.多尺度模板匹配算法[J].工程图学学报,2005.3:80-83
    [66].王国美,陈孝威.分形技术及小波变换在全景图像中的应用[J].盐城工学院学报(自然科学版),2008,21(1):1-5
    [67].祝国瑞.地图学[M].武汉:武汉大学出版社.2003:3-6.
    [68].陈琼,郑勇,苏牡丹,鲁强.月球地图投影理论和方法研究[J].测绘通报,2006(4):1-5.
    [69].朱华统等.椭球大地计算[M].北京:解放军出版社,1993.
    [70].陈俊勇.月球大地测量学的进展[J].大地测量与地球动力学,2004,24(3):126.
    [71].陈俊勇.月球地形测绘和月球大地测量(3)[J].测绘科学,2004,29(4):529.
    [72]. J.J.Liu,et al.Automatic DEM Generation from CE-l's CCD Stereo Camera lmages[J].40th Lunar and Planetary Science Conference (2009).2570-2571.
    [73].王建荣,王新义,李晶,赵斐.三线阵CCD摄影理论在月球探测中的应用[J].测绘科学,2008,33(6):19-20
    [74].姜挺,龚志辉,江刚武,谢金华.基于三线阵航天遥感影像的DEM自动生成[J].郑州:信息工程大学,测绘学院学报,2004,21(3):178
    [75]. Ping J S, Heki K, Matsumoto K, et al. A degree 180 spherical harmonic model for the lunar topography[J].AdvSpace Res,2003,31(11):2377-2382
    [76]. Rosiek M R, Kirk R, Howington-Kraus E. Color-coded topography and shaded relief map of the lunar near sideand far side hemispheres[J].Lunar Planet Sci,2002, XXXIII:1792
    [77]. Archinal B A, Rosiek M R, Kirk R L, et al. The unified lunar control network 2005. U.S. Geological SurveyOpen-File Report 2006-1367, Version 1.0,2006
    [78].黄勇.“嫦娥一号”探月飞行器的轨道计算研究.博士学位论文.上海:上海天文台,2006
    [79].张艳.线阵列推扫式影像的数字摄影处理.硕士学位论文.解放军信息工程大学,2003:1-2
    [80].许宇.机载三线阵CCD传感器成像机理及影像模拟研究.硕士学位论文.武汉大学,2004:2-9
    [81].张剑清,潘励,王树根.摄影测量学[M].武汉:武汉大学出版社,2003:31-33
    [82].武汉大学测绘学院测量平差学科组.误差理论与测量平差基础[M].武汉:武汉大学出版社,2003:149-150
    [83]. A. Archinal et al.UNIFIED LUNAR CONTROL NETWORK 2005 AND TOPOGRAPHIC MODEL. Lunar and Planetary Science XXXVI (2005):2106-2107.
    [84].赵葆常等.嫦娥一号卫星CCD立体相机的设计与在轨运行[J].航天器工程,2009,18(1):30-37.
    [85].张登荣 郭兆胜 沈国状.一种遥感数字图像匹配的合成算法[J].浙江大学学报(理学版),2005,32(6):716-721.
    [86]. Brown Lisa G.A Survey of Image Registration Techniques. ACM Comoputing Surveys,1992,24(4):325-376.
    [87].赵锋伟,李吉成,沈振康.景象匹配技术研究.系统工程与电子技术,2002,24(12):110-113.
    [88]. White D, Kimerling A. Overton W. Cartographic and geometric components of global sampling design for environmental monitoring.Cartography and Geographic InfonnationSystems.1992:5-22.
    [89]. Faust N, Ribarsky W, Jiang T Y, et al. Real Time Global Data Model for the Digital Earth[EB/OL].2000.http://www.negia.ucsb.edu//globalgrids/PaPers/faust.pdf.
    [90].李德仁,邵振峰.空间信息多级网格及其功能[J].地理信息空间,2005,3(4):1-4.
    [91].张永生,贲进,童晓冲.地球空间信息球面离散网格——理论、算法及应用[M]北京:科学出版社,2007.
    [92].徐寅峰,杨波艇.Voronoi图在球面上的推广[J].工程数学学报,1995,12(2):93-96.
    [93]. ZHAO X S,CHEN J,LI Z L. A mix global data st ructure based on QTM and Voronoi[A]. Proceedings of XXth ISPRS Congress,2004,Ⅳ,B4:791-796.
    [94]. ZHAO X S,CHEN J,LI Z L. A QTM-based algorit hm for t he generation of Voronoi diagram on sphere[A]. RICHARDSON D.OOSTEROM P. Advances in Spatial Data Handling[C].2002.269-284.
    [95].赵学胜,陈军,王金庄.基于O-QTM的球面Voronoi图的生成算法[J].测绘学报,2002,31(2):157-163.
    [96]. Kolar J.RePresentationofgeograPhieterrainsurfaeeusingglobalindex[C].Gavl,Sweden:2004.
    [97]. Goodchild M F, Yang S. A hierarchical spatial data structure for global geographic information systems.Graphical Models and Image Processing.1992,54(1):31-44.
    [98]. Sahr K, White D, Kimerling A. J.Geodesic Discrete Global Grid Systems[J]. Cartography and Geographic Information Science.2003,30(2):121-134.
    [99]. Dutton G.Encoding and handling geospatial data with hierarchical triangular meshes[C]. Proceeding of 7th International Symposium on Spatial Data Handling. Netherlands,1996,34-43.
    [100]. DuttonG.A hierarchical coordinate system for geoprocessing and CartograPhy.1999 Berlin:SPringer-Verlag.
    [101]. 贲进,童晓冲,张永生.球面等积网格系统生成算法与软件模型研究[J].测绘学报.2007,36(02):187-191.
    [102]. 童晓冲,贲进,张永生.基于二十面体剖分格网的球面实体表达与voronoi图生成[J].武汉大学学报(信息科学版).2006,31(11):966-970.
    [103]. 陈军,李志林,蒋捷,朱庆.多维动态GIS空间数据模型与方法的研究[J].武汉大学学报·信息科学版,2004,29(10):858-863.
    [104]. White D. US EPA grid system[EB/OL].http://webpages.sou.edu/-sahrk/dgg/links.html
    [105]. Krzysztof M. Gorski. Hierarchical Equal Area isoLatitude Pixelization [EB/OL]. http://healpix.jpl. nasa.gov.
    [106]. David A Randall.Global cloud resolvingmodel(GCRM)[EB/OL].http://kiwi.atmos.colostate.edu/gcrm.
    [107]. Snyder J P. An equal-area map Projection for Polyhedral globes.Cartographica.1992,29(1):10-21.
    [108]. 设计师: 嫦娥 3 号首选着陆点在靠近月球赤道的虹湾地区[EB/OL].http://www.chinadaily.com.cn/zgzx/2009-03/044/content_7536866.htm
    [109]. 袁本凡;将地球作为行星的空间探测研究值得重视——NASA的EOS计划[C].中国空间科学学会空间探测专业委员会第十五次学术会议论文集,2002.
    [110]. lan.F, CarlKesse.L, Steven.T. The Anatomy of the Grid:Enabling Scalable Virtual Organizations[J]. InternationalJournal Supercomputer Applications,2001,15(3):200-222.
    [111]. 明涛等.几种离散格网模型的几何稳定性分析[J].地球信息科学,2007,9(4):40-44.
    [112]. 贲进,童晓冲,张永生.张衡.对施奈德等积多面体投影的研究[J].武汉大学学报·信息科学版.2006,31(10):900-93.
    [113]. Teanby N A.An icosahedron-based method for even binning of globally distributed remote sensing data[J].ComPuters&Geoseienees.2006,32(9):1442-1450.
    [114]. NASA WORLD WIND [EB/OL].http://worldwind.arc.nasa.gov/.
    [115]. World Wind Central[EB/OLj. http://worldwindcentral.com/wik.
    [116], David G. Bell.NASA World Wind:Opensource GIS for Mission Operations[J].
    [117]. 卢海滨,郑文锋,银正彤.杨朝晖,李晓璐。NASAWorldW i nd JavaSDK数字地球客户端开发[J].测绘科学,2009,43(3):169-171.
    [118]. Using NASA's World Wind Component in Your Java Technology Applications[EB/OL].http://jav a.sun.com/developer/technicalArticles/javase/worldwind/
    [119]. Gibson, Laurie,Lucas, Dean.Spatial data processing using generalized balanced ternary[C], Pr oceedings of PRIP 82. IEEE Computer Society Conference on Pattern Recognition and Image Proce ssing.1982
    [120]. Web Map Service[EB/OL].http://www.opengeospatial.org/standards/wms

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700