基于操纵模拟的桥区水域船舶通航安全预控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国国民经济和交通运输业的飞速发展,大量跨江、跨海等跨越通航水域的桥梁日益增多,一方面对构建立体交通、促进区域经济发展起到了重要作用,另一方面也对水上交通运输造成了不同程度的不利影响,有些桥梁甚至面临严峻的船撞风险。从我国目前交通发展的趋势看,桥的数量逐步增多,船的尺度逐步增大,而且由于水上运输业的发展,航道上船舶通航密度增大,致使发生船-桥碰撞事故的风险越来越大。对于我国近年来已建、在建和拟建的大型跨海、跨江大桥如上海洋山深水港东海大桥、杭州湾跨海大桥、江苏苏通长江公路大桥、武汉鹦鹉洲大桥、广州港珠澳大桥等,桥梁及桥区通航船舶的安全问题已经成为摆在大桥和桥区航运管理部门面前的一个突出的问题。因此,为了顺应我国大量建造跨江、跨海大桥带来的对桥区船舶通航安全问题进行研究的迫切需求,防患于未然,非常有必要系统、深入地开展桥区通航安全预控研究,为船舶安全、快速通过桥区提供指导,以切实提高桥区船舶通航的安全性和效率。
     船撞桥事故原因主要有以下三个方面:人为因素、机械故障和环境因素。多数船撞桥事故都是在通航环境较差或船舶突然失控情况下,由于船舶驾引人员心理紧张导致误操作造成的。还有一部分事故是由于船舶驾引人员在实际驾引过程中没有考虑船间水动力干扰可能造成的后果,导致船舶出现欠控、甚至失控,错过避碰时机造成的。因此,本文针对桥区水域船舶建立了受控运动、欠控运动和失控运动数学模型,并据此建立桥梁主动防船撞预控系统,以期从预控的角度,解决或减少因人为因素和突发失控事故造成的桥区水域船舶安全通航问题。
     要确保桥区水域船舶安全通航,需要解决好以下三个问题:
     (1)对受控船舶航迹和航迹带宽进行预报,以是否满足桥梁通航净宽尺度作为通航安全判断标准,确保受控船舶安全通航;
     (2)受控船舶在现有的航行条件下在什么区域失控会导致由于风致漂移和流致漂移运动影响而撞击桥墩,对该区域进行预警,以便船舶在进入该区域前对船舶运动状态做适当调整,防止因在该区域失控造成船撞事故不可避免。
     (3)在船舶会遇、追越过程中以及通过桥墩水域时,在当时的航行状态和通航环境下,什么区域不能进入,否则会由于船间水动力干扰的存在导致船舶不能完全受控,即欠控,致使船撞桥事故发生。
     以受控船舶过桥航迹带宽、船舶欠控区和失控船舶临界撞桥区为判断标准,建立桥梁主动防船撞预控系统,指明船舶在当时航行状态和通航条件下的不可航行区域,对可能出现的船撞桥危险区域进行预报,将极大地减少因人为因素影响和船舶失控、欠控造成的船撞桥事故发生概率。
     鉴于此,本论文主要开展了以下工作:
     (1)通过对目前国内外船撞桥事故的统计,说明桥区水域船舶通航安全研究的必要性和紧迫性。
     (2)运用船舶操纵运动理论,建立了多工况下受控船舶操纵运动数学模型,为船舶操纵运动数值仿真模拟和船舶欠控运动数学建模提供基础。针对桥区水域通航船舶低速航行状态下受风、流影响较大的特点,建立了桥区水域船舶在风、流作用下的漂移运动数学模型。
     (3)运用建立的桥区水域船舶操纵运动数学模型,开展桥区水域船舶通航仿真模拟研究,对船舶过桥状态进行数值仿真模拟,确定桥区船舶操纵运动航迹带宽,为受控船舶在桥区水域的安全通航提供技术基础。
     (4)依托船舶操纵运动理论和船间水动力干扰理论,提出了船舶欠控运动概念,即当船舶接近另一船舶或海洋结构物至某一范围时,仅依靠本船自身动力,无法抵御由于水动力干扰的存在而造成的船舶不能完全受控的一种临界状态,该状态称为船舶欠控,发生船舶欠控的区域边界称为船舶欠控区。并通过水深、船长、船速以及船间距等参数的变化,对船舶欠控区进行实验对比及参数研究,建立了船舶欠控区通用模型。
     (5)建立了桥区失控船舶运动数学模型,计入船舶欠控运动影响,对失控船舶过桥状态进行了分析,提出了计及欠控区尺度的失控船舶临界撞桥区模型,对失控船舶能否安全过桥找到了判定标准。
     (6)基于船舶受控运动、欠控运动和失控运动三种船舶运动数学模型,以受控船舶过桥航迹带宽、船舶欠控区和失控船舶临界撞桥区为判断标准,构建了桥梁主动防船撞预控系统,为桥梁的主动防船撞做了有益的探索。
     本文基于船舶操纵模拟,建立了桥区水域船舶受控、欠控和失控运动数学模型,分析了受控船舶过桥航迹带宽、船舶欠控区和失控船舶临界撞桥区,构建了桥梁主动防船撞预控系统。通过本文的研究,为桥区水域船舶通航安全研究提供了新途径。
With the rapid development of economy and transportation, massive bridges crossing navigational waterways in inland rivers, straits and gulfs were constructed or are being constructed. On the one hand, more bridges have promoted tri-dimensional transportation construction and development of regional economy. On the other hand, bridges have resulted in negative impact on the navigation. Some bridges even face severe risk of ship-bridge collision. More bridges, bigger ships and larger vessel traffic density bring greater risk of ship-bridge collision. In China, massive bridges have been built, been constructed or been proposed, such as Donghai Bridge of Yangshan Deep-water Port, Hangzhou Bay Cross-Sea Bridge, Su-Tong Bridge, Wuhan Parrot Island Bridge, Hongkong-Zhuhai-Macau Bridge, and so on. Safety of ships and bridges is becoming a prominent issue for management of ships and navigation. In order to conform to the urgent need of navigation safety in bridge areas, it is necessary to carry out research on pre-control to ensure safety of ships and bridges, to pilot ships safely and effectively.
     There are three determinant causes inducing ship-bridge collision, including human factors, mechanical failure and environment factors.
     Under severe environment situation or sudden accidents, i.e. out of control, some ship-bridge collision incidents are caused by mishandling due to psychological stress of pilots. Others are caused by hydrodynamic interaction between ships and bridges. Some pilots do not understand the intrinsic mechanism of hydrodynamic interaction between ships and bridges; do not know the potential consequences induced by hydrodynamic interaction, for an example, incomplete control state of ship motion. In order to ensure navigation safety in bridge area, an active pre-control system of anti-collision between ships and bridges was established based on mathematical models of under-control ship, incomplete-control ship and out-of-control ship.
     To ensure navigation safety in bridge area, the following three issues should be solved.
     The first one is to predict the trajectory breadth of under-control ship. Taking comparing result of trajectory breadth and clean breadth of bridge as the safety criterion to judge the under-control ship can pass bridge safely or not.
     The second one is to assign precaution area, in which ship-bridge collision may happen if under-control ship loss control due to wind and current drift motion. In this thesis, the area is called as Critical Collision Zone (CCZ) of out-of-control ship.
     The third one is to predict that in which zone the incomplete control state will happen for ships under head-on, overtaking and overtaken situation and for ships navigating near piers. In this thesis, the zone is called as Critical Uncontrollable Zone (CUZ) of incomplete-control ship.
     To establish active pre-control system of anti-collision between ships and bridges will significantly reduce the impact of human factors and the probability of ship-bridge collision accidents, based on the precaution of trajectory breadth of under-control ship, precaution area for out-of control ship and incomplete control zone for incomplete-control ship.
     Main contents of the thesis are as follows:
     (1) To illustrate the necessity and urgency of research on ship navigation safety in bridge area, statistics of collision accidents between ships and bridges were compiled.
     (2) Based on the ship maneuverability theory, maneuverability mathematical model for ship under control was set up which could be used to simulate ship’s motion trajectory and to identify the various ship's safety passing width. Considering low speed characteristics of ships navigating in bridge area, wind-induced and current-induced ship drift model were established.
     (3) With ship maneuverability mathematical model, ship maneuverability simulator was used to simulate ships’navigation trajectories.
     (4) Concept of CUZ, in which the rudder cannot provide sufficient lateral force and/or moment to maintain the ship under control when ship approaches to other ship or marine structure, was put forward firstly. CUZ was systematically analyzed with different water depth, ship length, ship speed and stagger between ships. New generic equation of CUZ was established.
     (5) Based on mathematical model for ship out of control, considering CUZ, CCZ model was put forward firstly.
     (6) With mathematical model for ships under control, out of control and uncontrollable ship, initiative pre-control system of anti-collision between ships and bridges was firstly put forward.
     Based on simulation, mathematical models for ships under control, out of control and uncontrollable ships were established. Ships’safety passing width, CUZ and CCZ were put forward and analyzed. Finally, pre-control system of anti-collision between ships and bridges was established. The methods proposed in this thesis may provide a new way to research navigation safety in bridge area.
引文
[1]全国交通统计资料摘要.中华人民共和国交通部,2001.
    [2]长江桥梁船闸与通航.交通部长江航务管理局.长江出版社,2005, 10
    [3] Ship Collision due to the Presence of Bridges [R]. Report of Working Group of the Inland Navigation Commission. 2001.
    [4] Sipke E.van Manen & Aksel G.Frandsen. Ship collision with bridges, review of accidents.Ship Collision Analysis. Gluver & Olsen. 1998, 3 ~11.
    [5] M.A.Knott. Vessel collision design codes and experience in the United States. Ship Collision Analysis, Gluver & Olsen. 1998, 75~84.
    [6]戴彤宇.船撞桥及其风险分析[D].哈尔滨工程大学博士论文.2002
    [7]杨渡军.桥梁的防撞保护系统及其设计[M].北京:人民交通出版社,1990.
    [8] Mastaglio L. Bridge Bashing[J]. Civil engineering. 1997, 67 (4), 38~40.
    [9]苏通大桥桥区防船撞预控技术研究报告[R].武汉理工大学. 2009
    [10]耿波.桥梁船撞安全评估[D].同济大学博士论文. 2007
    [11]庄元.桥梁通航论证关键技术研究[D].武汉理工大学博士论文.2008
    [12] O.D.Larsen. Ship Collision with Bridges. IABSE Structural Engineering Documents, 1993.
    [13] AASHTO. LRFD Bridge Design Specification and Commentary. American Association of State Highway and Transportation Officials, Washington D.C.1994.
    [14] A.C.W.M.Vrouwenvelder. Design for Ship Impact according to Eurocode 1, Part 2.7. Ship Collision Analysis. 1998
    [15] S.E. van Manen. Ship Collisions due to the Presence of Bridges [R] Brussels: PIANC General Secretariat, 2001:39~50.
    [16]港珠澳大桥通航安全评估报告[R].武汉理工大学.2009
    [17]大型复杂交通工程建设安全减灾关键技术研究报告[R].武汉理工大学.2008
    [18]安庆长江公路大桥通航环境安全评估研究报告[R].武汉理工大学.2009
    [19]上海至南通沪通铁路大桥通航环境实船实验与数值模拟研究报告[R].武汉理工大学.2009
    [20]马鞍山长江公路大桥船舶通航实船试验与数值模拟研究报告[R].武汉理工大学.2009
    [21]中华人民共和国交通部.公路桥涵设计通用规范.JTJ D60-2004. 2004.
    [22]中华人民共和国铁道部.铁路桥涵设计基本规范(TB 10002.1-99 ) , 2000
    [23]项海帆,范立础,王君杰.船撞桥设计理论的现状与需进一步研究的问题[J].同济大学学报,第30卷,第4期,2002年4月,pp.386-392
    [24]罗林阁,曹映泓,陈国虞,王礼立.船舶撞击桥梁的撞击力计算方法探讨[J].中外公路,第26卷,第5期,2006年10月,pp.78-81
    [25] Liu J. C., Gu Y. N. and Hu Z. Q., Simulation of Ship-Bridge Collision Based on FE Model of Whole Ship-Bridge[J], Journal of Ship Mechanics, Vol.7, No.3, June 2003, pp.107-117
    [26]李升玉,王曙光,刘伟庆,徐秀丽,方海.船舶与桥墩防撞系统碰撞的数值仿真分析[J].自然灾害学报,第15卷,第5期,2006年10月,pp.100-106
    [27] Kenneth Brian Berlin. Structural Reliability Analysis for Vessel Impact on Bridges [Dissertation]. The University of Texas at Austin, May 2005
    [28] A. Iwai and K. Shoji. On the Effect of Wind around the Pier upon the Course-keeping of Ship [J]. Nautical Soc. Japan, No.55, Aug. 1976, pp.77-86
    [29] A. Iwai and K. Shoji. On the Effect of Current around the Pier upon the Course-keeping of Ship [J]. Nautical Soc. Japan, No.61, May 1979, pp.163-171
    [30]刘明俊,周崇喜,杨晓妍,李世刚.苏通大桥船舶通航标准论证方法.船海工程[J],2005年第3期,pp.24-27
    [31]应静华.东海大桥主通航孔船舶通行能力研究[学位论文].上海:上海海事大学, 2006
    [32] Kijima, K. and Nakiri, Y. On the Practical Prediction Method for Ship Manoeuvring Characteristics[C], Proc. Of MARSIM’03, pp RC-6, or Trans West Japan Soc Naval Arch, 105, 2003, pp 21-31.
    [33] Zhang X. T., Teng B., Liu Z. Y. and Zhang L. W. Unsteady Computation of Hydrodynamic Interaction Forces and Moments Between Ship Hull and Pier Based on NURBS[J]. Journal of Ship Mechanics, Vol.7, No.6, December 2003, pp.47-53
    [34] Zhang R. J. Chen Y. B., Sun Z. Q., Sun F. C. and Xu H. Z. Path Control of a Surface Ship in Restricted Waters Using Sliding Mode[J]. IEEE Transactions on Control Systems Technology, Vol.8, No.4, July 2000, pp.722-732
    [35] Zhuo Y. Q. and Hearn G. E. Optimal Anti-collision Action in Narrow Waters Using Genetic Algorithms[C]. Roceedings of 3rd International Conference on Collision and Grounding of Ships, Izu, Japan, Oct. 2004, pp.104-109
    [36] Miele A. and Wang T. Optimal Trajectories and Guidance Schemes for Ship Collision Avoidance [J]. Journal of Optimization Theory and Applications, Vol.129, No.1, April 2006, pp.1-21
    [37] Qiu L,Zou Z.J, and Zhang X.D. Calculation of Viscous Hydrodynamic Forces on a Ship Hull inOblique Motion[J].Journal of Hydrodynamics, 2004, Vol.16 (No.1), pp. 84-89.
    [38] Wang H. M. and Zou Z. J. Prediction of Ship Dynamic Stability Using a NURBS-based Higher Order Panel Method [J]. Proc. of MARSIM2006, International Conference on Marine Simulation and Ship Maneuverability, Terschelling, The Netherlands, June 2006
    [39]国际航标协会(IALA ).关于可航行水道上固定桥梁标志的建议.1987
    [40]中华人民共和国交通部.浮标标准JT/ 100-91. 1991
    [41]中华人民共和国交通部.中国海区水上助航标志GB4696-1999. 2000
    [42]国际海事组织IMO.船舶定线制的一般规定.1977
    [43]上海海事局.长江口船舶定线制。2002, 9
    [44]中华人民共和国交通部.长江江苏段船舶定线制规定.2003 , 7
    [45]中华人民共和国交通部.长江三峡库区船舶定线制.2003, 10
    [46]中华人民共和国交通部.长江安徽段船舶定线制规定.2003, 10
    [47]中华人民共和国交通部.中华人民共和国船员培训管理规则.1997, 10
    [48]国际海事组织IMO. ((1978年海员培训、发证和值班标准国际公约》1995年修正案.1997
    [49]祝世华.外海大桥非通航孔桥墩的防撞拦截措施.实用新型专利.ZL 200620025697.9, 2007.5
    [50]中华人民共和国交通部.《内河通航标准》GB50139-2004,中国计划出版社,2004
    [51] IMO Resolution MSC 137 (76), 2002,“Standards for Ship Manoeuvrability”.
    [52] Davidson, K.S.M. and L.I. Schiff, Turning and course keeping qualities [J], Trans. SNAME, 1946, Vol.54.
    [53] Nomoto, K., T. Taguchi, K. Honda and S. Hirano. On the steering qualities of ships [C], Int. Shipbuilding Progress, 1957, Vol.4.
    [54] Kempf, G. Manoeuvring standards of Ships [J], Deutsche Schiffarts-Zeitschrift, Hansa, No 27/28, 1944.
    [55] Gertler, M. Cooperative Rotating-arm and Straight line Experiments with ITTC Standard model (Mariner type Ship), David Taylor Model Basin, Report 2221, 1966.
    [56] Norrbin, N.H. On the design and analysis of the zig-zag test on base of quasi linear frequency response[C]. SSPA Report No. B104-3, 1963, 10th ITTC, London.
    [57] Norbin N.H. Theory and observation on the use of a mathematical model for ship Manoeuvring in deep and confined waters [J], Publication No. 68 of SSPA.1970, Sweden.
    [58] Nomoto, K. Simulators from the naval architects point of view[C], Proceedings of MARSIM, Southampton, UK, 1978.
    [59] Bech, M. The reversed spiral tests as applied to large ships [J], Shipping world, Nov, 1978.
    [60] Bech, M., and L. Wagner Smitt Analogue Simulation of Ship Manoeuvres [R] Hya Report, Hy-14, 1969.
    [61] Leeuwen, G. van A simplified non-linear model of a manoeuvring ship, Shipbuilding Laboratory, Delft University of Technology, Report No. 262, 1970.
    [62] Abkowitz M.A. Lectures on ship hydrodynamics steering and manoeuverability. Hydro-and Aerodynamics Laborator[C] Repot No. Hy-t. Denmark., 1964
    [63]小山陽弘,小山健夫,貴島勝郎. MMG報告-I操縦運動の数学モデルについて.日本造船學会志, No. 575, 1977, pp. 192-198.
    [64]浜本刚实. MMG報告-II操縦性数学モデルの理論的背景.日本造船學会志, 1977, No.577, pp. 322-329.
    [65]葛西宏直,湯室彰規. MMG報告-III舵に作用するカと船体?プロペラとの干渉.日本造船學会志, 1977, No.578, pp. 358-372.
    [66]小瀨邦治. MMG報告-IV拘束操縦性試験の方法及び試験装置.日本造船學会志, 1977, No.579, pp.22-31.
    [67] Crane, C.L.Manoeuvring Trials of the 278000 DWT ESSO OSAKA in Shallow and Deep Waters[C] Transactions of SNAME, 1979, Vol. 87.
    [68] JAMP Working Group. Bulletin of the Society of Naval Architects of Japan No. 668: Prediction of Manoeuvrability of a Ship, Danish Maritime Institute, 1986.
    [69] Miller, E.R., Jr.. Model Test and Simulation Correlation Study Based on the Full Scale Esso Osaka Maneuvering Data, Technical Report 8007-1, Laurel, Md: Hydronautics. USA, 1980.
    [70] Dand, I.W., and Hood, D.B. Manoeuvring Experiments using Two Geosims of the Esso Osaka, National Maritime Institute, Report R163, Feltham, UK, 1983.
    [71] Bogdanov, P., Vassilev, P., Lefterova, M. and Milanov, E. Esso Osaka Tanker Maneuverability Investigations in Deep and Shallow Water Using PMM [J], International Shipbuilding Progress, 1987, Vol. 34.
    [72] Oltmann, P., Wolff, K., Müller, E. and Baumgarten, B.Zur Korrelation Modell-Grossausfürhung beu Man?vrierversuchen af tiefem und flachem Wasser, Jarhbuch der Schiffbautechnischen Gesellschaft Band 80, 1986.
    [73] Dahl, S. Skibes Man?vreegenskaber p? Lavt Vand,[Dissertation], Technical University of Denmark, Department of Mechanical Engineering, Maritime Engineering, Lyngby, Denmark, 1993.
    [74] Morse, R.V. and Price, D. Manoeuvring Characteristics of the MARINER Type Ship (USSCompass Island) in Calm Seas, Sperry Polaris Management, Sperry Gyroscope Company, New York, USA, December, 1961.
    [75] ITTC. Final Report and Recommendations to the 11th ITTC. Proceedings of the 11th ITTC-VolumeⅠ, Tokyo. 1966
    [76] ITTC. Final Report and Recommendations to the 12th ITTC. Proceedings of the 12th ITTC-VolumeⅠ, Rome, 1969.
    [77] Wagner-Smitt, L. Steering and Manoeuvring of Ships– Full Scale and Model Tests [J], European Shipbuilding, Vol. 19, No. 6, 1970 and Vol. 20, No.1.
    [78] Norrbin, N.H. Theory and Observations on the Use of a Mathematical Model for Ship Manoeuvring in Deep and Confined Waters[J], SSPA, Gothenburg, Sweden, Publication No. 68, 1971.
    [79] Inoue, S., Hirano, M. and Kijima, K. Hydrodynamic Derivatives on Ship Manoeuvring[J], International Shipbuilding Progress, Vol. 28, No.321, 1981, pp. 112-125,
    [80] Clarke, D., Gedling, P. and Hine, G. The Application of Manoeuvring Criteria in Hull Design Using Linear Theory, Transactions of RINA, 1983, pp 45-68.
    [81] Oltmann, P. Coefficient Estimation, Hamburg Ship Model Basin, Internal Report, Unpublished, 1992.
    [82] Kijima, K., Katsuno, T., Nakiri, Y. and Furukawa, Y. On the Manoeuvring Performance of a Ship with the Parameter of Loading Condition[J], Journal of Society of Naval Architects of Japan, 168, 1990, pp 141-148.
    [83] Kijima, K., Nakiri, Y., Tsusui, Y. and Matsunaga, M. Prediction Method of Ship Manoeuvrability in Deep and Shallow Waters[C], MARSIM & ICSM 90, Tokyo, Japan., 1993
    [84] Kijima, K., Tanaka, S. Furukawa, Y. and Hori, T. On a Prediction Method of Ship Manoeuvring Characteristics[C], Proc. Of MARSIM’93, Vol. 1, pp 285-294.
    [85] Oltmann, P. Identification of Hydrodynamic damping derivatives-a pragmatic Approach[C], MARSIM’03, pp RC-3.
    [86] Artyszuk, J. A look into motion equations of the ESSO OSAKA Manoeuvring [J], International Shipbuilding Progress,, 2003, Vol. 50, No. 4, pp 297-315.
    [87] Lee, T.-I., Ahn, K.-S., Lee, H.-S. and Yum, D.-J. On an Empirical Prediction of Hydrodynamic coefficients for modern ship hulls[C], MARSIM’03, pp RC-1.
    [88] Yoshimura, Y. and Ma, N. manoeuvring prediction of fishing vessels[C], Proc. of MARSIM’03, pp RC-29.
    [89]藤井斉. "船の操縦性能の推定"特集発行の経緯(<特集>船の操縦性能の推定).日本造船學會論文集, 1985, No.668, pp. 50.
    [90]藤井斉. 1操縦性能推定に関する研究の概要(<特集>船の操縦性能の推定).日本造船學會論文集, 1985, No.668, pp. 51-55.
    [91]藤井斉. 7操縦性能推定に関する今後の課題(<特集>船の操縦性能の推定).日本造船學會論文集, No.668(1985) pp.122-129.
    [92]藤野正隆. 2実船?模型の相関に関する研究の経過(<特集>船の操縦性能の推定).日本造船學會論文集, 1985, No.668, pp. 55-63.
    [93]小瀬邦治,芳村康男,浜本剛実. 3操縦性能推定に用いる数学モデルと模型試験(<特集>船の操縦性能の推定).日本造船學會論文集, 1985., No.668, pp. 63-75.
    [94]貴島勝郎,浅井滋,山上順雄. 4深水域における操縦性能の推定(<特集>船の操縦性能の推定).日本造船學會論文集, 1985.No.668, pp. 75-93.
    [95]平野雅祥,湯室彰規,野中晃二,小林弘明. 1985. 5浅水域における操縦性能の推定(<特集>船の操縦性能の推定).日本造船學會論文集, No.668, pp.93-105.
    [96]松本憲洋,高井忠夫. 6操縦性能の推定精度の向上(<特集>船の操縦性能の推定).日本造船學會論文集, 1985, No.668, pp.105-122.
    [97]芳村康男.浅水域の操縦運動数学モデルの検討(第2報).关西造船协会志,1988, Vol.210, pp. 77-84.
    [98]鸟野庆一,蛇沼俊二,米田国三郎.模型船による離着桟時の船体横方向流体力に関する実験的研究.关西造船协会志, 1988, No.209, pp. 103-109.
    [99]鸟野庆一等.斜航流体力の物理的成分分離による数学モデル(第2報).关西造船协会志, 1991, No.216, pp. 175-183.
    [100] Karasuno Keiichi et al. A New Mathematical Model of Hydrodynamic Forces and Moment Acting on a Hull during Maneuvering Motion that Occurs under Conditions of Slow Speed and Large Turns, 2nd Report[J], Journal of the Kansai Society of Naval Architects, Japan., 1992, No.217, pp. 125-135.
    [101] Kose Kuniji et al. On a Mathematical Model of Maneuvering Motions of Ships in Low Speeds[J], Journal of the Society of Naval Architects of Japan. 1984, No.155 pp. 132-138.
    [102]貴島勝郎,芳村康男,高品純志.浅水域における船の操縦運動数学モデル: MSS報告II.日本造船学会誌. 1989, No.718, pp. 207-220.
    [103] Shouji Kouichi, Iahiguro Tsuyoshi. A Study on the Mathematical Model for the Maneuverability of Ship in Harbor [J], Journal of the Kansai Society of Naval Architects, Japan. 1989, No.212, pp.123-132.
    [104] Fujino, M. Experiment Studies on Ship Manoeuvrability in Restricted Waters-Part 1 [J], International Shipbuilding Progress, 1968, Vol.15, No. 168, pp. 279-301.
    [105] Wang, D.J., Bakountouzis, L. and Katory, M. Prediction of Ship Hydrodynamic Derivatives in Shallow and Restricted Waters [J], International Shipbuilding Progress, 2000, Vol. 47, N. 452, pp.379-396.
    [106] Varyani, K.S., McGregor, R.C. and Wold, P. Identification of Trends in Extremes of Sway-Yaw Interference for Several Ships Meeting in Restricted Waters[J], Ship Technology Research, Schiffahrts-Verlag Hansa”,2002, vol.49, pp174-191.
    [107] Eloot, K. and Vantorre, M. Development of a Tabular Manoeuvring Model for Hull Forces Applied to Full and Slender Ships in Shallow Water[C], MARSIM’03, Kanazawa, Japan.
    [108] Lee, Y.S., Toda, Y. and Sadakane, H. The Prediction of Hydrodynamic Forces Acting on a Ship Hull Undergoing Lateral Berthing Maneuver in Shallow Water[C], MARSIM’03, Kanazawa, Japan.
    [109] Sheng, Z.Y. Contribution to the discussion of the Manoeuvrability Committee report [C], 16th International Towing Tank Conference, Proceedings, Leningrad, Soviet Union, 1981.
    [110] Clarke, D. The shallow water effect on linear derivatives[C], Proceedings MCMC’97, Brijuni, Croatia, pp. 87-92.
    [111] Ankudinov, V.K., Miller, E.R., Jakobsen, B.K., and Daggett, L.L., 1990, Manoeuvring performance of tug/barge assemblies in restricted waterways[C], Proceedings MARSIM & ICMS 90, Tokyo, Japan, pp. 515-525.
    [112] Hirano, M., Takashina, J., Moriya, S., and Nakamura, Y. An experimental study on manoeuvring hydrodynamic forces in shallow water, TWSNA, 1985, Vol. 69, pp. 101-110.
    [113] Kijima, K., Nakiri, Y., Tsutsui, Y., and Matsunaga, M. Prediction method of ship manoeuvrability in deep and shallow waters[C], MARSIM & ICSM 90, Tokyo, Japan, pp. 311-318.
    [114] Kobayashi, E. The development of practical simulation system to evaluate ship maneuverability in shallow water[C], Proceedings, PRADS’95, pp. 1.712-1.723.
    [115] Li, M., and Wu, X. Simulation calculation and comprehensive assessment on ship maneuverabilities in wind, wave, current and shallow water[C], Proceedings of MARSIM & ICSM’90, Tokyo, Japan, pp. 403-411, 459-465.
    [116]周昭明,盛子寅,冯悟时.多用途货船的操纵性预报计算[J].船舶工程, 1983,第6期: 21-29.
    [117]盛子寅.浅水中船舶操纵水动力导数的计算.中国造船.第73期, 1981.
    [118]赵月林,古文贤.浅水中船舶操纵运动的模拟计算[J].大连海事大学学报, 1990,第04期: 337-344.
    [119]赵月林,古文贤.浅水低速状态下操纵运动数学模型研究[J].大连海事大学学报, 1992,第3期: 242-246.
    [120]李美菁.船舶在风浪及限制航道中多工况操纵运动模拟计算与操纵性能综合评判[博士论文].武汉:武汉交通科技大学, 1988.
    [121]杨盐生.船舶靠离泊操纵数学模型的研究[J].大连海事大学学报. 1996, 22(4): 12-16.
    [122]范尚雍,吕韶康,程智斌.双桨双舵船模系列斜拖试验研究[J].中国造船, 1988(01): 38-47.
    [123]范尚雍,程智斌,吕韶康.高速双桨双舵船的船-桨-舵之间的水动力干扰[J]中国造船, 1989(02): 27-32.
    [124]黄国樑等.船舶在规则波中回转运动的研究[J].上海交通大学学报, 1996(10): 154-160 .
    [125]黄国樑等.船舶在波浪中操纵运动仿真[J].中国航海, 1998(2): 10-17.
    [126]楼连根,黄国樑,刘天威.双桨双舵船操纵运动拘束模型试验及模拟计算[J].中国造船, 1992(03): 37-46.
    [127]盛子寅.船舶的倒航操纵性[J].中国造船. 1980第03期: 60-72.
    [128]刘正江.船舶倒车停止性能的研究[硕士论文].大连:大连海事大学, 1987.
    [129]赵月林,古文贤.浅水中倒车停船性能预报及停船方法探讨[J].大连海事大学学报, 1991(04):354-360.
    [130]董国祥,陆惠生,汪希龄.紧急停船运动数学模型及其仿真研究[J].上海交通大学学报, 1996(05): 42-48.
    [131]孙洪波.螺旋桨逆转工况下船舶运动建模与仿真[硕士论文].大连海事大学, 2007
    [132]乐美龙.船舶操纵性预报与港航操纵运动仿真.上海:上海交通大学出版社, 2004.
    [133]杨玉祥,赵智邦.锚链静力计算的新方法.中国航海. 1983(1):41-47.
    [134]廖河树,蒋维清,叶宝聪.走锚预报数学模型.中国航海,1995(01): 1-8.
    [135] Zou Z.J. Calculation of the Three-dimensional Free-Surface Flow about a Yawed Ship in Shallow Water [J]. Ship Technology Research, 1995, Vol.42 (No.1), pp. 45–52.
    [136] Zou Z.J., Wu X.H. Hydrodynamic Forces on a Rudder behind Propeller with Free Surface Effects [J]. Journal of Wuhan Transportation University, 2000, vol.24 (3), PP. 704-708.
    [137]邱磊,邹早建,张谢东.船舶计算流体动力学可视化系统的SCFDVS开发.武汉理工大学学报, 2002, vol.26(5), pp. 563-566.
    [138]邱磊.船舶操纵相关粘性流及水动力计算[博士论文].武汉理工大学, 2003 .
    [139]许辉,邹早建.小水线面双体船粘性流数值模拟[J].船舶工程, 2004,(02), pp. 8-10.
    [140]王化明,邹早建.基于NURBS高阶面元法的有航速辐射问题数值解[A].第七届全国水动力学学术会议暨第十九届全国水动力学研讨会文集(下册)[C], 2005.
    [141]邹早建.船舶操纵性数值船池开发与应用. 2005年中国船舶工业发展论坛论文集, 2005年.
    [142]罗伟林,邹早建.应用支持向量机的船舶操纵运动响应模型辨识.船舶力学, 2007(06), pp. 832-838.
    [143]贾欣乐,杨盐生.船舶运动数学模型――机理建模与辨识建模[M].大连海事大学出版社.1999
    [144] Isherwood, R.M.. Wind Resistance of Merchant Ships. Trans. of RINA, 1972, Vol. 115, pp. 327-338.
    [145] Varyani, K.S, Barltrop, N., & Pham, X. Report on Wind Modelling of Towand Towed Vessel[R] 2004, SAFETOW Informal Report, Paris.
    [146] Varyani, K.S., Barltrop, N.D.P., & Pham, X.P. Fishtailing Instabilities in Emergency Towing of Disabled Tankers[C]. Proceedings of ISOPE 2005, No. 291_JSC_134, Korea.
    [147] Eda, H. Directional stability and control of ships in restricted channels[C]. Transactions SNAME, 1971, pp. 71-116.
    [148] Norrbin, N. Bank effects on a ship moving through a short dredged channel[C]. 10th ONR Symposium on Naval Hydrodynamics, Cambridge, MA, USA, 1974.
    [149] Norrbin, N. Bank clearance and optimal section shape for ship canals[C]. 26th PIANC International Navigation Congress, Brussels, Belgium, 1985, Section 1, Subject 1, pp. 167-178.
    [150] Fuehrer, M., and R?misch, K. Effects of modern ship traffic inland and ocean waterways and their structures[C], 24th International Navigation Congress, PIANC, Leningrad, Soviet Union, 1974, pp. 236-244.
    [151] Dand, I.W. Some measurements in interaction between ship models passing on parallel courses[C]. NMI R108, 1981
    [152] Ch’ng, P.W., Doctors, L.J., and Renilson, M.R. A method of calculating the ship bank interaction forces and moments in restricted water [J], International Shipbuilding Progress, 1993, Vol. 40, No. 412, pp. 7-23.
    [153] Vantorre, M. The effect of bank geometry on the simulation of ship Manoeuvring in restricted water [C], Mini Symposium on Ship Manoeuvrability, Fukuoka, Japan, 1995.
    [154] Li, D.Q., Ottoson, P. and Tr?gardh, P. Prediction of Bank Effects by Model Tests and Mathematical Model [C], MARSIM’03, Kanazawa, Japan.
    [155] Chen, H.C., Lin, W.M., and Hwang, W.Y. Validation and Application of Chimera RANSMethod for Ship-Ship Interactions in Shallow water and Restricted Waterway[C], 24th Symposium on Naval Hydrodynamics, Fukuoka, Japan ,2002,
    [156] Miao, Q., Xia, J., Chwang, A.T. and Duffy, J. Numerical Study of Bank Effects on Ship Traveling in a Channel[C], 8th International Conference on Numerical Hydrodynamics, Busan, Korea, 2003.
    [157] Dagget, L., Hewlett, J.C., Ankudinov, V. and Webb, D. Validation of Ship Motion Models in Shallow/Restricted Waters[C], MARSIM’03, Kanazawa, Japan.
    [158] Vantorre, M., Delefortrie, G., Eloot, K., and LaForce, E. Experimental Investigation of Ship-bank Interaction Forces[C], MARSIM’03, Kanazawa, Japan.
    [159] Newton, R.N. Some notes on interaction effects between ships close aboard in deep water [C], 1st Symposium on Naval Maneuverability, Washington, DC, USA, 1960, pp. 1-24,.
    [160] Müller, E. Untersuchungenüber die gegenseitige Kursbeeinflussung von Schiffen auf Binnenwasserstrassen[J], Schiff und Hafen, 19/6, 1967.
    [161] Remery, G.F.M. Mooring forces induced by passing ships[C], 6th Offshore Technology Conference, Paper OTC 2066, pp. 349-363, Houston, TX, USA, 1974.
    [162] Vantorre, M., Laforce, E., and Verzhbitskaya, E. Model test based formulations of ship ship interaction forces for simulation purposes[C], IMSF-28th Annual General Meeting, Genova, Italy, 2001.
    [163] Tuck, E.O., and Newman, J.N. Hydrodynamic interactions between ships[C], 10th Symposium on Naval Hydrodynamics, Cambridge, MA, USA, 1974, pp. 35-70.
    [164] Kijima, K. Manoeuvrability of ships in confined water[C], International Conference on Ship Manoeuvrability, London, United Kingdom, 1987, Paper No. 20.
    [165] Kaplan, P., and Sankaranarayanan, K. Hydrodynamic interaction of ships in shallow channels, including effects of asymmetry[C], International Conference on Ship Manoeuvrability, London, United Kingdom, Paper No. 21, 1987.
    [166] Brix, J. MTI-Stellungnahme zum Thema‘Aus-dem-Ruder-laufen’von Schiffen. Sog- und Gierbeeinflussungen bei Passiervorg?ngen, Hansa, 116. Jahrgang, Nr. 18, S. 1383-1388,1979.
    [167] Brix, J. (Editor). Manoeuvring Technical Manual, Seehafen Verlag GmbH, Hamburg, Germany, 1993.
    [168] Varyani, K., McGregor, R., and Wold, P. Empirical formulae to predict peak of forces and moments during interactions[C], Hydronav’99– Manoeuvring’99, Gdansk-Ostróda, Poland, pp. 338-349.
    [169] Liu, Z., and Zhang, X. Three Dimensional Calculation of Hydrodynamic Interaction Forces between Ships Based on BSpline[C], Proc. of New S-Tech 2002, 3rd Conference for New Ship and Marine Technology, Kobe, pp. 319-326.
    [170] Yasukawa, H. Bank effect on Ship Manoeuvrability in a Channel with Varying Width, Transactions of West-Japan Society of Naval Architects, n. 81,1990.
    [171] Lee, C., K. and Kijima, K. On the Nvigation safety Considering the Interaction Forces Between Ships in Confined Water[C], MARSIM’03, Kanazawa, Japan.
    [172] Varyani, K.,S., Krishnankutty, P. and Vantorre, M. Prediction of load on mooring ropes of a container ship due to the forces induced by a passing bulk carrier[C], MARSIM’03, Kanazawa, Japan.
    [173] Krishnankutty, P. and Varyani, K.S. Ship Form Effects on the Forces and Moment on a Stationary Ship Induced by a Passing Ship[C], MCMC, Girona,2003.
    [174] Krishnankutty, P. amd Varyani, K.S. Force on the mooring lines of a ship due to the hydrodynamic interaction effects of a passing ship [J], Journal of International Shipbuilding Progress, 2004, Vol 51, No.1.
    [175] Pinkster, J.A. and Ruijter, M.N. The influence of passing ships on ship restricted waters[C], OTC 2004, Huston, Texas, USA.
    [176] Tuck, E.O. Shallow water flow past slender bodies [J], Journal of Fluid Mechanics, 1966, Vol. 26, Part 1.
    [177] Tuck, E.O. Singkage and trim in shallow water of finite width [J], Schiffstechnik, 1967,Vol. 14, pp. 91-94.
    [178] Tuck, E.O., and Taylor, P.J. Shallow water problems in ship hydrodynamics[C], Proceedings 8th ONR Symposium on Naval Hydrodynamics, Pasadena, CA, USA, 1970, pp. 627-659.
    [179] Dand, I.W., and Ferguson, A. The squat of full ships in shallow water [J], The Naval Architect, No. 4, 1973, pp. 237-255.
    [180] PIANC/IAPH., Approach channels– A guide for design, Final report of the joint Working Group PIANC and IAPH, in cooperation with IMPA and IALA, Supplement to PIANC Bulletin No. 95 1997.
    [181] Soukhomel, G., and Zass, V. Abaissement du navire en marche, Navires, Ports et Chantiers, 1958, pp. 18-23.
    [182] Hooft, J.P. The behaviour of a ship in head waves at restricted water depth [J], International Shipbuilding Progress, No. 244, 1974, Vol. 21, pp. 367.
    [183] Dand, I.W. Port approach design– A survey of ship behaviour studies, National Ports Council, London, United Kingdom, 1975.
    [184] Huuska, O. On the evaluation of under keel clearances in Finnish waterways, Helsinki University of Technology, Ship Hydrodynamics Laboratory, Otaniemi, Finland, Report No. 9, 1976.
    [185] Eryuzlu, N., and Hausser, R. Experimental investigation into some aspects of large vessel navigation in restricted waterways[C], Proceedings of the Symposium of Aspects of Navigability of Constraint Waterways Including Harbour Entrances, 1978,Vol. 2, pp. 1-15.
    [186] Barrass, C.B. The phenomena of ship squat [J], International Shipbuilding Progress, No. 26, pp. 44-47, and Terra et Aqua, No. 18, 1979,pp. 16-21.
    [187] Barrass, C.B., A unified approach to squat calculations for ships, PIANC Bulletin, 1979, No. 32, pp. 3-10.
    [188] R?misch, K. Recommendations for dimensioning of harbour entrances, Wasserbauliche Mitteilungen der Technischen Universit?t Dresden, Heft 1, 1989, pp. 39-63.
    [189] Millward, A. A preliminary design method for the prediction of squat in shallow water[J], Marine Technology, 1990, Vol. 27, No. 1, pp. 10-19.
    [190] Millward, A. A comparison of the theoretical and empirical prediction of squat in shallow water[J], International Shipbuilding Progress, 1992, Vol. 39, No. 417, pp. 69-78.
    [191] Eryuzlu, N., Cao, Y., and d’Agnolo, F. Underkeel requirements for large vessels in shallow waterways[C], 28th International Navigation Congress, PIANC, Seville, Spain, Paper S II-2, 1994, pp. 17-25.
    [192] Kijima, K., and Higashi, E. The simple prediction method for squat[C], Workshop on Ship Squat, SNAME, Washington DC, USA, 1995.
    [193] Ankudinov, V., Daggett, L., Huvall, C., and Hewlett, C. Squat predictions for manoeuvring applications[C], Marine Simulation and Ship Manoeuvrability (Proceedings MARSIM’96), Copenhagen, pp. 467- 495, A.A. Balkema, Rotterdam/Brookfield.
    [194] Gourlay, T.P. and Tuck, E.O. The maximum sinkage of a ship[J], Journal of Ship Research, , 2001, v 45.
    [195] Chase, H.J. and Ruiz, A.L. A Theoretical study of the stopping of ships[C], SNAME Transactions, 1951, Vol.59, pp.811-83.
    [196] Hooft, J.P. The Steering of a Ship during the Stopping Manoeuvre [J], Journal of International Shipbuilding Progress (I.S.P.), 1970, Vol.17, No.190, pp.191-203.
    [197] Clarke, D. and Wellman, F. The Stopping of Large Tankers and the Feasibility of UsingAuxiliary Braking Devices, Transactions of RINA, 1971,Vol.113, pp.139-166.
    [198] Yoshimura, Y. and Nomoto, K. Modeling of Manoeuvring Behavior of Ships with a Propeller Idling, Boosting and Reversing [J], Journal of the Society of Naval Architects in Japan, 1978, Vol.144, pp.57-69.
    [199] Fujino, M. and Kirita, A. On the Manoeuvrability of Ships while Stopping by Adverse Rotation of Propeller (1st report)[J], Journal of the Kansai Society of Naval Architects in Japan, No.169, 1978, pp.57-70.
    [200] Fujino, M. and Kirita, A. On the Manoeuvrability of Ships while Stopping by Adverse Rotation of Propeller (2nd report)[J], Journal of the Kansai Society of Naval Architects in Japan, No.173, 1979, pp.45- 55.
    [201] Yoshimura, Y. Studies on the Stopping Ability of a Manoeuvring Standards [J], Journal of the Society of Naval Architects in Japan, 1994,Vol.176, pp.259-265.
    [202] Kim, S.Y. Review of the Prediction Formula for Stopping Ability in the IMO MSC/Circ.644[C], Proc. of KTTC Joint Workshop, Korea, 2002, pp.246-259.
    [203] Haraguchi, T. Prediction of the Stopping Distance[C], Proc. of Korea Towing Tank Conference (KTTC) Joint Workshop, Korea, 2002, pp.238-245.
    [204] Rhee, K.P., Sung, Y.J., Yeo, D.J. and Lee, J.M. A New Prediction Method for Assessing the Stopping Ability at Design Stage[C], Proc. of the 8th IMDC, Greece, 2003.
    [205] Takagi M. Effect of free rotation period of propulsion shafting and stopping efficiency [J], Journal of the JIME, 2003, Vol.38, No.10, pp.32-39.
    [206]武汉理工大学.苏通大桥船舶失控漂移对桥梁的影响研究报告[R].武汉,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700