基于等效源法和质点振速测量的近场声全息技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近场声全息(NAH)是一种先进的用于声源识别、定位以及空间声场可视化的噪声测量分析前沿技术。该技术已经用于船舶、汽车和家电等各个行业,也逐渐成为这些行业解决环境和产品噪声问题的强有力的工具。本文在深入分析NAH技术的发展历程和最新进展的基础上,从重建算法、正则化、测量方法和前处理四个关键环节对NAH技术中仍然存在的问题进行了深入的研究和探讨。在重建算法上,将基于等效源法(ESM)的NAH技术扩展到非闭合声源和移动声源辐射声场的重建和预测,拓宽了NAH技术的应用范围;在正则化技术上,为克服L曲线法的缺陷,提出一种更加稳定的正则化参数选取方法;在测量方面,将基于Microflown传感器的质点振速测量方法引入NAH技术中,以解决声源表面法向振速重建困难的问题,并分别基于空间Fourier变换和ESM算法对该测量方法的优越性进行了验证;在前处理技术方面,提出了分别基于空间Fourier变换和统计最优方法的两种新型单面声场分离技术,提高了测量效率和声场分离精度;对汽车车厢内部声场开展实验研究,基于前文提出的声场分离技术和质点振速测量方法实现了内声场中的声源识别和声场可视化,为NAH技术进一步应用于工程实际打下基础。本文具体研究内容主要围绕ESM(第二、三章)和质点振速测量方法(第四、五、六章)展开,结构安排如下:
     第一章从重建算法、误差分析、滤波和正则化技术、以及最新进展等几个方面详细地介绍了NAH技术的发展历程和研究现状,探讨了目前NAH技术中仍然存在的问题,并确立了本论文的主要研究内容。
     第二章从理论上将基于ESM的NAH技术扩展到非闭合声源情况,为基于ESM的Patch NAH技术的研究打下基础;首次提出一种基于ESM的移动声源辐射声场计算方法——移动等效源法;为解决任意形状移动声源的NAH重建和预测,首次提出基于移动等效源的NAH技术;数值仿真和对点激励固支板辐射声场的实验研究验证了所提出扩展理论的正确性和有效性。
     第三章在基于ESM的NAH技术基础上深入分析应用L曲线法有时出现正则化参数错误选择或不当选择的原因,提出一种新的正则化参数选取方法—| cosθ|曲线法,有效地解决了L曲线法存在的问题;对简支板和振动球的数值仿真,以及对固支板、箱体和双音箱三种不同声源的实验研究验证了所提出方法的有效性以及相比L曲线法的优越性。
     第四章简要介绍了Microflown质点振速传感器的原理及其在声学领域的应用;提出了基于质点振速测量的常规NAH和迭代Patch NAH技术,有效地解决了声源表面法向振速重建的困难;对质点振速—声压重建过程中的奇异性问题进行分析,推导出等效替代的传递因子,保证了质点振速测量在基于Fourier变换的NAH技术中的成功应用;数值仿真和对实际声源的实验研究验证了所提出方法的有效性和正确性,同时也表明质点振速更适合作为Patch NAH技术的输入量。
     第五章将质点振速测量方法引入基于ESM的常规NAH和Patch NAH技术,以解决任意形状声源表面法向振速重建困难的问题;分别基于声压和质点振速两种测量方法对NAH重建过程进行了误差灵敏度分析,从理论上说明以质点振速为输入量的基于ESM的NAH技术的重建稳定性要好于声压测量;利用质点振速的矢量特性,提出基于声压—质点振速测量的p-u声场重建方法,用于消除反射声或消除与声源关于全息面处于对称位置的干扰声源的影响;数值仿真和对不同声源的实验研究验证了质点振速测量在基于ESM的NAH技术中的优越性,也验证了p-u声场重建方法的可行性和有效性。
     第六章分析了基于Fourier变换的双面和单面声场分离技术中存在的问题;提出了基于Fourier变换的修正的单面声场分离方法;为进一步减小Fourier变换算法引入的各种误差,提出了基于统计最优NAH的新型单面声场分离技术,提高了测量效率和声场分离精度;数值仿真和多种情况下的实验研究验证了所提出的两种分离方法的有效性和正确性,并通过互相比较说明了各自的优缺点。
     第七章以汽车车厢内声场为例进行了实验研究,采用质点振速测量方法、基于ESM的Patch NAH和声场分离技术在车内声场中成功地实现了声源识别和声场可视化,为NAH技术在封闭空间内声场中的应用打下基础,对于NAH技术的进一步推广具有重要的意义。
     第八章总结了本文的主要研究成果,提出了需要进一步研究和解决的问题。
Nearfield acoustic holography (NAH), which can be used to identify sound sources and to visualize sound field, is an advanced technique for the analysis and measurement of sound. It has been introduced into the industries of ship, vehicle, and home facility, and gradually becomes one of the most powerful tools for dealing with the noise problems of products of these industries. In this dissertation, after reviewing the development and the recent achievement detailedly, NAH technique was further investigated in view of four key processes, including reconstruction algorithm, regularization, measurement, and preprocess. The investigation on the reconstruction algorithm is that the NAH based on the equivalent source method (ESM) was extended to the application in unclosed sound sources, and in moving sound sources. In the field of regularization, a stabler method for the choice of regularization parameter was proposed in order to overcome the limitation of the L-curve method. A new measurement method using Microflown transducers was introduced into NAH, by which the particle velocity was measured instead of the pressure, and better reconstruction of normal velocities on the surface of sound sources could be obtained. Besides, the superiority of particle velocity measurement in the NAH was examined based on the Fourier transform and on the ESM, respectively. Two novel techniques for sound field separation were proposed based on the Fourier transform and on the statistically optimized method, respectively, by which the measurement becomes more effective, and the separation precision becomes higher. Some experimental investigations were carried out with the inner field of a car based on the proposed methods, such as sound field separation and particle velocity measurement. The results demonstrated that the NAH technique was implemented successfully in the inner field. The main contents of the dissertation can be divided into two parts, one (Chapters 2 and 3) concerned the NAH based on the ESM, whereas the other (Chapters 4, 5 and 6) concerned the NAH based on the measurement of particle velocity. The detailed arrangement of the dissertation is summarized as follows:
     In chapter one, the development history and the current status of NAH were reviewed detailedly from the points of reconstruction algorithms, error analysis, filter and regularization, and recent achievement. Then problems still existed in NAH were discussed, and the main research contents of this dissertation were determined.
     In chapter two, the NAH technique based on the ESM was extended to the case of unclosed sound sources, which provides a basis for the Patch NAH based on the ESM. A moving ESM was firstly proposed to calculate the sound field radiated from moving sources with arbitrary shape. By applying the moving ESM to NAH, the reconstruction and prediction of the field generated by arbitrarily shaped sources were realized. The validity of the proposed theory in this chapter was demonstrated by numerical simulation and by the experiment carried out with a clamped plate excited at its centre.
     In chapter three, the reason why the regularization parameter was wrong or improperly chosen in NAH based on the ESM, was deeply analyzed. Then a new method, called | cosθ| curve, was proposed for the choice of regularization parameter, which dealt with the limitation of the L-curve method. The validity and the superiority of the proposed method was proved by numerical simulations of simply supported plate and oscillating sphere, and by experiments carried out with clamped plate, box, and double speakers.
     In chapter four, the particle velocity transducer named Microflown was simply introduced from its principle and its application in the field of acoustics. In order to improve the reconstruction of normal velocities on the surface of sound sources, both conventional and Patch NAH techniques were proposed based on the measurement of particle velocity. The singularity in the process of velocity-pressure reconstruction was analyzed first, and then was eliminated by a deduced equivalent formulation, which guaranteed the successful application of particle velocity measurement to the NAH based on Fourier transform. The correctness and the validity of proposed method were verified by the numerical simulation as well as the experiment, and a conclusion that the particle velocity is more suitable as an input of Patch NAH was also demonstrated.
     In chapter five, the measurement of particle velocity was introduced into the conventional and the Patch NAH based on the ESM to enhance the reconstruction precision of normal velocities on the surface of sound sources with arbitrary shape. By error sensitivity analysis, it was shown in theory that NAH based on the ESM is stabler when it was from particle velocity measurement. Because the particle velocity is a vector, a p-u method can be obtained by combined measurement of pressure and particle velocity, which can eliminate the reflection and the influence from the disturbed sources on the opposite side of the holographic surface. The conclusions in this chapter were demonstrated by numerical simulations and experiments carried out with different actual sources.
     In chapter six, the existed problem in the current sound field separation techniques was analyzed first, and then an improved separation method was proposed based on the Fourier transform and on the measurement in a single surface. In order to reduce the errors from the Fourier algorithm, a new separation technique was further proposed based on the statistically optimized NAH, by which the measurement efficiency and the separation precision were enhanced. The validity and correctness of the two proposed separation techniques were verified by numerical simulation and experiments in different cases. Finally, the advantage and the disadvantage of these two proposed methods were illuminated through the comparison between them.
     In chapter seven, a practical experiment was carried out in the inner field of a car. The methods of particle velocity measurement, the sound field separation, and the Patch NAH based on the ESM were successfully applied to identify the noise source and to visualize the sound field in the inner field. The result of the experiment provides a basis for the application of NAH to the inner sound field, and it is significant to the spread of NAH.
     In chapter eight, all the investigations in this dissertation were summarized, and the topics studied further in the future were proposed.
引文
[1] Gabor D. A new microscope principle. Nature, 1948, 161:777~779
    [2] Leith E N, Upatnieks J. Photography by Laser. Sci. Am., 1965, 212(6): 24~35
    [3] Ei-sum H M A, Kirkpatrickp. Mrciroscopy by reconstructed wave fronts. Phys. Rev., 1952, 85(4): 763~771
    [4] Thurstone F L. Ultrasound holography and visual reconstruction. Proc. Symp. Biomed. Eng., 1966, 1:12~21
    [5] Metherell Hussein A F, Elsum H M A, et al. Introduction to acoustical holography. J. Acoust. Soc. Am., 1967, 42(4): 733~742
    [6] Graham T S. Long-wavelength acoustic holography. PhD. Thesis, The Pennsylvania State University, 1969
    [7] Hildebrand B P, Brenden B B. An introduction to acoustical holography. Plenum Press, New York, 1972
    [8] Watson E E. Detection of sound radiation from plates using long-wavelength acoustic holography. PhD. Thesis, The Pennsylvania State University, 1971
    [9] Watson E E. Detection of acoustic sources using long-wavelength acoustic holography. J. Acoust. Soc. Am., 1973, 54(3): 685~691
    [10] Goodman J W, Lawrence R W. Digital image formation from electronically detected holograms. Appl. Phys. Lett. 1967, 11: 77~79
    [11] Gabor D. Closing comments for the first International Symposium on Acoustical Holography. Acoustical Holography, VolumeⅠ,Plenum Press, New York, 1967
    [12] Van Rooy D L. Digital ultrasonic reconstruction in the near field. IBM Scientific Center, Houston, 1971
    [13] Cohen R L. Digital wavefront reconstruction for acoustical applications. PhD. Thesis, The Pennsylvania State University, 1979
    [14] Bowen D J. Development and implementation of nearfield acoustical holography for wideband sources. PhD. Thesis, The Pennsylvania State University, 1986
    [15] Williams E G, Maynard J D, Skudrzyk E. Sound reconstruction using a microphone array. J. Acoust. Soc. Am., 1980, 68(1): 340~344
    [16] Williams E G., Maynard J D. Holographic imaging without wavelength resolution limit. Phys. Rev. Letts., 1980,45: 554~557
    [17] Williams E G., Maynard J D. Numerical evaluation of the Rayleigh integral for planar radiators using the FFT. J. Acoust. Soc. Am., 1982, 72(6): 2020~2030
    [18] Stepanishen P R, Benjamin K C. Forward and backward projection of acoustic fields using FFT methods. J. Acoust. Soc. Am., 1982, 71(4): 803~812
    [19] Maynard J D, Williams E G, Lee Y. Near-field acoustic holography: I. theory of generalized holography and development of NAH. J. Acoust. Soc. Am., 1985,78(4): 1395~1413
    [20] Williams E G, Dardy H D. Generalized near-field acoustical holography for cylindrical geometry: theory and experiment. J. Acoust. Soc. Am., 1987, 81(2): 389~407
    [21] Stepanishen P R, Chen H W. Nearfield pressures and surface intensity for cylindrical vibrators. J. Acoust. Soc. Am., 1984, 76(3): 942~948
    [22] Canel S M, Chassaugnon C. Radial extrapolation of wave fields by spectral methods. J. Acoust. Soc. Am., 1984, 76(6): 1823~1828
    [23] Lee J C. Spherical acoustical holography of low frequency noise sources. Applied Acoustics, 1996, 48(1): 85~95
    [24] Devries L A, Bolton J S, Lee J C. Acoustical holography in spherical coordinates for noise sources identification. Nois-Con94, Yokohama (Japan), 1994: 935~940
    [25]何祚镛.声学逆问题——声全息变换技术及源特性判断.物理学进展, 1996, 16(3,4): 600~612
    [26]何元安,何祚镛.用声场空间变换识别水下噪声源.应用声学, 2000, 19(2): 9~13
    [27] Loyau T, Pascal J C. Broadband acoustic holography reconstruction from acoustic intensity measurement I: principle of the method. J. Acoust. Soc. Am, 1988, 84(5): 1744~1750
    [28] Lee J C. Spherical surface vibration identification by spherical holography and acoustic intensity. J. Marine Science Technology. 1996, 4(1): 11~15
    [29] Laville F, Sidki M, Nicolas J. Spherical acoustical holography using sound intensity measurements: theory and simulation. Acoustica, 1992, 76:193~199
    [30] Williams E G, Houston B H, Bucaro J A. Broadband near-field acoustical holography for vibrating cylinders. J. Acoust. Soc. Am., 1989, 85(2): 674~679
    [31]何元安,何祚镛,姜军.基于声强测量的近场声全息及其在水下声源辐射分析的应用.声学学报, 1996, 21(4): 297~305
    [32] Kwon H S, Kim Y H. Moving frame technique for planar acoustic holography. J. Acoust. Soc. Am., 1998, 103(4): 1734~1741
    [33] Park S H, Kim Y H. An improved moving frame acoustic holography for coherent band- limited noise. J. Acoust. Soc. Am., 1998, 104(4): 3179~3189
    [34] Park S H, Kim Y H. Effects of the moving noise sources on the sound visualization by means ofmoving frame acoustic holography. J. Acoust. Soc. Am, 2000, 108(6): 2719~2728
    [35] Ruhala R J, Swanson D C. Planar near-field acoustical holography in a moving medium. J. Acoust. Soc. Am, 2002, 112(2): 420~429
    [36]杨殿阁,郑四发,罗禹贡等.运动声源的声全息识别方法.声学学报, 2002, 27 (4): 357~362
    [37] Hald J. STSF- a unique technique for scan-based near-field acoustic holography with restriction on coherence. B&K Technical Review, 1989,1:1~49
    [38] Kevin B G, Hald J. STFT-practical instrumention and application. B&K Technical Review, 1989, 2: 1~27
    [39] Hallman D, Bolton J S. Multi-reference nearfield acoustical holography. Proceedings of Inter-noise92, Toronto, Canada, July, 1992: 1165~1170
    [40] Kwon H S, Bolton J S. Partial field decomposition in nearfield acoustical holography by the use of singular value decomposition and partial coherence procedures. Proceedings of Noise-Con98, 1998: 649~654
    [41] Tamlinson M A. Partial source discrimination in near field acoustic holography. Applied Acoustics, 1999,57: 243~261
    [42] Kwon H S, Kim Y J, Boston J S. Compensation for source nonstationary in multireference, scan-based near-field acoustical holography. J. Acoust. Soc. Am., 2003, 113(1): 360~368
    [43] Nam K U, Kim Y H. Visualization of multiple incoherent sources by the backward prediction of near-field acoustic holography. J. Acoust. Soc. Am., 2001, 109(5): 1808~1816
    [44] Nam K U, Kim Y H. A partial field decomposition algorithm and its examples for near-field acoustic holography. J. Acoust. Soc. Am., 2004, 116(1): 172~185
    [45] Salin B M, Turchin V I. Holographic reconstruction of wave fields with arbitrary time dependence. Sov. Phys. Acoust., 1992, 38(1): 77~79
    [46] Hald J. Non-stationary STSF. B&K Technical Review, 2000, 1: 1~36
    [47] Rochefoucauld O L, Melon M, Garcia A. Time domain holography: Forward projection of simulated and measured sound pressure fields. J. Acoust. Soc. Am., 2004, 116(1): 142~153
    [48] Grulier V, Paillasseur S, et al. Forward propagation of time evolving acoustic pressure: Formulation and investigation of the impulse response in time-wavenumber domain. J. Acoust. Soc. Am., 2009, 126(5): 2367~2378
    [49] Park C S, Kim Y H. Time domain visualization using acoustic holography implemented by temporal and spatial complex envelope. J. Acoust. Soc. Am., 2009, 126(4): 1659~1662
    [50] Wan Q, Jiang W K. Near field acoustic holography (NAH) theory for cyclostationary sound field and its application. J. Sound. Vib., 2006, 290: 956~967
    [51] Williams E G, Dardy H D. Near field acoustical holography using an underwater, auomatedscanner. J. Acoust. Soc. Am, 1985, 78(2): 789~798
    [52] Mann J A III, Pascal J C. Locating noise sources on an industrial air compressor using broadband acoustical holography from intensity measurements (BAHIM). Noise Control Engineering Journal, 1992, 39(1): 3~12
    [53] Hallman D L, Boston J S, Dumbacher S M, et al. Acoustic source location in vehicle cabins and free-field with nearfield acoustic holography via acoustic arrays, Proceedings of the 19th International seminar on Modal Analysis, Leuven, Belgium, September, 1994
    [54] Hallman D L, Boston J S, et al. Airborne sound Transmission into vehicle cabins through Door-Like structure, Proceedings of The 13th International Modal Analysis Conference, Nashville, Tennessee, 1995
    [55] Ruhala R J, Burroughs C B. Application of near-field acoustical holography to tire/pavement interaction noise emissions, SAE972047, Proceeding of the 1997 SAE Noise and Vibration Conference, 1997, 1379~1406
    [56] Ruhala R J, Burroughs C B. Identification of sources of tire/pavement interaction noise. J. Acoust. Soc. Am., 1998, 103(5): 2919(A)
    [57] Kim Y H, Kim S M. An analysis of the sound radiation characteristics of the King Song-Dok bell using cylinder acoustic holography. J. Acoust. Soc. Korea, 1997, 16(4): 94~100
    [58] Lee M, Bolton J S, Mongeau L. Application of cylindrical near-field acoustical holography to the visualization of aero-acoustic sources. J. Acoust. Soc. Am. 2003, 114 (2): 842~858
    [59]程建政,张德俊.编磬振动特性的声全息研究.声学学报, 2000, 25(1): 87~92
    [60] Veronesi W A, Maynard J D. Digital holography reconstruction of sources with arbitrarily shaped surfaces. J. Acoust. Soc. Am., 1989, 85(2): 588~598
    [61] Kim G T, Lee B T. 3-D sound source reconstruction and field reproduction using Helmholtz integral equation. J. Sound. Vib., 1990, 136: 245~261
    [62] Borgiotti G V. Conformal generalized near-field acoustic holography for axi-symmetries. J. Acoust. Soc. Am., 1990, 88(1): 199~209
    [63] Sarkissian A. Near-field acoustic holography for an axi-symmetric geometry: A new formulation. J. Acoust. Soc. Am., 1990, 88(2): 961~966
    [64] Bai M R. Application of BEM (boundary element method) based acoustic holography to radiation analysis. J. Acoust. Soc. Am., 1992, 92(2): 533~549
    [65] Sarkissian A. Reconstruction of the surface acoustic field on radiating structures. J. Acoust. Soc. Am., 1992, 92(2): 825~830
    [66] Kim B K, Ih J G. On the reconstruction of the vibro-acoustic field over the surface enclosing an interior space using the boundary element method. J. Acoust. Soc. Am, 1996, 105(5):3003~3016
    [67] Ih J G, Kang S C, Kim S J, et al. Reconstruction of the vibro-acoustic field on the surface of the refrigerator compressor by using the BEM-based acoustic holography. Proceedings of Int. Compressor Eng. Conference, 1998, 525~529
    [68] Kang S C, Ih J G. The use of partially measured source data in near-field acoustical holography based on BEM. J. Acoust. Soc. Am, 2000, 107(5): 2472~2479
    [69] Schuhmacher A. Sound source reconstruction using inverse sound field calculations. Ph.D. Thesis, Technical University of Denmark, 2000
    [70] Zhang Z, Vlahopoulos N, Raveendra S T, et al. A computational acoustic field reconstruction process based on an indirect boundary element formulation. J. Acoust. Soc. Am. 2008, 108, 2167~2178
    [71] Kang S C, Ih J G. Use of nonsingular boundary integral formulation for reducing errors due to near-field measurements in the boundary element method based near-field acoustic holography. J. Acoust. Soc. Am, 2001, 109(4): 1320~1328
    [72] Williams E G, Houston B H. Interior near-field acoustical holography in flight. J. Acoust. Soc. Am, 2000, 108(4): 1451~1463
    [73] DeLillo T K, Isakov V, Valdivia N, et al. The detection of the source of acoustical noise in two dimensions. SIAM J. Appl. Math. 2001, 61(6): 2104~2121
    [74] DeLillo T K, Isakov V, Valdivia N, et al. The detection of surface vibrations from interior acoustical pressure. Inverse Problem, 2003, 19(3) : 507~524
    [75] Valdivia N, Williams E G. Implicit methods of solution to integral formulations in boundary element method based nearfield acoustic holography. J. Acoust. Soc. Am, 2004, 116(3): 1559~1572
    [76] Chappell D J, Harris P J. A Burton–Miller inverse boundary element method for near-field acoustic holography. J. Acoust. Soc. Am, 2009, 126(1): 149~157
    [77]暴雪梅,何祚镛.目标散射场全息重建方法研究.声学学报, 2000, 25(3): 254~264
    [78] Schenck H A. Improved integral formulation for acoustic radiation problem. J. Acoust. Soc. Am. 1968, 44: 41~58
    [79] Burton A J, Miller G F. The application of integral equation method to the numerical solution of some exterior boundary value problems. Proc. R. Soc. London, Ser. A, 1971, 323: 201~210
    [80]刘钊,陈心昭.结构声辐射分析的全特解场边界元方法.振动工程学报, 1996, 9(4): 341~347
    [81]毕传兴,陈剑,陈心昭等.分布源边界点在声场全息重建和预测中的应用.机械工程学报, 2003, 39(8): 81~85
    [82]毕传兴,陈剑,陈心昭.基于分布源边界点法的多源声场全息重建和预测技术理论研究.中国科学(E辑), 2004, 34(1): 111~120.
    [83] Bi C X, Chen J, Chen X Z. Reconstruction and prediction of multi-source acoustic field in the distributed source boundary point method based nearfield acoustic holography, SCIENCE IN CHINA (Series E), 2004, 47(2): 136~148
    [84]毕传兴,陈剑,陈心昭.半自由场的全息重建和预测实验研究.物理学报, 2004, 53(12): 4268~4276
    [85]李卫兵,陈剑,毕传兴等.基于分布源边界点法的声散射场全息重建和预测理论. 2005, 23(4): 384-388
    [86] Koopmann G H, Song L, Fahnline J. A method for computing acoustic fields based on the principle of wave superposition. J. Acoust. Soc. Am., 1989, 86(5): 2433~2438
    [87] Song L, Koopmann G H, Fahnline J. Numerical errors associated with the method of superposition for computing acoustic fields. J. Acoust. Soc. Am., 1991, 89(6): 2625~2633
    [88] Jeans R, Mathews I C. The wave superposition method as a robust technique for computing acoustic fields. J. Acoust. Soc. Am. 1992, 92, 1156~1166
    [89] Heckl M. Remarks on the calculation of sound radiation using the method of spherical wave synthesis. Acustica, 1989, 68: 251~257
    [90] Cemer L, Wang M. Sycthesis of spherical wave fields to generate the sound radiated from bodies of arbitrary shape, its realization by calculation and experiment. Acustica, 1988, 65: 53~74
    [91] Miller R D, Thomas E T, Huang H, et al. A comparison between the boundary element method and the wave superposition approach for the analysis of the scattered fields from rigid bodies and elastic shells. J. Acoust. Soc. Am., 1991, 89(5): 2185~2196
    [92] Ochmann M. The source simulation technique for acoustic radiation problems. Acustica, 1995, 81: 512~527
    [93] Bobrovnitskii Y I, Tomilina T M. General properties and fundamental errors of the method of equivalent sources. Acoust. Phys., 1995, 41: 649~660
    [94] Johnson M E, Elliott S J, et al. An equivalent source technique for calculating the sound field inside an enclosure containing scattering objects. J. Acoust. Soc. Am., 1998, 104(2): 1221~1231
    [95]于飞,陈剑,李卫兵等.一种稳健的全波数空间声场重构技术.中国科学(E辑), 2004, 34 (9): 1069~1080
    [96] Yu F, Chen J, Chen X Z. A robust technique to reconstruct sound field for all wave number. Science In China (Ser. E), 2004, 34(5): 33~46
    [97] Sarkissian A. Extension of measurement surface in near-field acoustic holography. J. Acoust.Soc. Am., 2004, 105(4): 1593~1596
    [98]于飞,陈剑,李卫兵等.腔体内三维声场重构和预测的波叠加方法.自然科学进展, 2005, 15(1): 90~96
    [99]薛玮飞,陈进,李加庆.机械噪声源识别的混合波叠加法.中国机械工程, 2006, 23: 2503~2507
    [100]张海滨,蒋伟康,万泉.适用于循环平稳声场的基于波叠加法的近场声全息技术.物理学报, 2008, 57(1): 314~321
    [101] Pinho M E V. On the use of the equivalent source method for nearfield acoustic holography. ABCM Symposium Series in Mechatronics, 2004, 1: 590~599
    [102]毕传兴,陈心昭,陈剑等.基于等效源法的声全息技术.中国科学(E辑), 2005, 35(5): 535~548
    [103] Bi C X, Chen X Z, Chen J. Nearfield acoustic holography based on the equivalent source method, Science in China (Series E), 2005, 48: 338~353
    [104] Valdivia N P, Williams E G. Study of the comparison of the methods of equivalent sources and boundary element methods for near-field acoustic holography. J. Acoust. Soc. Am., 2006, 120(6): 3694~3705
    [105] Wang Z, Wu S F. Helmholtz Equation-Least Method for reconstructing the acoustic pressure field. J. Acoust. Soc. Am., 1997, 102(4): 2020~2032
    [106] Wu S F, Yu J. Reconstructing interior acoustic pressure fields via Helmholtz Equation-least Square method. J. Acoust. Soc. Am., 1998, 104(4): 2054~2060
    [107] Rayess N, Wu S F. Experimental validation of the HELS method for reconstructing acoustic radiation from a complex vibrating structure. J. Acoust. Soc. Am., 2000, 107: 2955~2964
    [108] Wu S F, Rayess N, Zhao X. Visualization of acoustic radiation from a vibrating bowling ball. J. Acoust. Soc. Am., 2001, 109(6): 2771~2779
    [109] Wu S F, Zhao X. Combined Helmholtz equation-least method for reconstructing the acoustic radiation from arbitrarily shaped objects. J. Acoust. Soc. Am., 2002, 112(1): 179~188
    [110] Wu S F. Hybrid near-field acoustic holography. J. Acoust. Soc. Am., 2004, 115(1): 207~217
    [111] Zhao X, Wu S F. Reconstruction of vibroacoustic fields in half-space by using hybrid near-field acoustical holography. J. Acoust. Soc. Am., 2005, 117(2): 555~565
    [112] Wu S F, Lu H, Bajwa M S. Reconstruction of transient acoustic radiation from a sphere. J. Acoust. Soc. Am., 2005, 117(4): 2065~2077
    [113] Jeon I Y, Ih J G. On the holographic reconstruction of vibroacoustic fields using equivalent sources and inverse boundary element method. J. Acoust. Soc. Am., 2005, 118(6): 3473~3482
    [114] Semenova T, Wu S F. On the choice of expansion functions in the Helmholtz equationleast-squares method. J. Acoust. Soc. Am., 2005, 117(2): 701~710
    [115] Lu H C, Wu S F. Reconstruction of vibroacoustic responses of a highly nonspherical structure using Helmholtz equation least-squares method. J. Acoust. Soc. Am., 2009, 125(3): 1538~1548
    [116] Veronesi W A, Maynard J D. Near-field acoustic holography (NAH) II. holographic recon- struction algorithms and computer implemention. J. Acoust. Soc. Am., 1987, 81(5): 1307~ 1322
    [117] Fleischer H, Axelrad U. Restoring an acoustic source from pressure data using Wiener filtering. Acoustica, 1986, 60: 172~175
    [118]张德俊.近场声全息成像方法的研究.声学学报, 1992, 17(6): 436~445
    [119] Hald J. Reduction of spatial windowing effects in acoustic holography. Nois-Con94, Yoko- hama (Japan), 1994: 1887~1890
    [120] Li J F, Pascal J C, Carles C. A new k-space optimal filter for acoustic holography. 3th Intnational Congress on Air and Structure Borne Sound and Vibration. Montreal(Canada), 1994, 1059~1066
    [121] Kwon H S, Kim Y H. Minimization of bias error due to windows in planar acoustic holography using a minimum error window. J. Acoust. Soc. Am., 1995, 98: 2104~2111
    [122] Bai M R. Acoustical source characterization by using recursive Wiener filtering. J. Acoust. Soc. Am. 1995, 97: 2657~2663
    [123] Nam K U, Kim Y H. Errors due to sensor and position mismatch in planar acoustic holography. J. Acoust. Soc. Am., 1999, 106(4): 1655~1665
    [124] Carroll G P. The effect of sensor placement errors on cylindrical near-field acoustic holography. J. Acoust. Soc. Am., 1999, 105(4): 2269~2276
    [125]陈晓东.近场平面声全息的测量和重构误差研究.合肥工业大学博士学位论文. 2004.
    [126] Thomas J H, Pascal J C. Wavelet preprocessing for lessening truncation effects in nearfield acoustical holography. J. Acoust. Soc. Am., 2005, 118(2): 851~860
    [127] Scholte R, Lopez I, et al. Wavenumber domain regularization for near-field acoustic holography by means of modified filter functions and cut-off and slope iteration. ACTA ACUSTICA UNITED WITH ACUSTICA, 2008, 94: 339~348
    [128] Scholte R, Lopez I, et al. Experimental application of high precision k-space filters and stopping rules for fully automated near-field acoustical holography. Int. J. Acoust. Vib., 2008, 13(4): 157~164
    [129] Williams E G. Regularization methods for near-field acoustical holography. J. Acoust. Soc. Am., 2001, 110: 1976~1988
    [130] Photiads D M. The relationship of singular value decomposition to wave-vector filtering in sound radiation problems. J. Acoust. Soc. Am., 1990, 88(2): 1152~1159
    [131] Borgiotti G V. The power radiated by a vibrating body in an acoustic field and its determination from boundary measurements. J. Acoust. Soc. Am., 1990, 88(4): 1884~1893
    [132] Nelson P A, Yoon S H. Estimation of acoustic source strength by inverse methods: Part I, conditioning of the inverse problem. J. Sound Vib., 2000, 233(4): 643~668
    [133] Yoon S H, Nelson P A. Estimation of acoustic source strength by inverse methods: Part II, investigation of methods for choosing regularization parameters. J. Sound Vib., 2000, 233(4): 665~701
    [134] Bi C X, ChenX Z,et al. Reconstruction stability of nearfield acoustic holography. Chinese Journal of Mechanical Engineering, 2005, 18(4): 504~509
    [135] Valdivia N P, Williams E G. Krylov subspace iterative methods for boundary element method based near-field acoustic holography. J. Acoust. Soc. Am., 2005, 117(2): 711~724
    [136] Bi C X, Chen X Z, Chen J. Landweber iterative regularization for nearfield acoustic holography. Chinese Science Bulletin, 2006, 51(11): 1374~1380
    [137] Williams E G. Fourier acoustics: Sound radiation and nearfield acoustic holography. Academic Press, London, 1999
    [138] Williams E G,Houston B H,Herdic P C. Fast Fourier transform and singular value decomposition formulations for patch nearfield acoustical holography. J. Acoust. Soc. Am.,2003, 114(3): 1322 ~1333
    [139] Saijyou K,Yoshikawa S. Reduction methods of the reconstruction error for large-scale implementation of near-field acoustical holography. J. Acoust. Soc. Am., 2001, 110(4): 2007 ~2023
    [140] Williams E G. Continuation of acoustic near fields. J. Acoust. Soc. Am., 2003, 113(3): 1273~1281
    [141] Williams E G. Approaches to Patch NAH. Inter-Noise 2003, Jeju (Korea), 2003, 2187~2194
    [142] Saijyou K. Regularization method of patch nearfield acoustical holography for planar geometry. Inter- Noise 2003, Jeju (Korea), 2003, 2195~2202
    [143] Saijyou K, Uchida H. Data extrapolation method for boundary element method-based near-field acoustical holography. J. Acoust. Soc. Am., 2004, 115(2):785-796
    [144] Lee M Y, Bolton J S. Patch near-field acoustical holography in cylindrical geometry. J. Acoust. Soc. Am., 2005, 118(6): 3721-3732
    [145] Lee M Y, Bolton J S. Reconstruction of source distributions from sound pressures measured over discontinuous regions: Multipatch holography and interpolation. J. Acoust. Soc. Am., 1992, 91(1): 2086~2096
    [146]徐亮,毕传兴,陈剑,陈心昭.基于波数域外推方法的近场声全息.机械工程学报, 2007,43(9): 84-90
    [147] Lee M Y, Bolton J S. A one-step patch near-field acoustical holography procedure. J. Acoust. Soc. Am., 2007, 122(3): 1662~1670
    [148] Bissinger G, Wlilliams E G, Valdivia N P. Violin f-hole contribution to far-field radiation via patch near-field acoustical holography. J. Acoust. Soc. Am., 2007, 121(6): 3899~3906
    [149] Xu L, Bi C X, Chen X Z, et al. Resolution enhancement of nearfield acoustic holography by interpolation using band-limited signal restoration method. Chinese Science Bulletin, 2008, 53(20):3142~3150
    [150] Valdivia N P, Williams E G, Herdic P C. Approximations of inverse boundary element methods with partial measurements of the pressure field. J. Acoust. Soc. Am., 2008, 123(1): 109~120
    [151] Scholte R, Lopez I, et al. Truncated aperture extrapolation for Fourier-based near-field acoustic holography by means of border-padding. J. Acoust. Soc. Am, 2009, 125(6): 3844~3854
    [152] Steiner R, Hald J. Near-field acoustical holography without the errors and limitations caused by the use of spatial DFT. Int. J. Acoust. Vib., 2001, 6: 83~89
    [153] Hald J. Near-field acoustical holography with arrays smaller than the sound source. Proceedings of ICA, 2001
    [154] Hald J. Patch near-field acoustical holography using a new statistically optimal method. Inter- Noise 2003, Jeju (Korea), 2003: 2203~2210
    [155] Cho Y T, Bolton J S, Hald J. Souce visualization by using statistically optimized near- field acoustical holography in cylindrical coordinates. J. Acoust. Soc. Am., 2005, 118(4): 2355~2364
    [156] Pascal J C, Paillasseur S, Thomas J H. Patch near-field acoustic holography: Regularized extension and statistically optimized methods. J. Acoust. Soc. Am., 2009, 126(3): 1264~1268
    [157] Jeon I Y, Ih J G, Kim B K. BEM-based holographic reconstruction with additional field information. Proceedings of the 32 International Congress and Exposition on Noise Control Engineering, 2003, 2731~2738
    [158] Sarkissian A. Method of superposition applied to patch near-field acoustic holography. J. Acoust. Soc. Am., 2005, 118(2): 671~678
    [159]徐亮,毕传兴,陈剑,陈心昭.基于波叠加法的Patch近场声全息及其实验研究.物理学报, 2007, 56(5): 2776~2783
    [160]毕传兴,陈心昭,徐亮等.基于等效源法的Patch近场声全息.中国科学(E辑), 2007, 37(9): 1205~1213
    [161] Pachner J. Investigation of scalar wave fields by means of instantaneous directivity patterns. J. Acoust. Soc. Am., 1956, 28(1): 90~92
    [162] Weinreich G, Arnold E B. Method for measuring acoustic radiation fields. J. Acoust. Soc. Am.,1980, 68(2): 404~411
    [163] Frisk G V, Oppenheim A V, Martinez D R. A technique for measuring the plane-wave reflection coefficient of the ocean bottom. J. Acoust. Soc. Am., 1980, 68(2): 602~612
    [164] Tamura M. Spatial Fourier-transform method for measuring reflection coefficients at oblique incidence. I. Theory and numerical examples. J. Acoust. Soc. Am., 1990, 88(5): 2259~2264
    [165] Tamura M, Allard J F, Lafarge D. Spatial Fourier-transform method for measuring reflection coefficients at oblique incidence. II. Experimental results. J. Acoust. Soc. Am., 1995, 97(4): 2255~2262
    [166] Cheng M T, Mann III J A, Pate A. Wave-number domain separation of the incident and scattered sound field in Cartesian and cylindrical coordinates. J. Acoust. Soc. Am., 1995, 97(4): 2293~2303
    [167]于飞,陈剑,陈心昭.双全息面分离声场技术及其在声全息中的应用.声学学报, 2003, 28(5): 385~389
    [168] Yu F, Chen J, Li W B, Chen X Z. Sound field separation technique and its applications in near-field acoustic holography. Acta Phys. Sin., 2005, 54(2): 789~797
    [169] Hald J. Patch holography in cabin environments using a two-layer handheld array with an extended SONAH algorithm. Acta Acustica United with Acustica, 2006, 92(1): S24
    [170] Bi C X, Chen X Z, Chen J. Sound field separation technique based on equivalent source method and its application in nearfield acoustic holography. J. Acoust. Soc. Am., 2008, 123(3): 1472~1478
    [171]于飞,陈心昭,陈剑.单全息面分离声场技术及其在声全息中的应用.机械工程学报, 2004, 39(2): 112~116
    [172]毕传兴.基于分布源边界点法的近场声全息理论与实验研究.合肥工业大学博士学位论文. 2004
    [173] Williams E G. Fourier acoustics: Uncovering the origins of sound. 11th International Congress on Sound and Vibration. 2004.
    [174] H E de Bree. The Microflown: An acoustic particle velocity sensor. Acoustics Australia, 2003, 31: 91~94
    [175] Jacobsen F, H E de Bree. A comparison of two different sound intensity measurement principles. J. Acoust. Soc. Am., 2005, 118, 1510~1517
    [176] Jacobsen F, H E de Bree. A comparison of p-p and p-u sound intensity measurement systems. 11th International Congress on Sound and Vibration, St. Petersburg, 2004
    [177] Woszczyk W, Iwaki M, et al. Anechoic measurements of particle-velocity probes compared to pressure gradient and pressure microphones. AES 122nd Convention, Vienna, Austria, 2007
    [178] Jacobsen F, Liu Y. Near field acoustic holography with particle velocity transducers. J. Acoust. Soc. Am., 2005, 118, 3139~3144
    [179] Harris M C, Blotter J D. Obtaining the complex pressure field at the hologram surface for use in near-field acoustical holography when pressure and in-plane velocities are measured. J. Acoust. Soc. Am., 2006, 119: 809~816
    [180] Jacobsen F, Jaud V. Statistically optimized near field acoustic holography using an array of pressure-velocity probe. J. Acoust. Soc. Am., 2007, 121, 1550~1558
    [181] Tikhonov A N. On solving incorrectly posed problems and method of regularization. Dokl. Acad. Nauk USSR, 1963, 151(3): 501~504
    [182] Hansen P C, O’Leary D P. The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Comput., 1993, 14: 1497~1503
    [183] Hansen P C. Regularization tools: A matlab package for analysis and solution of discrete ill-posed problems. Numerical Algorithms, 1994, 6: 1~35
    [184] Wu X F, Akay A. Sound radiation from vibrating bodies in motion. J. Acoust. Soc. Am., 1992, 91: 2544~2555
    [185] Morgans W R. The Kirchhoff formula extended to a moving surface. Philos. Mag., 1930, 9: 141~161
    [186] Munro D H. The production of sound by moving objects. Ph. D. Thesis, Massachusetts Institute of Technology, 1980
    [187] Farassat F, Myers M K. Extension of Kirchhoff’s formula to radiation from vibrating surfaces. J. Sound Vib., 1988, 123: 451~460
    [188] Ffowcs Williams J E, Hawkings D L. Sound generation by turbulence and surfaces in arbitrary motion, Philos. Trans. R. Soc. London Ser. A, 1969, 264: 321~342
    [189] Morse P M, Ingard K U. Theoretical Acoustics, Princeton University Press, New Jersey, 1986
    [190] Dowling A P, Ffowcs Williams J E. Sound and Sources of Sound, Horwood Limited, London, 1983
    [191] Morozov V A. The error principle in the solution of operational equations by the regularization method. USSR Comput. Math. Math. Phys., 1968 ,8: 63~87
    [192] Schuhmacher A, Hald J, Rasmussen K B, et al. Sound source reconstruction using inverse sound field calculations. J. Acoust. Soc. Am., 2003, 113(1): 114~127
    [193]李卫兵,陈剑,毕传兴等.联合波叠加法的全息理论与实验研究.物理学报, 2006, 55(3): 1260~1270
    [194] Santos E T F, Bassrei A. L- andΘ-curve approaches for the selection of regularization parameter in geophysical diffraction tomography. Computers & Geosciences, 2007, 33:618~629
    [195] Cheng M T, Mann III J A, Pate A. Sensitivity of the wave-number domain field separation methods for scattering. J. Acoust. Soc. Am., 1996, 99(6): 3550~3557

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700