非线性不适定问题的动力系统方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动力系统方法,也可称其为连续正则化方法,是求解非线性不适定问题的一个行之有效的方法。它克服了原有迭代法收敛定理中对算子较强的限制条件,证明了所研究系统的稳定性。众所周知,动力系统理论及其稳定性一直都是引人关注的问题。而Lyapunov稳定性理论作为分析系统稳定性的重要方法在本文中得到了进一步的研究、完善。本文将从以下几个方面用动力系统方法的思想及Lyapunov稳定性理论研究非线性不适定问题。
     动力系统可分为离散动力系统和连续动力系统两种。本文先从离散的动力系统入手,基于连续的Landweber法,构造了一个求解非线性不适定问题的Runge–Kutta(简称R–K)型Landweber方法,并研究了该方法的收敛性,给出了存在扰动误差情况下的收敛率。与Landweber迭代法的数值比较表明,R–K型方法的收敛速度更快、更稳定。
     当算子无界时,去掉算子的Fr′echet可微性及算子的一些非线性条件,本文引入了一个无导数的特殊结构,并提出了一个参数识别问题。在较之以前更弱的限制条件下,基于正问题的可解性,从理论上证明了所提参数识别问题的收敛性及稳定性。
     针对非线性不适定算子方程的优化问题,在原有的Lyapunov稳定定理的基础上,给出了一个新的Lyapunov稳定性引理,并用此引理证明了该优化问题的收敛性。这一新的Lyapunov稳定性引理的限制条件要稍弱于Xu提出的稳定性定理的条件。所以,本文中的稳定性引理是原有稳定性定理的拓展,是本文的一个创新之处。
     由于经典的求解非线性不适定问题的迭代法都是局部收敛的,借鉴同伦方法的优点,本文构造了一个鲁棒的、大范围收敛的同伦正则化方法用以识别参数,利用Lyapunov稳定性理论证明了该正则化方法的收敛性。并通过分析具体的数值算例,更加肯定了当扰动误差相同时,与Landweber迭代法相比,该同伦正则化方法更稳定,收敛范围更大。
     基于Sobolev空间中偏微分方程的可解性及稳定性,本文利用类似于动力系统的证明方法,提出了用水平集方法识别非线性抛物分布式参数系统。并在偏差原则作为终止法则的前提下,验证了水平集方法的正则性。
Dynamical system methods, which can also be called continuous regularizationmethod, are very effective methods for solving nonlinear ill-posed problems. Thesemethods overcome the stronger restrictive conditions on the operator in the conver-gence theorems known for the corresponding iterative methods, and prove the stabilityof the systems which we investigated. It is well known that the theory of dynamicalsystems and their stability have been remarkable issue. The Lyapunov theory, whichare important techniques for analyzing the stability of the systems, obtains furtherdevelopment, and becomes to be perfect in this paper. We will investigate the nonlin-ear ill-posed problems by means of the idea of dynamical systems and the Lyapunovtheory in some aspects.
     Dynamical systems can be divided into two kinds of systems, that is, one is adiscrete system, and the other is continuous. Firstly, we set about to study the dis-crete one. Based on the continuous Landweber method, we construct a Runge–Kutta(simply as R–K) type Landweber method for solving nonlinear ill-posed problems,and investigate the convergent property of this method. Furthermore, we obtain theconvergence rate of this method when the perturbed data with noise exists. Comparedwith the numerical performance of Landweber method, the convergence rate of R–Ktype method is higher, and the method is more stable.
     When the operators are unbounded we get ride of the Fr′echet differentiability ofthe parameter–to–output map as well as conditions restricting its nonlinearity, intro-duce a derivative-free and special structure, and put forward a parameter identification.Convergence and stability to the parameter identification have been proved in theoryunder the more weak restrictive conditions associated with the solvability of the directproblem.
     Aiming at a minimization problem for solving nonlinear ill-posed problems, wegive a new lemma of Lyapunov stability based on the original Lyapunov stability.Moreover, we use this lemma to prove the convergence of the minimization problem.The restrictive conditions on this new lemma of stability are weaker than those Xuproposed. Therefore, the lemma of stability is a continuation of the original one, and a remarkable innovation in this paper.
     Since the classical iterative methods for nonlinear ill-posed problems are all lo-cally convergent, we construct a robust and widely convergent homotopy regulariza-tion to identify the parameter in view of the properties of homotopy method, andproved this method to be convergent in the light of the theory of Lyapunov stability.Compared with Landweber iteration, a concrete numerical example proved this ho-motopy regularization to be more stable and widely convergent with the same noise.
     Based on the solvability and stability of the partial differential equation inSobolev space, we use the similar idea to the dynamical systems and put forwarda level set method for the identification problem of the nonlinear parabolic distributedparameter systems. Moreover, we validate the level set approach to be a regularizationif the discrepancy principle is used as a stopping rule.
引文
1 H. W. Engl, P. Ku¨gler. Nonlinear Inverse Problems: Theoretical Aspects andSome Industrial Applications. in Multidisciplinary Methods for Analysis, Op-timization and Control of Complex Systems. New York: Springer Verlag.2005:3~48
    2杨辉,戴世坤,宋海斌.综合地球物理联合反演综述.地球物理学进展.2000, 17(2):262~271
    3杨晓春,李小凡,张美根.地震波反演方法研究的某些进展及其数学基础.地球物理学进展. 2001, 16(4):96~109
    4孟鸿鹰,刘贵忠.小波变换多尺度地震波形反演.地球物理学报. 1999,42(2):241~248
    5王守东,刘家琦,黄文虎.二维声波方程速度反演的一种方法.地球物理学报. 1995, 38(6):833~839
    6 F. Fruhauf, O. Scherzer, A. Leitao. Analysis of Regularization Methods for theSolution of Ill-Posed Problems Involving Unbounded Operators and a Relationto Constraint Optimization. SIAM J. Numer. Anal. 2005, 43:767~786
    7 H. W. Engl, M. Hanke, A. Neubauer. Regularization of Inverse Problems. Dor-drecht: Kluwer Academic, 1996
    8 H. W. Engl, K. Kunisch, A. Neubauer. Convergence Rates for Tikhonov Regu-larization of Nonlinear Ill-Posed Problems. Inverse Probl. 1989, 5:523~540
    9 R. Ramlau. Regularization of Nonlinear Ill-Posed Operator Equations: Methodsand Applications. Habilitationsschrift, University Bremen, 2003
    10 M. Hanke. Accelerated Landweber Iterations for the Solution of Ill-Posed Equa-tions. Numer. Math. 1991, 60:341~373
    11吴忠麟,吴新元.解非线性方程的一个非线性迭代法.高等学校计算数学学报. 1995, 4
    12 D. Calvetti, G. Landi, L. Reichel. Non-Negativity and Iterative Methods forIll-Posed Problems. Inverse Probl. 2004, 20:1747~1758
    13 R. G. Airapetyan, A. G. Ramm, A. B. Smirnova. Continuous Analog of theGauss-Newton Method. Math. Models Meth. Appl. Sci. 1999, 9(3):463~474
    14 R. G. Airapetyan, A. G. Ramm, A. B. Smirnova. Continuous Methods for Solv-ing Nonlinear Ill-Posed Problems. Fields Institute Communications. 2000,25:111~138
    15 G. Q. Xu, S. P. Yung. Lyapunov Stability of Abstract Nonlinear Dynamic Sys-tem in Banach Space. IMA Journal of Mathematical Control and Information.2003, 20:105~127
    16 U. Tautenhahn, Q. N. Jin. Tikhonov Regularization and a Posteriori Rules forSolving Nonlinear Ill-Posed Problems. Inverse Probl. 2003, 19:1~21
    17 Y. Wei, N. Zhang, M. K. Ng. Tikhonov Regularization for Weighted Total LeastSquares Problems. Appl. Math. Lett. 2007, 20(1):82~87
    18 W. Cheng, C. L. Fu, Z. Qian. A Modified Tikhonov Regularization Method for aSpherically Symmetric Three-Dimensional Inverse Heat Conduction Problem.Math. Comput. Simul. 2007, 75(3-4):97~112
    19 V. Morozov. Methods for Solving Incorrectly Posed Problems. Berlin:Springer-Verlag, 1984
    20 M. Hanke, A. Neubauer, O. Scherzer. A Convergence Analysis of the Landwe-ber Iteration for Nonlinear Ill-Posed Problems. Numer. Math. 1995, 72:21~37
    21 A. Neubauer. On Landweber Iteration for Nonlinear Ill-Posed Problems inHilbert Scales. Numer. Math. 2000, 85:309~328
    22 O. Scherzer. A Modified Landweber Iteration for Solving Parameter EstimationProblems. Appl. Math. Optim. 1998, 38(1):45~68
    23 M. Hanke. A Regularized Levenberg-Marquardt Scheme, with Applications toInverse Groundwater Filtration Problems. Inverse Probl. 1997, 13:79~95
    24 A. B. Bakushinskii. The Problem of the Convergence of the Iteratively Regu-larized Gauss-Newton Method. Comput. Math. Phys. 1992, 32:1353~1359
    25 J. Nagy, K. Palmer. Steepest Descent, CG and Iterative Regularization of Ill-Posed Problems. Bit. 2003, 43:1003~101
    26 A. S. Lalos, K. Berberidis. An Efficient Conjugate Gradient Method in theFrequency Domain: Application to Channel Equalization. Signal Processing.2008, 88(1):99~116
    27 A. Golbabai, M. Javidi. A Third-Order Newton Type Method for NonlinearEquations Based on Modified Homotopy Perturbation Method. SIAM, Philadel-phia. 2007, 9:149~163
    28 M. T. Darvishi, A. Barati. A Third-Order Newton Type Method to Solve Sys-tems of Nonlinear Equations. Appl. Math. Comput. 2006, 9:149~163
    29 M. Hanke. Regularizing Properties of a Truncated Newton-CG Algorithmfor Nonlinear Inverse Problems. Numer. Funct. Anal. Optim. 1997, 18(9-10):971~993
    30 B. Kaltenbacher. Some Newton Type Methods for the Regularization of Non-linear Ill-Posed Problems. Inverse Probl. 1997, 13(3):729~753
    31 S. George, M. T. Nair. A Modified Newton-Lavrentiev Regularization for Non-linear Ill-Posed Hammerstein Type Operator Equations. J. Complex. 2008,24(2):228~240
    32 R. Ramlau. A Modified Landweber Method for Inverse Problems. Numer.Funct. Anal. Optim. 1999, 20(1-2):79~98
    33张军,黄象鼎. Hilbert尺度下求解非线性不适定问题的多水平迭代法.数学杂志. 2002, 20(1):69~73
    34 B. Brandstatter, K. Hollaus, H. Hutten. Direct Estimation of Cole Parametersin Multifrequency Eit Using a Regularized Gauss-Newton Method. Physiol.Meas. 2003, 24(2):437~448
    35 M. Schweiger, S. R. Arridge, I. Nissila¨. Gauss-Newton Method for ImageReconstruction in Diffuse Optical Tomography. Phys. Med. Biol. 2005,50(10):2365~2386
    36 A. M. Lyapunov. The General Problem of the Stability of Motion. TaylorFrancis Books Ltd, 1892
    37 F. Verhulst. Nonlinear Differential Equations and Dynamical Systems. NewYork: Springer-Verlag, 1990
    38 J. K. Hale, H. Kocak. Dynamics and Bifurcations. New York: Springer-Verlag,1991
    39 L. Perko. Differential Equations and Dynamical Systems. New York: Springer-Verlag, 1991
    40 J. Hubbard, B. H. West. Differential Equations: A Dynamical Systems Ap-proach. New York: Springer-Verlag, 1991
    41 D. K. Arrowsmith. Dynamical Systems: Differential Equations, Maps andChaotic Behavior. Springer, 1992
    42 E. R. Scheinerman. Invitation to Dynamical Systems. Prentice Hall CollegeDiv, 1996
    43 R. G. Airapetyan, A. G. Ramm. Dynamical Systems and Discrete Methods forSolving Nonlinear Ill-Posed Problems. Appl. Math. Reviews, World Sci. Pub.Co. 2000, 1:491~536
    44 A. G. Ramm. Linear Ill-Posed Problems and Dynamical Systems. J. Math.Anal. Appl. 2001, 258:448~456
    45 A. G. Ramm. Global Convergence for Ill-Posed Equations with MonotoneOperators: The Dynamical Systems Method. J. Phys. A: Math. Gen. 2003,36:249~254
    46 A. G. Ramm. Dynamical Systems Method (DSM) and Nonlinear Problems.Spectral Theory and Nonlinear Analysis, 2005:201~228
    47 A. G. Ramm. Regularization of Ill-Posed Problems with Unbounded Operators.J. Math. Anal. Appl. 2002, 271(2):542~545
    48 A. G. Ramm. Dynamical Systems Method (DSM) for Unbounded Operator.Proc. Amer. Math. Soc. 2006, 134(4):1059~1063
    49 A. G. Ramm. Ill-Posed Problems with Unbounded Operators. J. Math. Anal.Appl. 2007, 325(1):490~495
    50 R. Scitovski, M. Meler. Solving Parameter Estimation Problem in New ProductDiffusion Models. Appl. Math. Comput. 2002, 127(1):45~63
    51 B. Malengier. Parameter Identification in Stationary Groundwater Flow Prob-lems in Drainage Basins. J. Comput. Appl. Math. 2004, 168:299~307
    52 C. H. Huang, J. X. Li, S. Kim. An Inverse Problem in Estimating the Strengthof Contaminant Source for Groundwater Systems. Appl. Math. Model. 2008,32(4):417~431
    53 T. G. Mu¨ller, J. Timmer. Parameter Identification Techniques for Partial Differ-ential Equations. Int. J. Bifurcation Chaos. 2004, 14(6):2053~2060
    54单锋,冯恩民,李艳杰.非线性动力系统多阶段辨识模型、算法及应用.运筹与管理. 2006, 15(3):6~12
    55 K. Schittkowski. Parameter Estimation in One-Dimensional Time-DependentPartial Differential Equations. Optim. Method Softw. 1997, 7(3-4):165~210
    56 K. Schittkowski. Parameter Estimation in Dynamic Systems, in Progress inOptimization. Kluwer Academic Publishers, 2000:183~204
    57 J. M. Frias, J. C. Oliveira, K. Schittkowski. Modelling and Parameter Identi-fication of a Maltodextrin De 12 Drying Process in a Convection Oven. Appl.Math. Model. 2001, 24:449~462
    58 K. Schittkowski. Parameter Identification in One-Dimensional Partial Differen-tial Algebraic Equations. GAMM Mitteilungen. 2005
    59 H. T. Banks, H. K. Nguyeni. Sensitivity of Dynamical Systems to Banach SpaceParameters. J. Math. Anal. Appl. 2006, 323(1):146~161
    60 L. C. Young. Generalized Curves and the Existence of an Attained AbsoluteMinimum in the Calculus of Variations. Camp. Rend. Sac. Sci. Letter. 1937,30:212~234
    61 L. C. Young. Necessary Conditions in the Calculus of Variation. Acta Math.1938, 69:239~258
    62李春发,冯恩民,刘金旺.一类弱耦合动力系统的参数识别问题.高校应用数学学报A辑. 2002, 17(4):425~432
    63李春发,冯恩民,胡建国.三维种群生态动力系统的参数识别.应用数学学报. 2004, 27(1):64~71
    64 P. Ku¨gler. Online Parameter Estimation in Infinite Dimensional Systems. 5thInternational ISAAC Congress. Department of Mathematics and Informatics,University of Catania, Catania, Sicily, Italy, 2005
    65 J. Nocedal. Theory of Algorithm for Unconstrained Optimization. Acta Nu-merica. 1991:199~242
    66 J. Schropp. A Note on Minimization Problems and Multistep Methods. Numer.Math. 1997, 78:81~101
    67 J. Schropp. A Dynamical Systems Approach to Constrained Minimization. Nu-mer. Math. 2000, 21:537~551
    68 J. Schropp. One-Step and Multistep Procedures for Constrained MinimizationProblems. IMA J. Numer. Anal. 2000, 20:135~152
    69 F. Alvarez, J. M. P′erez. A Dynamical System Associated with Newton’s Methodfor Parametric Approximations of Convex Minimization Problems. Appl. Math.Optim. 1998, 38(2):193~217
    70王则柯,高堂安.同伦方法引论.重庆出版社, 1990:1~287
    71 L. T. Watson. Globally Convergent Homotopy Methods. Appl. Math. Comput.1989, 31(Spec.Issue):369~396
    72 D. F. Davidenko. On a New Method of Numerical Solution of Systems ofNonlinear Equations. Doklady Akad. Nauk USSR. 1953, 88:601~604
    73 M. Gavurin. Nonlinear Functions Equations and Continuous Analogues of Iter-ative Method. Izv. Vyss. Ucebn. Zaved. Matematica. 1958, 6:18~37
    74 R. B. Kellogg, T. Y. Li, J. A. Yorke. A Constructive Proof of the BrouwerFixed-Point Theorem and Computational Results. SIAM J. Numer. Anal. 1976,13:473~483
    75 S. Smale. A Convergent Process of Price Adjustment and Global NewtonMethod. J. Math. Econ. 1976, 3:1~14
    76 S. N. Chow, J. M. Paret, J. A. Yorke. Finding Zeros of Maps: HomotopyMethods That Are Constructive with Probability One. Math. Comput. 1978,32:887~899
    77 H. B. Keller, D. J. Perozzi. Fast Seismic Ray Tracing. SIAM J. Appl. Math.1983, 43(4):981~992
    78 D. W. Vasco. Singularity and Branching: A Path-Following Formalism forGeophysical Inverse Problems. Geophysics. J. Int. 1994, 119:809~830
    79 D. W. Vasco. Regularization and Trade-Off Associated with Nonlinear Geo-physical Inverse Problems: Penalty Homotopies. Inverse Probl. 1998,14:1033~1052
    80 K. P. Bube, R. T. Langan. On a Continuation Approach to Regularization forCrosswell Tomography, In:69th Ann. Internat. Mtg. SocExpl. Geophys. 1999,Expanded Abstract:1295~1298
    81韩波,匡正,刘家琦.反演地层电阻率的单调同伦法.地球物理学报. 1991,4:517~522
    82韩波,刘家琦.微分连续正则化方法与一维声波方程系数反演问题求解.高校应用数学学报. 1994, 4:351~360
    83冯国峰,韩波,刘家琦.二维波动方程约束反演的大范围收敛广义脉冲谱方法.地球物理学报. 2003, 46(2):265~270
    84 B. Han, M. L. Zhang, J. Q. Liu. A Widely Convergent Generalized Pulse-Spectrum Technique for the Coefficient Inverse Problem of Differential Equa-tion. Appl. Math. Comput. 1991, 81:97~112
    85 H. S. Fu, B. Han. A Homotopy Method for Nonlinear Inverse Problems. Appl.Math. Comput. 2006, 183:1270~1279
    86 B. Han, H. S. Fu, Z. Li. A Homotopy Method for the Inversion of aTwo-Dimensional Acoustic Wave Equation. Inverse Probl. Sci. Eng. 2005,13:411~432
    87 Y. Liu, B. Han, Y. X. Dou. A Homotopy-Projection Method for the ParameterEstimation Problems. Inverse Probl. Sci. Eng. 2008, 16:141~157
    88 B. Han, H. S. Fu, H. Liu. A Homotopy Method for Well-Log Constraint WaveForm Inversion. Geophysics. 2007, 72:R1~R7
    89魏培君,章梓茂.弹性动力学反问题的数值反演方法.力学进展. 2001,31(2):171~180
    90 S. Osher, J. A. Sethian. Fronts Propagating with Curvature Dependent Speed:Algorithms Based on Hamilton-Jacobi Formulations. J. Comput. Phys. 1988,79:12~49
    91 E. Haber. A Multilevel, Level-Set Method for Optimizing Eigenvalues in ShapeDesign Problems. J. Comput. Phys. 2004, 198:518~534
    92 E. Chung, T. Chan, X. Tai. Electrical Impedance Tomography Using Level SetRepresentations and Total Variation Regularization. J. Comput. Phys. 2005,205:357~372
    93 S. Osher, R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces.Springer, Berlin, 2003
    94 A. Leitao, O. Scherzer. On the Relation between Constraint Regularization,Level Sets, and Shape Optimization. Inverse Probl. 2003, 19:L1~L11
    95 F. Santosa. A Level-Set Approach for Inverse Problems Involving Obstacles.ESAIM: Control Optim. Calc. Variat. 1995/96, 1:17~33
    96 S. J. Osher, F. Santosa. Level Set Methods for Optimization Problems InvolvingGeometry and Constraints. J. Comput. Phys. 2001, 171(1):272~288
    97 T. F. Chan, L. A. Vese. Image Segmentation Using Level Sets and the PiecewiseConstant Mumford-Shah Model. Technical Report, 00-14, UCLA, CAM. 2000
    98 L. A. Vese, T. F. Chan. A New Multiphase Level Set Framework for ImageSegmentation via the Mumford and Shah Model. Int. J. Comput. Vis. 2002,50:271~293
    99 S. Osher, R. Fedkiw. Level Set Methods. Technical report, Report 00-08,UCLA, CAM. 2000
    100 K. Ito, K. Kunisch, Z. Li. Level-Set Function Approach to an Inverse InterfaceProblem. Inverse Probl. 2001, 17:1225~1242
    101 M. Burger. A Level Set Method for Inverse Problems. Inverse Probl. 2001,17:1327~1355
    102 M. Burger. A Framework for the Construction of Level Set Methods for ShapeOptimization and Reconstruction. Interface Free Bound. 2003, 5:301~329
    103 U. Tautenhahn. On the Asymptotical Regularization Method for Nonlinear Ill-Posed Problems. Inverse Probl. 1994, 10:1405~1418
    104 K. H. Hoffmann, J. Sprekels. On the Identification of Coefficients of EllipticProblems by Asymptotic Regularization. Numer. Funct. Anal. Optimiz. 1984,7:157~177
    105 K. H. Hoffmann, J. Sprekels. On the Identification of Parameters in GeneralVarizational Inequalities by Asymptotic Regularization. SIAM J. Math. Anal.1986, 17:1198~1217
    106 F. Santosa. A Level-Set Approach for Inverse Problems Involving Obstacles.ESAIM: Control Optim. Calc. Variat. 1996, 1:17~33
    107 M. Burger. Levenberg-Marquardt Level Set Methods for Inverse Obstacle Prob-lems. Inverse Probl. 2004, 20:259~282
    108 T. F. Chan, X. C. Tai. Level Set and Total Variation Regularization for EllipticInverse Problems with Discontinuous Coefficients. J. Comput. Phys. 2003,193:40~66
    109 K. V. den Doel, U. M. Ascher. On Level Set Regularization for Highly Ill-Posed Distributed Parameter Estimation Problems. J. Comput. Phys. 2006,216:707~723
    110 R. Chapko, P. Ku¨gler. A Comparison of the Landweber Method and the Gauss-Newton Method for an Inverse Parabolic Boundary Value Problem. J. Comput.Appl. Math. 2004, 169(1):183~196
    111 O. Scherzer, et al. Optimal a Posteriori Parameter Choice for Tikhonov Reg-ularization for Solving Nonlinear Ill-Posed Problems. SIAM J. Numer. Anal.1993, 30:1796~1883
    112 O. Scherzer. Convergence Criteria of Iterative Methods Based on Landwe-ber Iteration for Solving Nonlinear Problems. J. Math. Anal. Appl. 1995,194:911~933
    113 M. Burger. Direct and Inverse Problems in Polymer Crystallization Processes.Ph.D. thesis, Johannes Kepler University, Linz, Austria. 2000
    114 P. Ku¨gler. A Derivative Free Landweber Method for Parameter Identificationin Elliptic Partial Differential Equations with Application to the Manufactureof Car Windshields. Ph.D. thesis, Johannes Kepler University, Linz, Austria.2003
    115 P. Ku¨gler. A Derivative-Free Landweber Iteration for Parameter Identificationin Certain Elliptic PDEs. Inverse Probl. 2003, 19:1407~1426
    116 H. W. Engl, J. Zou. A New Approach to Convergence Rate Analysis ofTikhonov Regularization for Parameter Identification in Heat Conduction. In-verse Probl. 2000, 16:1907~1923
    117 P. Ku¨gler, H. W. Engl. Identification of a Temperature Dependent Heat Conduc-tivity by Tikhonov Regularization. J. Inverse Ill-Posed Probl. 2002, 10:67~90
    118 A. G. Ramm. Dynamical Systems Method for Solving Operator Equations.Commun. Nonlinear Sci. Numer. Simul. 2004, 9(2):383~402
    119 J. Schropp. Using Dynamical Systems Methods to Solve Minimization Prob-lems. Appl. Numer. Math. 1995, 18:321~335
    120 G. G. Dahlquist. A Special Stability Problem for Linear Multistep Methods.Bit. 1963, 3:27~43
    121 D. W. Brewer, R. K. Powers. Parameter Estimation for a Volterra Integro-Differential Equation. Appl. Numer. Math. 1992, 9:307~320
    122 S. Kim, K. L. Kreider. Parameter Identification for Nonlinear Elastic and Vis-coelastic Plates. Appl. Numer. Math. 2006, 56:1538~1554
    123 O. Scherzer. An Iterative Multilevel Algorithm for Solving Nonlinear Ill-PosedProblems. Numer. Math. 1998, 80:579~600
    124 B. Hofmann, O. Scherzer. Local Ill-Posedness and Source Conditions of Oper-ator Equations in Hilbert Spaces. Inverse Probl. 1998, 14:1277~1297
    125 T. Caraballo, J. Real, L. Shaikhet. Method of Lyapunov Functionals Construc-tion in Stability of Delay Evolution Equations. J. Math. Anal. Appl. 2007,334:1130~11457

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700