电动调节阀的三维稳态热分析及热强度计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
调节阀泄漏一直是个难题,同时电动调节阀执行机构承受的温度也有严格要求。所以密封性和控制性能好坏是电动调节阀能否正常使用的两个关键因素。则准确获得电动调节阀温度场具有一定的指导意义,在此基础上期望对未来的电动调节阀早期设计方面做一些有益的探索,减少盲目设计和试验成本。
     三通电动调节阀模型采用三维装配体结构。分析中采用了直接耦合方法和序贯耦合方法。首先应用PRO/E三维软件进行建模,其次通过ANSYS有限单元法分析软件得出电动调节阀三维稳态温度场及部分组件的热应力场。在电动调节阀边界条件的确定上,外界自然对流换热采用了常壁温的保守计算方法,而辐射发射率则参考了相关的热学数据。
     温度场分析采用了三种方法:热流耦合、直接施加对流换热系数和直接施加温度。设置流体温度和直接施加的温度为290℃,则三种温度场的分析结果表明:1)热流耦合分析所得温度大于施加对流换热系数所得温度,小于直接施加温度所产生的最大温度。虽然热流耦合分析出的温度场最为准确,但是热流耦合所获得的温度场耗费时间太长,同时考虑到热学平衡原理,可以直接采用施加温度的方法进行模拟仿真。2)辐射散热是电动调节阀散热的主要途径。故改自然对流为强迫对流或者把阀盖的直筒结构改为散热片结构都能有效降低电动调节阀执行机构的温度。电动调节阀热应力分析表明:1)单独分析时,阀体和阀座阀芯组件的热应力在许用应力范围之内,但阀体整体分析时却大于许用应力的范围:2)填料处的最大应力远超过材料许用应力,说明填料已经发生了塑性变形,需要进行弹塑性分析。
The leak of control valve is a hard problem to deal with, and the temperature in the actuator has a serious requestion.So that the seal and the control about the electric control valve are good or bad is a key factor, which refers to the distribution of the temperature. Then it is a guiding significance to gain the thermal field of the control valve. On this basis, we look forward to doing some beneficial research about forepart design for the future to reduce the blindfold design and experiment cost.
     The model, three way type of electric control valve, is a three-dimensional combinational construction. During the analysis, direct coupling method and sequence coupling method are used. The model of electric control valve is built by PRO/E three-dimensional software firstly, and then three-dimensional static temperature field and the stress fields about some parts are obtained by ANSYS with FEA solution. In the aspect of ascertaining the boundary condition of electric control valve, the natural convection outsides is calculated conservatively with constant wall temperature and the emissivity is got by relative manuals.
     There are three methods to analyze the thermal field of electric control valve: the heat-flow coupling, the thermal field with being loaded forced convection, the thermal field with being loaded directly the temperature. The fluid temperature and the temperature loaded directly are both 290℃.The results indicate that: 1 ) The temperature gained in the single thermal field with the convection heat transfer is lower than the temperature gained in single thermal field with temperature 290℃,and the temperature gained in single thermal field is the highest. Although the thermal field gained with heat-flow coupling is the most reliable result, the thermal field gained with the method of heat-fluid coupling takes much time.And considering the principle of thermal balance, the temperature can be applied directly to simulate to gain the result. 2) Thermal radiation is the main way to cool the electric control valve off. So it is an effective way to dissipate the temperature on the actuator of the electric control valve by shifting the natural convection into forced convection or changing the straightly barrel-shaped structure into the plate-fin structure. The thermal stress analysis of electric control valve indicates that:1) The stress value of the body and the disc with the seat rings are under the allowable stress when they are analyzed alone, but when being analyzed with the whole model, the body is not;2) The stress in the packing rings is far above the allowable stress. It shows that the packing rings are under the plastic deformation and should be analyzed with the method of the elasto-plasticity.
引文
[1]陆培文.调节阀实用技术[M].北京:机械工业出版社,2006:1-10
    [2]孙晓霞.国外阀门科研特点[J].通用机械,2005,(10):43
    [3]王勖成.有限单元法[M].北京:清华大学出版社,2003:1-9
    [4]祁智明.捷制500MW汽轮机高压转子温度、热应力场计算及优化运行分析[J].山西电力技术,2000,(05):27-29
    [5]刘福来,杜瑞燕.求解温度场的非线性有限单元法方法[J].河北师范大学学报(自然科学版),2005,29(01):21-24
    [6]Selahaddin Orhan Akansu.Heat transfer and pressure drops for porous-ring turbulators in a circle pipe[J].Applied Energy,2006,83:280-298
    [7]杨自春,黄玉盈,胡德明.某船用锅炉联箱在复杂换热条件下的瞬态温度场有限单元法分析[J].热能动力工程,1995,10(06):359-365
    [8]杨白勋,李余德.锅炉汽包的温度场及应力场的计算分析[J].中国电机工程学报1989,9(4):34-39
    [9]Stephan,J.M.a,Peniguel,Genette,et al,Evaluation of thermal fluctuations and stresses in pipings mixing zones[J],Journal of Engineering for Gas Turbines and Power,2005(06):41-50
    [10]彭静美,于连顺.温度场和温度应力的有限单元法分析[J].山西建筑,2007,33(7):86-88
    [11]郑艳妮,杨湘洪.翅片热板散热器的传热数值模拟研究[J].机械设计与制造,2007,(08):66-68
    [12]何燕慧,陈德林.机械密封温度场及其热应力的有限单元法计算[J].兰州理工大学学,2007,33(03):72-74
    [13]阎安志,徐晖.ER制动器温度和热应力场的ANSYS分析[J].机械科学与技术,2003,22(04):556-557,652
    [14]马哲树,姚寿广.高强化柴油机组合活塞温度场的三维数值模拟[J].车用发动机,2003,(02):20-23
    [15]袁江涛,欧阳光耀,杨 立,等.柴油机喷油嘴三维有限单元法热分析[J].车用 发动机,2006,(01):64-67
    [16]彭震中,丁祝顺,王璋奇,等.汽机调节阀阀体三维瞬态温度场及应力场分析[J].热能动力工程,2002,17(97):80-83
    [17]陈 蓉,刘岩.汽轮机阀壳强度设计与优化[J].计算机辅助工程.2006,15(09):92-94
    [18]司马俊华,张世联.非稳态导热温度场及热应力的有限单元法计算[J].船舶力学,2006,10(04):98-104
    [19]薛明德,丁宏伟,等.柴油机活塞的温度场、热变形与应力三维有限单元法分析[J].兵工学报,2001,22(01):11-14
    [20]林宝阳.组合式活塞的一种实体有限单元法模型与分析[J].内燃机工程,1997,18(01):65-74
    [21]钟世梁,黄荣国,许冰.600MW机组高压旁路减温减压阀热应力计算及寿命估算[J],中国动力工程学报,2005,25(02):267-270,279
    [22]张素心,刘岩,金永明.亚临界600MW汽轮机机组主汽门--调门阀壳热应力计算及分析fJ].上海汽轮机,1998,(04):6-11
    [23]张洪武,顾元宪,钟万勰.传热与接触两类问题耦合作用的有限单元法分析[J].固体力学学报,2000,21(03):217-224
    [24]黄唐.二维流场热、结构一体化数值模拟[J].空气动力学学报,2000,18(01):115-119
    [25]唐俊龙,黄明辉,杨安全.基于ANSYS的铸嘴流体耦合场三维有限单元法仿真分析[J].铸造设备研究,2003,(04):23-26
    [26]凌涛.基于ANSYS的热--流耦合分析[J].科技咨询导报,2007,(17):54-55
    [27]刘振侠,张丽芬.采用热-流耦合方法对气冷涡轮叶片换热的计算[J].西北工业大学,2007,25(02):315-319
    [28]Earl A.Thomton,Ken Morgan.Application of Integrated Application of Integrated Fluid-Thermal-Structural Analysis Methods[J].ICAS-88-2.3.3:424-434
    [29]Sondak D L,Dorney D J.Simulation of Coupled Unsteady Fluid Dynamics and Conduction Heat Transfer in a Turbine Stage[J].AIAA:99-521
    [30]Han Z X,Dennis B H,Dulikravich G S.Simultaneous Prediction of External Flow_field and Temperature in internally cooled 3-DTurbine blade Material[J].ASME 2000-GT-53
    [31]陶文铨.传热学(第一版)[M].西安:西北工业大学出版社,2006:34-36
    [32]陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社,2004
    [33]孔祥谦.有限单元法在传热中的应用[M].北京:科学出版社,1986:4-6
    [34]尚仁操,乔谓阳,许开福.气冷涡轮叶片气热耦合数值模拟研究[J].机械设计与制造,2007,(12):11-13
    [35]张文志,韩清凯,戚向东.机械结构有限单元法分析[M].哈尔滨工业大学出版社,2006
    [36]曾攀.有限单元法分析及应用[M].北京:清华大学出版社.2004:342-347
    [37]杨世铭 陶文铨.传热学(第四版)[M].北京:高等教育出版社,2006:219-228
    [38]Kays W M,Crawford M E.Convective heat and mass transfer[M].New York:McGraw-Hill Book CoMPAny,1980:246
    [39]马庆芳,方荣生,项立成等.实用热物理性质手册[M].北京:中国农业机械出版社,1986:96-1040
    [40]Release 11.0 Documentation for ANSYS
    [41]http://forum.simwe.com/thread-817481 -1-2.html
    [42]关涛,刘晓燕,彭志刚.导热油管内强迫对流换热系数的计算[J].工业锅炉,2006(06):9-11
    [43]姜辉,王学增.超高压电动调节阀泄漏原因分析[J].黑龙江石油化工,1998,9(02):34-35
    [44][美]J.L.莱昂斯.阀门技术手册[M].北京:机械工业出版社.1991:193-240
    [45]杜兆年,赵兴艳,陈明义.阀杆软填料密封性能分析及结构设计[J].1996,04:9-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700